1
|
Zhang Z, Zhang J, Cao W, Liu X, Gong L, Zhang X, Chen W, Bao J. Design of toughed bio-based polylactide/polyamide 11 blends with regulatable size of dispersed phase and spherulites by interfacial stereocomplex crystallites. Int J Biol Macromol 2024; 282:137267. [PMID: 39510486 DOI: 10.1016/j.ijbiomac.2024.137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Enhancing the ductility of polylactide (PLA) through toughening modification to expand the application range of PLA aligns with the requirements of green development. In this study, eco-friendly bio-based plastic polyamide 11 (PA11) was chosen to modify poly(l-lactide) (PLLA). PA11 and poly(d-lactide) (PDLA) were grafted onto the main chain of ADR via simple reactive processing and utilized as reactive compatibilizers to improve toughening efficiency of PA11. The successful preparation of the graft copolymer was confirmed through 1H NMR, FT-IR and DSC, and a detailed investigation was conducted on how the composition and concentration of the compatibilizer influence the mechanical properties, phase morphology, crystallization, and nucleation behaviors of PLLA/PA11 blends. Elongation at break of the 5 % PDLA/PA11 graft copolymers toughed PLLA was as high as 222 % at 30 % PA11 content, which was 17 times greater than the PLLA toughened by pristine PA11 without compromising the strength. PLLA and PA11 were immiscible binary blends with PA11 droplet/PLLA matrix phase separated morphologies in the molten state. Based on the calculation of interfacial tension, the grafted copolymer would be mainly distributed at the interface between the two phases. The dispersion of PA11 droplet in PLLA matrix was improved since the interfacial interaction force was enhanced through in-situ reaction. The increase of the nucleation site and decrease of the spherulites size were worked synergistically by stereocomplex (SC) crystallites and PA11. Under the impact of reducing the size of the dispersed phase and spherulites, the toughness of blends was enhanced. This study provided valuable insights into the control of PLLA immiscible blend morphology and elucidated the relationship between the size of dispersed phase and spherulites and the ultimate mechanical performance of bio-based PLA materials.
Collapse
Affiliation(s)
- Zijun Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiangang Zhang
- Yangzhou Huitong Technology Co., Ltd, Yangzhou 225101, China
| | - Wen Cao
- Yangzhou Huitong Technology Co., Ltd, Yangzhou 225101, China
| | - Xiong Liu
- Yangzhou Huitong Technology Co., Ltd, Yangzhou 225101, China
| | - Lei Gong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianming Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenxing Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianna Bao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. J Mater Chem B 2024; 12:6886-6904. [PMID: 38912967 DOI: 10.1039/d4tb00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Scaffolds for bone tissue engineering require considerable mechanical strength to repair damaged bone defects. In this study, we designed and developed mechanically competent composite shape memory triphasic bone scaffolds using fused filament fabrication (FFF) three dimensional (3D) printing. Wollastonite particles (WP) were incorporated into the poly lactic acid (PLA)/polycaprolactone (PCL) matrix as a reinforcing agent (up to 40 wt%) to harness osteoconductive and load-bearing properties from the 3D printed scaffolds. PCL as a minor phase (20 wt%) was added to enhance the toughening effect and induce the shape memory effect in the triphasic composite scaffolds. The 3D-printed composite scaffolds were studied for morphological, thermal, and mechanical properties, in vitro degradation, biocompatibility, and shape memory behaviour. The composite scaffold had interconnected pores of 550 μm, porosity of more than 50%, and appreciable compressive strength (∼50 MPa), which was over 90% greater than that of the pristine PLA scaffolds. The flexural strength was improved by 140% for 40 wt% of WP loading. The inclusion of WP did not affect the thermal property of the scaffolds; however, the inclusion of PCL reduced the thermal stability. An accelerated in vitro degradation was observed for WP incorporated composite scaffolds compared to pristine PLA scaffolds. The inclusion of WP improved the hydrophilic property of the scaffolds, and the result was significant for 40 wt% WP incorporated composite scaffolds having a water contact angle of 49.61°. The triphasic scaffold exhibited excellent shape recovery properties with a shape recovery ratio of ∼84%. These scaffolds were studied for their protein adsorption, cell proliferation, and bone mineralization potential. The incorporation of WP reduced the protein adsorption capacity of the composite scaffolds. The scaffold did not leach any toxic substance and demonstrated good cell viability, indicating its biocompatibility and growth-promoting behavior. The osteogenic potential of the WP incorporated scaffolds was observed in MC3T3-E1 cells, revealing early mineralization in pre-osteoblast cells cultured in different WP incorporated composite scaffolds. These results suggest that 3D-printed WP reinforced PLA/PCL composite bioactive scaffolds are promising for load bearing bone defect repair.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Pooja Makwana
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bindiya Dhimmar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| | - Prashant Kumar Jain
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| |
Collapse
|
3
|
