1
|
Beena Unni A, Muringayil Joseph T. Enhancing Polymer Sustainability: Eco-Conscious Strategies. Polymers (Basel) 2024; 16:1769. [PMID: 39000625 PMCID: PMC11244229 DOI: 10.3390/polym16131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Polymer sustainability is a pressing concern in today's world driven by the increasing demand for environmentally friendly materials. This review paper provides a comprehensive overview of eco-friendly approaches towards enhancing the sustainability of polymers. It synthesized recent research and developments in various areas such as green polymer synthesis methods, biodegradable polymers, recycling technologies, and emerging sustainable alternatives. The environmental impact of traditional polymer production processes and the importance of adopting greener alternatives were critically examined. The review delved into the advancements in polymer recycling technologies like mechanical, chemical, and biological processes aimed at minimizing plastic waste and promoting a circular economy. The innovative approaches such as upcycling, hybrid methods etc., which offer promising solutions for addressing plastic pollution and achieving long-term sustainability goals were also analyzed. Finally, the paper discussed the challenges and future prospects of eco-friendly approaches for polymer sustainability, emphasizing the need for researchers and concerted efforts from scientists across industries and academia to drive meaningful change towards a more sustainable future.
Collapse
Affiliation(s)
- Aparna Beena Unni
- Faculty of Science and Technology, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
de Oliveira R, Silva MHA, Agrawal P, Brito GDF, Cunha CTC, de Mélo TJA. Recycling of Acrylonitrile Butadiene Styrene from Electronic Waste for the Production of Eco-Friendly Filaments for 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1132-e1140. [PMID: 39359584 PMCID: PMC11442160 DOI: 10.1089/3dp.2022.0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In this work, acrylonitrile butadiene styrene (ABS) copolymer from electronic waste (e-waste) was used to produce filaments for application in 3D printing. Recycled ABS (rABS) from e-waste was blended with virgin ABS (vABS) in different concentrations. By differential scanning calorimetry, it was observed that the values of the glass transition temperatures for vABS/rABS blends ranged between the values of vABS and rABS. Torque rheometry analysis showed that the processability of vABS was not compromised with the addition of rABS. Rheological measurements showed that the viscosity of vABS was higher than that of rABS at low frequencies and indicated that vABS and rABS are immiscible. Impact strength (IS) tests of the 3D printed samples showed an increase in the IS with an increase in the rABS content up to 50 wt%. Blending vABS with rABS from e-waste is promising and proved to be feasible, making it possible to recycle a considerable amount of plastics from e-waste and, thus, contributing to the preservation of the environment.
Collapse
Affiliation(s)
- Rafaela de Oliveira
- Departamento de Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | | | - Pankaj Agrawal
- Departamento de Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | | | | | | |
Collapse
|
3
|
Jakubowicz I, Yarahmadi N. Review and Assessment of Existing and Future Techniques for Traceability with Particular Focus on Applicability to ABS Plastics. Polymers (Basel) 2024; 16:1343. [PMID: 38794535 PMCID: PMC11124994 DOI: 10.3390/polym16101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is generally recognized that the use of physical and digital information-based solutions for tracking plastic materials along a value chain can favour the transition to a circular economy and help to overcome obstacles. In the near future, traceability and information exchange between all actors in the value chain of the plastics industry will be crucial to establishing more effective recycling systems. Recycling plastics is a complex process that is particularly complicated in the case of acrylonitrile butadiene styrene (ABS) plastic because of its versatility and use in many applications. This literature study is part of a larger EU-funded project with the acronym ABSolEU (Paving the way for an ABS recycling revolution in the EU). One of its goals is to propose a suitable traceability system for ABS products through physical marking with a digital connection to a suitable data-management system to facilitate the circular use of ABS. The aim of this paper is therefore to review and assess the current and future techniques for traceability with a particular focus on their use for ABS plastics as a basis for this proposal. The scientific literature and initiatives are discussed within three technological areas, viz., labelling and traceability systems currently in use, digital data sharing systems and physical marking. The first section includes some examples of systems used commonly today. For data sharing, three digital technologies are discussed, viz., Digital Product Passports, blockchain solutions and certification systems, which identify a product through information that is attached to it and store, share and analyse data throughout the product's life cycle. Finally, several different methods for physical marking are described and evaluated, including different labels on a product's surface and the addition of a specific material to a polymer matrix that can be identified at any point in time with the use of a special light source or device. The conclusion from this study is that the most promising data management technology for the near future is blockchain technology, which could be shared by all ABS products. Regarding physical marking, producers must evaluate different options for individual products, using the most appropriate and economical technology for each specific product. It is also important to evaluate what information should be attached to a specific product to meet the needs of all actors in the value chain.