Gao P, Masato D. The Effects of Nucleating Agents and Processing on the Crystallization and Mechanical Properties of Polylactic Acid: A Review. MICROMACHINES 2024; 15:776. [PMID: 38930746 PMCID: PMC11206032 DOI: 10.3390/mi15060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Polylactic acid (PLA) is a biobased, biodegradable, non-toxic polymer widely considered for replacing traditional petroleum-based polymer materials. Being a semi-crystalline material, PLA has great potential in many fields, such as medical implants, drug delivery systems, etc. However, the slow crystallization rate of PLA limited the application and efficient fabrication of highly crystallized PLA products. This review paper investigated and summarized the influence of formulation, compounding, and processing on PLA's crystallization behaviors and mechanical performances. The paper reviewed the literature from different studies regarding the impact of these factors on critical crystallization parameters, such as the degree of crystallinity, crystallization rate, crystalline morphology, and mechanical properties, such as tensile strength, modulus, elongation, and impact resistance. Understanding the impact of the factors on crystallization and mechanical properties is critical for PLA processing technology innovations to meet the requirements of various applications of PLA.
Collapse
Affiliation(s)
- Peng Gao
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 18015, USA
- Polymer Materials Engineering, Department of Engineering and Design, Western Washington University, Bellingham, WA 98225, USA
| | - Davide Masato
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 18015, USA
| |
Collapse
|
4
|
Boruvka M, Base R, Novak J, Brdlik P, Behalek L, Ngaowthong C. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends. Polymers (Basel) 2024; 16:192. [PMID: 38256991 PMCID: PMC10819591 DOI: 10.3390/polym16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(l-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle-ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The "super tough" behavior of the PLLA/30TPE/12.9EMA-GMA ternary blend with the incomplete break and notched impact strength of 89.2 kJ∙m-2 was observed at an ambient temperature (23 °C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (-40 °C) with an impact strength of 178.1 kJ∙m-2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea-island to co-continuous morphology to form an interesting super-toughening mechanism.
Collapse
Affiliation(s)
- Martin Boruvka
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Roman Base
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Jan Novak
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Pavel Brdlik
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Lubos Behalek
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Chakaphan Ngaowthong
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut’s University of Technology North Bangkok Prachinburi Campus, 29 Moo 6, Tumbon Noenhom, Muang 25230, Prachinburi, Thailand;
| |
Collapse
|
5
|
Alexeeva OV, Olkhov AA, Konstantinova ML, Podmasterev VV, Petrova TV, Martirosyan LY, Karyagina OK, Kozlov SS, Lomakin SM, Tretyakov IV, Siracusa V, Iordanskii AL. A Novel Approach for Glycero-(9,10-trioxolane)-Trialeate Incorporation into Poly(lactic acid)/Poly(ɛ-caprolactone) Blends for Biomedicine and Packaging. Polymers (Basel) 2023; 16:128. [PMID: 38201793 PMCID: PMC10780447 DOI: 10.3390/polym16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The product of ozonolysis, glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, [OTOA]), was incorporated into polylactic acid/polycaprolactone (PLA/PCL) blend films in the amount of 1, 5, 10, 20, 30 and 40% w/w. The morphological, mechanical, thermal and antibacterial properties of the biodegradable PLA/PCL films after the OTOA addition were studied. According to DSC and XRD data, the degree of crystallinity of the PLA/PCL + OTOA films showed a general decreasing trend with an increase in OTOA content. Thus, a significant decrease from 34.0% for the reference PLA/PCL film to 15.7% for the PLA/PCL + 40% OTOA film was established using DSC. Observed results could be explained by the plasticizing effect of OTOA. On the other hand, the PLA/PCL film with 20% OTOA does not follow this trend, showing an increase in crystallinity both via DSC (20.3%) and XRD (34.6%). OTOA molecules, acting as a plasticizer, reduce the entropic barrier for nuclei formation, leading to large number of PLA spherulites in the plasticized PLA/PCL matrix. In addition, OTOA molecules could decrease the local melt viscosity at the vicinity of the growing lamellae, leading to faster crystal growth. Morphological analysis showed that the structure of the films with an OTOA concentration above 20% drastically changed. Specifically, an interface between the PLA/PCL matrix and OTOA was formed, thereby forming a capsule with the embedded antibacterial agent. The moisture permeability of the resulting PLA/PCL + OTOA films decreased due to the formation of uniformly distributed hydrophobic amorphous zones that prevented water penetration. This architecture affects the tensile characteristics of the films: strength decreases to 5.6 MPa, elastic modulus E by 40%. The behavior of film elasticity is associated with the redistribution of amorphous regions in the matrix. Additionally, PLA/PCL + OTOA films with 20, 30 and 40% of OTOA showed good antibacterial properties on Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena) and Agrobacterium tumefaciens, making the developed films potentially promising materials for wound-dressing applications.
Collapse
Affiliation(s)
- Olga V. Alexeeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Anatoliy A. Olkhov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Marina L. Konstantinova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Vyacheslav V. Podmasterev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Tuyara V. Petrova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Levon Yu. Martirosyan
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Olga K. Karyagina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey S. Kozlov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey M. Lomakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Ilya V. Tretyakov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| |
Collapse
|
6
|
Li Y, Liu J, Lian C, Yang H, Zhang M, Wang Y, Dai H. Bioactive citrate-based polyurethane tissue adhesive for fast sealing and promoted wound healing. Regen Biomater 2023; 11:rbad101. [PMID: 38173771 PMCID: PMC10761209 DOI: 10.1093/rb/rbad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - He Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mingjiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
7
|
Cho Y, Jeong H, Kim B, Jang J, Song YS, Lee DY. Electrospun Poly(L-Lactic Acid)/Gelatin Hybrid Polymer as a Barrier to Periodontal Tissue Regeneration. Polymers (Basel) 2023; 15:3844. [PMID: 37765697 PMCID: PMC10537136 DOI: 10.3390/polym15183844] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration.
Collapse
Affiliation(s)
- Youngchae Cho
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Heeseok Jeong
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Baeyeon Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., Bucheon 14532, Republic of Korea;
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, Goyang 10540, Republic of Korea;
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| |
Collapse
|
8
|
Kelnar I, Kaprálková L, Němeček P, Dybal J, Abdel-Rahman RM, Vyroubalová M, Nevoralová M, Abdel-Mohsen AM. The Effects of the Deacetylation of Chitin Nanowhiskers on the Performance of PCL/PLA Bio-Nanocomposites. Polymers (Basel) 2023; 15:3071. [PMID: 37514460 PMCID: PMC10384066 DOI: 10.3390/polym15143071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The multiple roles of organic nanofillers in biodegradable nanocomposites (NC) with a blend-based matrix is not yet fully understood. This work highlights combination of reinforcing and structure-directing effects of chitin nanowhiskers (CNW) with different degrees of deacetylation (DA), i.e., content of primary or secondary amines on their surface, in the nanocomposite with the PCL/PLA 1:1 matrix. Of importance is the fact that aminolysis with CNW leading to chain scission of both polyesters, especially of PLA, is practically independent of DA. DA also does not influence thermal stability. At the same time, the more marked chain scission/CNW grafting for PLA in comparison to PCL, causing changes in rheological parameters of components and related structural alterations, has crucial effects on mechanical properties in systems with a bicontinuous structure. Favourable combinations of multiple effects of CNW leads to enhanced mechanical performance at low 1% content only, whereas negative effects of structural changes, particularly of changed continuity, may eliminate the reinforcing effects of CNW at higher contents. The explanation of both synergistic and antagonistic effects of structures formed is based on the correspondence of experimental results with respective basic model calculations.