Collapse
|
4
|
Christoff-Tempesta T, Epps TH. Ionic-Liquid-Mediated Deconstruction of Polymers for Advanced Recycling and Upcycling. ACS Macro Lett 2023; 12:1058-1070. [PMID: 37516988 PMCID: PMC10433533 DOI: 10.1021/acsmacrolett.3c00276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Ionic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorable chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery. We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands, toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer economies.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
La Mantia FP, Liarda D, Ceraulo M, Mistretta MC. A Green Approach for Recycling Compact Discs. Polymers (Basel) 2023; 15:polym15030491. [PMID: 36771792 PMCID: PMC9921742 DOI: 10.3390/polym15030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Compact discs (CDs) and digital versatile discs (DVDs) are mainly made by polycarbonate disc, a thin layer of aluminum or silver, a thin layer of a coating and a thin layer of a label of paper or PET. The recycling of these discs is difficult due to the removal of these non-polymeric layers and to our best knowledge, no industrial plants have been resent for their recycling. In this work, we propose a facile way to remove the non-polymeric layers and investigate the effect of the repetitive extrusion process on the processability and on the mechanical properties of the recycled polycarbonate. A few works have been published dealing with both the removal of the non-polymeric layers and the mechanical recycling of the disk of polycarbonate. In our approach, the removal of the non-polymeric layers is easily obtained through a thermo-mechanical treatment in a basic solution by ammonia. This process can be considered green because is made at a low temperature with a small amount of water and a very small amount of ammonia, saving energy and water. The properties of the polycarbonate remain good if the mechanical recycling is made after drying the post-consumer polycarbonate.
Collapse
Affiliation(s)
- Francesco Paolo La Mantia
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
- INSTM, Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali, Via Giusti n. 9, 50121 Florence, Italy
- Correspondence:
| | - Domenico Liarda
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Manuela Ceraulo
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maria Chiara Mistretta
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
6
|
Ghaffar I, Rashid M, Akmal M, Hussain A. Plastics in the environment as potential threat to life: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56928-56947. [PMID: 35713833 DOI: 10.1007/s11356-022-21542-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plastics have become inevitable for human beings in their daily life. Million tons of plastic waste is entering in oceans, soil, freshwater, and sediments. Invasion of plastics in different ecosystems is causing severe problems to inhabitants. Wild animals such as seabirds, fishes, crustaceans, and other invertebrates are mostly effected by plastic entanglements and organic pollutants absorbed and carried by plastics/microplastics. Plastics can also be potentially harmful to human beings and other mammals. Keeping in view the possible harms of plastics, some mitigation strategies must be adopted which may include the use of bioplastics and some natural polymers such as squid-ring teeth protein. This review focuses on the possible sources of intrusion and fate of plastics in different ecosystems, their potential deleterious effects on wildlife, and the measures that can be taken to minimize and avoid the plastic use.
Collapse
Affiliation(s)
- Imania Ghaffar
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Akmal
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
7
|
Current Prospects for Plastic Waste Treatment. Polymers (Basel) 2022; 14:polym14153133. [PMID: 35956648 PMCID: PMC9370925 DOI: 10.3390/polym14153133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The excessive amount of global plastic produced over the past century, together with poor waste management, has raised concerns about environmental sustainability. Plastic recycling has become a practical approach for diminishing plastic waste and maintaining sustainability among plastic waste management methods. Chemical and mechanical recycling are the typical approaches to recycling plastic waste, with a simple process, low cost, environmentally friendly process, and potential profitability. Several plastic materials, such as polypropylene, polystyrene, polyvinyl chloride, high-density polyethylene, low-density polyethylene, and polyurethanes, can be recycled with chemical and mechanical recycling approaches. Nevertheless, due to plastic waste’s varying physical and chemical properties, plastic waste separation becomes a challenge. Hence, a reliable and effective plastic waste separation technology is critical for increasing plastic waste’s value and recycling rate. Integrating recycling and plastic waste separation technologies would be an efficient method for reducing the accumulation of environmental contaminants produced by plastic waste, especially in industrial uses. This review addresses recent advances in plastic waste recycling technology, mainly with chemical recycling. The article also discusses the current recycling technology for various plastic materials.
Collapse
|
8
|
Gilbert EA, Polo ML, Maffi JM, Guastavino JF, Vaillard SE, Estenoz DA. The organic chemistry behind the recycling of poly(bisphenol‐A carbonate) for the preparation of chemical precursors: A review. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elangeni Ana Gilbert
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Mara Lis Polo
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | | | - Javier Fernando Guastavino
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Santiago Eduardo Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Diana Alejandra Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| |
Collapse
|
9
|
Yang RX, Jan K, Chen CT, Chen WT, Wu KCW. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks. CHEMSUSCHEM 2022; 15:e202200171. [PMID: 35349769 DOI: 10.1002/cssc.202200171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Plastic waste is an emerging environmental issue for our society. Critical action to tackle this problem is to upcycle plastic waste as valuable feedstock. Thermochemical conversion of plastic waste has received growing attention. Although thermochemical conversion is promising for handling mixed plastic waste, it typically occurs at high temperatures (300-800 °C). Catalysts can play a critical role in improving the energy efficiency of thermochemical conversion, promoting targeted reactions, and improving product selectivity. This Review aims to summarize the state-of-the-art of catalytic thermochemical conversions of various types of plastic waste. First, general trends and recent development of catalytic thermochemical conversions including pyrolysis, gasification, hydrothermal processes, and chemolysis of plastic waste into fuels, chemicals, and value-added materials were reviewed. Second, the status quo for the commercial implementation of thermochemical conversion of plastic waste was summarized. Finally, the current challenges and future perspectives of catalytic thermochemical conversion of plastic waste including the design of sustainable and robust catalysts were discussed.
Collapse
Affiliation(s)
- Ren-Xuan Yang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1 Sec. 3, Chung-Hsiao E. Rd., Taipei, 106344, Taiwan
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Ching-Tien Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| | - Wan-Ting Chen
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| |
Collapse
|
10
|
Saijun D, Boonsuk P, Chinpa W. Conversion of polycarbonate from waste compact discs into antifouling ultrafiltration membrane via phase inversion. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Charitopoulou MA, Papadopoulou L, Achilias DS. Effect of brominated flame retardant on the pyrolysis products of polymers originating in WEEE. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29570-29582. [PMID: 34312751 DOI: 10.1007/s11356-021-15489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Chemical recycling is an environmentally friendly method, which is often used for the recycling of plastics included in waste electric and electronic equipment (WEEE), since fuels and secondary valuable materials can be produced. Brominated flame retardants (BFRs) are usually added into these plastics to reduce their flammability; but they are toxic substances. The aim of this work is to examine the thermal behaviour and the products obtained after pyrolysis of polymer blends that consist of acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), polycarbonate (PC) and polypropylene (PP) with composition that simulates real WEEE, in the absence and presence of a common BFR, tetrabromobisphenol A (TBBPA), in order to investigate its effect on pyrolysis products. Blends were prepared via the solvent casting method and the melt-mixing in an extruder; it was revealed that the latter method may be a better choice for blends preparation, since it did not affect the products obtained. The chemical structure of each polymeric blend was identified by Fourier transform infrared spectroscopy (FTIR). Thermal degradation of the blends was evaluated by thermogravimetric (TG) experiments performed using a thermal analyser (TGA) and a pyrolyser for evolved gas analysis (EGA). It was observed that blends had a similar behaviour during their thermal degradation; and in most cases, they followed a one-step mechanism. Pyrolysis products were identified by the pyrolyser combined with a gas chromatographer/mass spectrometer (GC/MS), and comprised various useful compounds, such as monomers, aromatic hydrocarbons and phenolic compounds that could be used as chemical feedstock. Furthermore, it was found that TBBPA affected products distribution by enhancing the formation of phenolic compounds and on the other hand by resulting in brominated compounds, such as dibromophenol.