Collapse
Affiliation(s)
- Ivan Kelnar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Ludmila Kaprálková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Pavel Němeček
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiří Dybal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Rasha M Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Michaela Vyroubalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Martina Nevoralová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - A M Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
9
|
G Engler L, Farias NC, S Crespo J, Gately NM, Major I, Pezzoli R, Devine DM. Designing Sustainable Polymer Blends: Tailoring Mechanical Properties and Degradation Behaviour in PHB/PLA/PCL Blends in a Seawater Environment. Polymers (Basel) 2023; 15:2874. [PMID: 37447519 DOI: 10.3390/polym15132874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Biodegradable polyesters are a popular choice for both packaging and medical device manufacture owing to their ability to break down into harmless components once they have completed their function. However, commonly used polyesters such as poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL), while readily available and have a relatively low price compared to other biodegradable polyesters, do not meet the degradation profiles required for many applications. As such, this study aimed to determine if the mechanical and degradation properties of biodegradable polymers could be tailored by blending different polymers. The seawater degradation mechanisms were evaluated, revealing surface erosion and bulk degradation in the blends. The extent of degradation was found to be dependent on the specific chemical composition of the polymer and the blend ratio, with degradation occurring via hydrolytic, enzymatic, oxidative, or physical pathways. PLA presents the highest tensile strength (67 MPa); the addition of PHB and PCL increased the flexibility of the samples; however, the tensile strength reduced to 25.5 and 18 MPa for the blends 30/50/20 and 50/25/25, respectively. Additionally, PCL presented weight loss of up to 10 wt.% and PHB of up to 6 wt.%; the seawater degradation in the blends occurs by bulk and surface erosion. The blending process facilitated the flexibility of the blends, enabling their use in diverse industrial applications such as medical devices and packaging. The proposed methodology produced biodegradable blends with tailored properties within a seawater environment. Additionally, further tests that fully track the biodegradation process should be put in place; incorporating compatibilizers might promote the miscibility of different polymers, improving their mechanical properties and biodegradability.
Collapse
Affiliation(s)
- Leonardo G Engler
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, Caxias do Sul 95070-560, Brazil
| | - Naiara C Farias
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Janaina S Crespo
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, Caxias do Sul 95070-560, Brazil
| | - Noel M Gately
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Romina Pezzoli
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| |
Collapse
|
10
|
Zhao X, Yu J, Liang X, Huang Z, Li J, Peng S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int J Biol Macromol 2023; 233:123581. [PMID: 36758767 DOI: 10.1016/j.ijbiomac.2023.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Polylactic acid (PLA) has attracted much attention because of its good biocompatibility, biodegradability, and mechanical properties. However, the slow crystallization rate of PLA during molding leads to its poor heat resistance, which limit its diffusion for many industrial applications. In this review, the relationship between PLA crystallization and its molecular structure and processing conditions is summarized. From the perspective of the regulation of PLA crystallization by organic nucleating agents, the research progress of organic micromolecule (e.g., esters, amides, and hydrazides), organic salt, supramolecular, and macromolecule nucleating agents on the crystallization behavior of PLA is mainly introduced. The nucleation mechanism of PLA is expounded by organic nucleating agents, and the effect of the interaction force between organic nucleating agents and PLA molecular chains on the crystallization behavior of PLA is analyzed. The effects of the crystallization behavior of PLA on its mechanical properties and heat resistance are discussed. It will provide a theoretical reference for the development and application of high-efficiency nucleating agents.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jiajie Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xinyu Liang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Zepeng Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
11
|
Fan Y, Miao X, Hou C, Wang J, Lin J, Bian F. High tensile performance of PLA fiber-reinforced PCL composite via a synergistic process of strain and crystallization. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Kelnar I, Kaprálková L, Krejčíková S, Dybal J, Vyroubalová M, Abdel-Mohsen AM. Effect of Polydopamine Coating of Cellulose Nanocrystals on Performance of PCL/PLA Bio-Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1087. [PMID: 36770094 PMCID: PMC9920865 DOI: 10.3390/ma16031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In bio-nanocomposites with a poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) matrix with neat and polydopamine (PDA)-coated cellulose nanocrystals (CNCd), the use of different mixing protocols with masterbatches prepared by solution casting led to marked variation of localization, as well as reinforcing and structure-directing effects, of cellulose nanocrystals (CNC). The most balanced mechanical properties were found with an 80/20 PLA/PCL ratio, and complex PCL/CNC structures were formed. In the nanocomposites with a bicontinuous structure (60/40 and 40/60 PLA/PCL ratios), pre-blending the CNC and CNCd/PLA caused a marked increase in the continuity of mechanically stronger PLA and an improvement in related parameters of the system. On the other hand, improved continuity of the PCL phase when using a PCL masterbatch may lead to the reduction in or elimination of reinforcing effects. The PDA coating of CNC significantly changed its behavior. In particular, a higher affinity to PCL and ordering of PLA led to dissimilar structures and interface transformations, while also having antagonistic effects on mechanical properties. The negligible differences in bulk crystallinity indicate that alteration of mechanical properties may have originated from differences in crystallinity at the interface, also influenced by presence of CNC in this area. The complex effect of CNC on bio-nanocomposites, including the potential of PDA coating to increase thermal stability, is worthy of further study.