Collapse
Affiliation(s)
- Maria Anna Charitopoulou
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Lambrini Papadopoulou
- Department of Mineralogy-Petrology-Economic Geology, Aristotle University of Thessaloniki, GR-54 124, Thessaloniki, Greece
| | - Dimitriοs S Achilias
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
12
|
Wan Y, Zeng Q, Shi P, Yoon YJ, Tay CY, Lee JM. Machine learning-assisted optimization of TBBPA-bis-(2,3-dibromopropyl ether) extraction process from ABS polymer. CHEMOSPHERE 2022; 287:132128. [PMID: 34509015 DOI: 10.1016/j.chemosphere.2021.132128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing amount of e-waste plastics needs to be disposed of properly, and removing the brominated flame retardants contained in them can effectively reduce their negative impact on the environment. In the present work, TBBPA-bis-(2,3-dibromopropyl ether) (TBBPA-DBP), a novel brominated flame retardant, was extracted by ultrasonic-assisted solvothermal extraction process. Response Surface Methodology (RSM) achieved by machine learning (support vector regression, SVR) was employed to estimate the optimum extraction conditions (extraction time, extraction temperature, liquid to solid ratio) in methanol or ethanol solvent. The predicted optimum conditions of TBBPA-DBP were 96 min, 131 mL g-1, 65 °C, in MeOH, and 120 min, 152 mL g-1, 67 °C in EtOH. And the validity of predicted conditions was verified.
Collapse
Affiliation(s)
- Yan Wan
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Qiang Zeng
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Pujiang Shi
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chor Yong Tay
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jong-Min Lee
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
13
|
Joo J, Kwon EE, Lee J. Achievements in pyrolysis process in E-waste management sector. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117621. [PMID: 34171724 DOI: 10.1016/j.envpol.2021.117621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Many aspects of modern life of our civilization are associated with using electrical and electronic devices (EEE). Ever-increasing demand for high-performance EEE and accelerated technological development make the replacement of EEE become frequent. This leads to the generation of a tremendous amount of electronic waste (E-waste). Challenges of the management of E-waste have recently arisen out of a dearth of proper technologies to treat E-waste. Pyrolysis process can thermochemically treat waste materials that have a complicated nature and inhomogeneity. This article gives a systematic review as an effort to tackle the challenges in the context of achievements in pyrolysis process in E-waste management sector. Pyrolysis mechanism and types of pyrolysis processes and pyrolysis reactors are first discussed. Various pyrolysis technologies applied to the E-waste treatment are then summarized and compared to each other. Points to be considered for further research and pending challenges of E-waste pyrolysis are also discussed. The pyrolysis treatment of E-waste is not yet fully industrialized mostly because of high costs. However, there should be much room for further developing the E-waste pyrolysis; hence, its industrialization and commercialization is just a matter of time.
Collapse
Affiliation(s)
- Junghee Joo
- Department of Energy Systems Research, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Seou, 05006, Republic of Korea
| | - Jechan Lee
- Department of Energy Systems Research, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea; Department of Environmental and Safety Engineering, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea.
| |
Collapse
|
14
|
Das P, Gabriel JCP, Tay CY, Lee JM. Value-added products from thermochemical treatments of contaminated e-waste plastics. CHEMOSPHERE 2021; 269:129409. [PMID: 33388566 DOI: 10.1016/j.chemosphere.2020.129409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The rise of electronic waste (e-waste) generation around the globe has become a major concern in recent times and its recycling is mostly focused on the recovery of valuable metals, such as gold, silver, and copper, etc. However, e-waste consists of a significant weight fraction of plastics (25-30%) which are either discarded or incinerated. There is a growing need for recycling of these e-waste plastics. The majority of them are made from high-quality polymers (composites), such as acrylonitrile butadiene styrene (ABS), high impact polystyrene (HIPS), polycarbonate (PC), polyamide (PA), polypropylene (PP) and epoxies. These plastics are often contaminated with hazardous materials, such as brominated flame retardants (BFRs) and heavy metals (such as Pb and Hg). Under any thermal stress (thermal degradation), the Br present in the e-waste plastics produces environmentally hazardous pollutants, such as hydrogen bromide or polybrominated diphenyl ethers/furans (PBDE/Fs). The discarded plastics can lead to the leaching of toxins into the environment. It is important to remove the toxins from the e-waste plastics before recycling. This review article gives a detailed account of e-waste plastics recycling and recovery using thermochemical processes, such as extraction (at elevated temperature), incineration (combustion), hydrolysis, and pyrolysis (catalytic/non catalytic). A basic framework of the existing processes has been established by reviewing the most interesting findings in recent times and the prospects that they open in the field recycling of e-waste plastics.
Collapse
Affiliation(s)
- Pallab Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | | | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
15
|
Dubé MA, Gabriel VA, Pakdel AS, Zhang Y. Sustainable polymer reaction engineering: Are we there yet? CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Vida A. Gabriel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Amir S. Pakdel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
16
|
Abstract
This review covers the current status of chemical recycling and upcycling of poly(bisphenol A carbonate), a leading engineering plastic of great economic and environmental interest.
Collapse
Affiliation(s)
- Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry
- Jeonbuk National University
- Jeonju
- Republic of Korea
| |
Collapse
|
17
|
Waste Electrical and Electronic Equipment: A Review on the Identification Methods for Polymeric Materials. RECYCLING 2019. [DOI: 10.3390/recycling4030032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering that the large quantity of waste electrical and electronic equipment plastics generated annually causes increasing environmental concerns for their recycling and also for preserving of raw material resources, decreasing of energy consumption, or saving the virgin materials used, the present challenge is considered to be the recovery of individual polymers from waste electrical and electronic equipment. This study aims to provide an update of the main identification methods of waste electrical and electronic equipment such as spectroscopic fingerprinting, thermal study, and sample techniques (like identification code and burning test), and the characteristic values in the case of the different analyses of the polymers commonly used in electrical and electronic equipment. Additionally, the quality of the identification is very important, as, depending on this, new materials with suitable properties can be obtained to be used in different industrial applications. The latest research in the field demonstrated that a complete characterization of individual WEEE (Waste Electric and Electronic Equipment) components is important to obtain information on the chemical and physical properties compared to the original polymers and their compounds. The future directions are heading towards reducing the costs by recycling single polymer plastic waste fractions that can replace virgin plastic at a ratio of almost 1:1.
Collapse
|
18
|
Mumbach GD, de Sousa Cunha R, Machado RAF, Bolzan A. Dissolution of adhesive resins present in plastic waste to recover polyolefin by sink-float separation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:453-462. [PMID: 31103691 DOI: 10.1016/j.jenvman.2019.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 05/04/2019] [Indexed: 05/28/2023]
Abstract
This study investigated the dissolution of adhesive resins present in polyolefin films that cause plastic materials to adhere to each other. The process of dissolution was made by the use of ethyl acetate and followed by separation through the sink-float process. The objective was to separate and characterize polyolefin films from plastic solid waste derived from recycled post-consumer paper. Through these procedures, 6% polyethylene of high-density (HDPE), 14% polyethylene of low-density (LDPE) and 39% polypropylene (PP) were separated and recovered from plastic waste. Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analyzes (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were conducted to determine the chemical, thermal and mechanical properties of the recovered polymers and to establish a comparison with standard commercial polymers. It demonstrated that recovered material kept their chemical, thermal, and mechanical properties. This process indicates possible economic viability considering the demand, the market value of the PP, and the required investment to be implemented in the recycling process that could be amortized in a short period of time. Moreover, the organic solvent used in the dissolution process can be easily recovered by distillation.
Collapse
Affiliation(s)
- Guilherme Davi Mumbach
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Centro Tecnológico, Trindade, PO Box nº 476, Florianópolis, SC, 88040-900, Brazil.
| | - Ricardo de Sousa Cunha
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Centro Tecnológico, Trindade, PO Box nº 476, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Antonio Francisco Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Centro Tecnológico, Trindade, PO Box nº 476, Florianópolis, SC, 88040-900, Brazil
| | - Ariovaldo Bolzan
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Centro Tecnológico, Trindade, PO Box nº 476, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
19
|
Wang Y, Li Y, Wang W, Lv L, Li C, Zhang J. Recycled polycarbonate/acrylonitrile-butadiene-styrene reinforced and toughened through chemical compatibilization. J Appl Polym Sci 2019. [DOI: 10.1002/app.47537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yafei Wang
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| | - Yingchun Li
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| | - Wensheng Wang
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| | - Lida Lv
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| | - Chenhong Li
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| | - Jianbin Zhang
- School of Materials Science and Engineering; North University of China; Taiyuan 030051 China
| |
Collapse
|
20
|
Theoretical study of transesterification of diethyl carbonate with methanol catalyzed by base and Lewis acid. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Masud MH, Akram W, Ahmed A, Ananno AA, Mourshed M, Hasan M, Joardder MUH. Towards the effective E-waste management in Bangladesh: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1250-1276. [PMID: 30456610 DOI: 10.1007/s11356-018-3626-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Nowadays, the electrical and electronic products are a crucial commodity for different purposes of daily life and they are multiplying five times faster than human like mobile phones, which has reached zero to 7.2 billion in only three decades. A 5-10% yearly increase in the amount of used electrical and electronic equipment that are disposed of prudently can cause environmental hazards that have an aversive effect on human health, marine life, contamination of groundwater, and reduces soil's fertility. Management of this enormous influx of electrical and electronic waste is a challenge for developing countries like Bangladesh with barebones solid waste management infrastructure. Inadequacy of public awareness, policies and poor budget in the field of waste management are few of the key factors behind this delineating scenario. In this study, the picture electrical and electronic waste productions in Bangladesh along with the recent E-waste management systems have been presented comprehensively. Based on the study, it was concluded that most of the adapted E-waste management methods are conversational and detached from current technological capability. A set of sustainable E-waste management system has been suggested along with the challenges, which might appear during the implementation of these strategies. Successful implementation of these suggested systems would advance the quality of E-waste management in Bangladesh increasing the current 35% overall E-waste recycling rate and offer enormous energy from the waste.
Collapse
Affiliation(s)
- Mahadi Hasan Masud
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.
| | - Wasim Akram
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Asif Ahmed
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Anan Ashrabi Ananno
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Monjur Mourshed
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Muntakhimoon Hasan
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | | |
Collapse
|
22
|
Kumagai S, Asakawa M, Kameda T, Saito Y, Watanabe A, Watanabe C, Teramae N, Yoshioka T. Hydrogen and steam injected tandem μ-reactor GC/FID system: phenol recovery from bisphenol A and alkylphenols using Ni/Y zeolite. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00299e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hydrogen and steam injected tandem μ-reactor-GC/FID system achieved online quantification of products from hydrogenation and dealkylation of bisphenol A and alkylphenols using Ni/Y zeolite.
Collapse
Affiliation(s)
- S. Kumagai
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - M. Asakawa
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - T. Kameda
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Y. Saito
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | | | | | - N. Teramae
- Frontier Laboratories Ltd
- Koriyama
- Japan
- Department of Chemistry
- Graduate School of Science
| | - T. Yoshioka
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
23
|
Singh R, Shahi S, Geetanjali. Chemical Degradation of Poly(bisphenol A carbonate) Waste Materials: A Review. ChemistrySelect 2018. [DOI: 10.1002/slct.201802577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ram Singh
- Department of Applied chemistryDelhi Technological University Delhi-110042 India
| | - Surybala Shahi
- Department of Applied chemistryDelhi Technological University Delhi-110042 India
| | - Geetanjali
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi – 110 007 India
| |
Collapse
|
24
|
Zhao YB, Lv XD, Ni HG. Solvent-based separation and recycling of waste plastics: A review. CHEMOSPHERE 2018; 209:707-720. [PMID: 29960198 DOI: 10.1016/j.chemosphere.2018.06.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/11/2023]
Abstract
Since the creation of first man-made plastic, the global production and consumption of plastics have been continuously increasing. However, because plastic materials are durable and very slow to degrade, they become waste with high staying power. The over-consumption, disposal, and littering of plastics result in pollution, thus causing serious environmental consequences. To date, only a fraction of waste plastics is reused and recycled. In fact, recycling plastics remains a great challenge because of technical challenges and relatively insufficient profits, especially in mixed plastics. This review focuses on an environmentally friendly and potentially profitable method for plastics separation and recovery and solvents extraction. It includes the dissolution/reprecipitation method and supercritical fluid extraction, which produce high-quality recovered plastics comparable to virgin materials. These methods are summarized and discussed taking mass-produced plastics (PS, PC, Polyolefins, PET, ABS, and PVC) as examples. To exploit the method, the quality and efficiency of solvent extraction are elaborated. By eliminating these technical challenges, the solvent extraction method is becoming more promising and sustainable for plastic issues and polymer markets.
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xu-Dong Lv
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong-Gang Ni
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
25
|
Selective phenol recovery via simultaneous hydrogenation/dealkylation of isopropyl- and isopropenyl-phenols employing an H 2 generator combined with tandem micro-reactor GC/MS. Sci Rep 2018; 8:13994. [PMID: 30228376 PMCID: PMC6143636 DOI: 10.1038/s41598-018-32269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/05/2018] [Indexed: 11/14/2022] Open
Abstract
The pyrolysis of bisphenol A (BPA), an essential process ingredient used in industry and many everyday life products, helps produce low-industrial-demand chemicals such as isopropenyl- and isopropyl-phenols (IPP and iPrP). In this study, tandem micro-reactor gas chromatography/mass spectrometry combined with an H2 generator (H2-TR-GC/MS) was employed for the first time to investigate the selective recovery of phenol via simultaneous hydrogenation/dealkylation of IPP and iPrP. After investigating the iPrP dealkylation performances of several zeolites, we obtained full iPrP conversion with over 99% phenol selectivity using the Y-zeolite at 350 °C. In contrast, when applied to IPP, the zeolite acid centres caused IPP polymerisation and subsequent IPP-polymer cracking, resulting in many byproducts and reduced phenol selectivity. This challenge was overcome by the addition of 0.3 wt% Ni on the Y-zeolite (0.3Ni/Y), which enabled the hydrogenation of IPP into iPrP and subsequent dealkylation into phenol (full IPP conversion with 92% phenol selectivity). Moreover, the catalyst deactivation and product distribution over repetitive catalytic use were successfully monitored using the H2-TR-GC/MS system. We believe that the findings presented herein could allow the recovery of phenol-rich products from polymeric waste with BPA macro skeleton.
Collapse
|
26
|
Chemical recycling of poly(bisphenol A carbonate): 1,5,7-Triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Gu F, Guo J, Zhang W, Summers PA, Hall P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1192-1207. [PMID: 28605837 DOI: 10.1016/j.scitotenv.2017.05.278] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact.
Collapse
Affiliation(s)
- Fu Gu
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Jianfeng Guo
- Center of Energy and Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wujie Zhang
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peter A Summers
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| |
Collapse
|
28
|
Zhao YB, Lv XD, Yang WD, Ni HG. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:393-399. [PMID: 28803763 DOI: 10.1016/j.wasman.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts.
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xu-Dong Lv
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wan-Dong Yang
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong-Gang Ni
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
29
|
Andreikov EI, Safarov LF, Amosova IS. Utilization of waste discs via their thermal treatment in coal-tar pitch to obtain sorbents. RUSS J APPL CHEM+ 2015. [DOI: 10.1134/s1070427215060178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Weeden GS, Soepriatna NH, Wang NHL. Method for efficient recovery of high-purity polycarbonates from electronic waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2425-2433. [PMID: 25625790 DOI: 10.1021/es5055786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.
Collapse
Affiliation(s)
- George S Weeden
- School of Chemical Engineering, Purdue University , West Lafayette, Indiana 47907-2100, United States
| | | | | |
Collapse
|
31
|
Grause G, Fonseca JD, Tanaka H, Bhaskar T, Kameda T, Yoshioka T. A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Antonakou EV, Kalogiannis KG, Stephanidis SD, Triantafyllidis KS, Lappas AA, Achilias DS. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:2487-2493. [PMID: 25246066 DOI: 10.1016/j.wasman.2014.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/25/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.
Collapse
Affiliation(s)
- E V Antonakou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - K G Kalogiannis
- Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki, Greece
| | - S D Stephanidis
- Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki, Greece
| | - K S Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki, Greece
| | - A A Lappas
- Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki, Greece
| | - D S Achilias
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
33
|
Antonakou E, Kalogiannis K, Stefanidis S, Karakoulia S, Triantafyllidis K, Lappas A, Achilias D. Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: The effect of catalysts on products yields and composition. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Grause G, Kärrbrant R, Kameda T, Yoshioka T. Steam Hydrolysis of Poly(bisphenol A carbonate) in a Fluidized Bed Reactor. Ind Eng Chem Res 2014. [DOI: 10.1021/ie404263a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guido Grause
- Graduate School of Environmental
Studies, Tohoku University, Aramaki Aza Aoba 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Rikard Kärrbrant
- Graduate School of Environmental
Studies, Tohoku University, Aramaki Aza Aoba 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Tomohito Kameda
- Graduate School of Environmental
Studies, Tohoku University, Aramaki Aza Aoba 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Toshiaki Yoshioka
- Graduate School of Environmental
Studies, Tohoku University, Aramaki Aza Aoba 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
35
|
Zhuo C, Levendis YA. Upcycling waste plastics into carbon nanomaterials: A review. J Appl Polym Sci 2013. [DOI: 10.1002/app.39931] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chuanwei Zhuo
- Department of Mechanical and Industrial Engineering; Northeastern University; Boston Massachusetts 02115
| | - Yiannis A. Levendis
- Department of Mechanical and Industrial Engineering; Northeastern University; Boston Massachusetts 02115
| |
Collapse
|
36
|
Kong S, Liu H, Zeng H, Liu Y. The Status and Progress of Resource Utilization Technology of e-waste Pollution in China. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proenv.2012.10.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
37
|
Taurino R, Pozzi P, Zanasi T. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:2601-2607. [PMID: 20843675 DOI: 10.1016/j.wasman.2010.07.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics.
Collapse
Affiliation(s)
- Rosa Taurino
- Università di Modena e Reggio Emilia, Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Via Vignolese 905/A, 41100 Modena, Italy.
| | | | | |
Collapse
|
38
|
Achilias DS, Redhwi HH, Siddiqui MN, Nikolaidis AK, Bikiaris DN, Karayannidis GP. Glycolytic depolymerization of PET waste in a microwave reactor. J Appl Polym Sci 2010. [DOI: 10.1002/app.32737] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|