Collapse
|
13
|
Li A, Chen XG, Zhang LY, Zhang YF. Temperature and Infill Density Effects on Thermal, Mechanical and Shape Memory Properties of Polylactic Acid/Poly(ε-caprolactone) Blends for 4D Printing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8838. [PMID: 36556644 PMCID: PMC9783479 DOI: 10.3390/ma15248838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Polylactic acid (PLA)/poly(ε-caprolactone) (PCL) blends have exhibited good shape memory properties and degradable characteristics in various 4D printing fields such as biomedicine, flexible electronics, and soft robotics, where the service temperature fluctuates easily by environment temperature and polymer characteristics. In this work, printed PLA/PCL 4D samples with different infill densities were prepared by material extrusion printing of pre-extruded filaments and characterized under different temperatures. The results show that the microstructures of printed samples are not influenced by printing process and have similar unique orientation as that of filaments. The thermal properties are stable and show obvious phase transition temperatures, while the mechanical properties decrease slightly in low temperature region and then decrease rapidly when temperature is over 60 °C. The increase in infill density can further improve the storage modulus more than 40% and have no significant influence on the thermal properties. The printed samples also exhibit good shape memory performances with fast recovery speeds less than 22 s. Furthermore, a two-step model is provided to predict the effective modulus of printed PLA/PCL samples and agrees well with experimental data. The results prove that temperature and infill density have different influences on the thermal, mechanical and shape memory properties of PLA/PCL blends.
Collapse
|
14
|
Hydrolytic degradation mechanism of modified polylactic acid in different food simulants. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Naseem R, Montalbano G, German MJ, Ferreira AM, Gentile P, Dalgarno K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules 2022; 27:7633. [PMID: 36364463 PMCID: PMC9657691 DOI: 10.3390/molecules27217633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2024] Open
Abstract
PLLA, PCL and PHBV are aliphatic polyesters which have been researched and used in a wide range of medical devices, and all three have advantages and disadvantages for specific applications. Blending of these materials is an attractive way to make a material which overcomes the limitations of the individual polymers. Both PCL and PHBV have been evaluated in polymer blends with PLLA in order to provide enhanced properties for specific applications. This paper explores the use of PCL and PHBV together with PLLA in ternary blends with assessment of the thermal, mechanical and processing properties of the resultant polymer blends, with the aim of producing new biomaterials for orthopaedic applications. DSC characterisation is used to demonstrate that the materials can be effectively blended. Blending PCL and PHBV in concentrations of 5-10% with PLLA produces materials with average modulus improved by up to 25%, average strength improved by up to 50% and average elongation at break improved by 4000%, depending on the concentrations of each polymer used. PHBV impacts most on the modulus and strength of the blends, whilst PCL has a greater impact on creep behaviour and viscosity. Blending PCL and PHBV with PLLA offers an effective approach to the development of new polyester-based biomaterials with combinations of mechanical properties which cannot be provided by any of the materials individually.
Collapse
Affiliation(s)
- Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matthew J. German
- School of Dental Sciences, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
16
|
Solechan S, Suprihanto A, Widyanto SA, Triyono J, Fitriyana DF, Siregar JP, Cionita T. Investigating the Effect of PCL Concentrations on the Characterization of PLA Polymeric Blends for Biomaterial Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7396. [PMID: 36295464 PMCID: PMC9609349 DOI: 10.3390/ma15207396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) and polycaprolactone (PCL) are synthetic polymers that are extensively used in biomedical applications. However, the PLA/PCL blend produced by ball milling, followed by pressure compaction and sintering, has not been extensively explored. The goal of this research is to investigate the effect of the composition of biomaterials derived from PLA and PCL prepared by ball milling, followed by pressure compaction and sintering, on mechanical and physical properties. PCL and PLA with various concentrations were blended utilizing a ball milling machine for 2 h at an 80-rpm rotation speed. The obtained mixture was placed in a stainless steel 304 mold for the compacting process, which uses a pressure of 30 MPa to create a green body. The sintering procedure was carried out on the green body created at 150 °C for 2 h using a digital oven. The obtained PLA/PCL blend was tested using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), density, porosity, and three-point bending. Following the interaction between PCL and PLA in the PLA/PCL blend, the FTIR spectra and XRD diffractograms obtained in this work revealed a number of modifications in the functional groups and crystal phase. The 90PLA specimen had the best mechanical properties, with a maximum force and displacement of 51.13 N and 7.21 mm, respectively. The porosity of the PLA/PCL blend decreased with increasing PLA concentration so that the density and flexural properties of the PLA/PCL blend increased. The higher PCL content decreased the stiffness of the PLA molecular chain, consequently reducing its flexural properties.
Collapse
Affiliation(s)
- Solechan Solechan
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
- Department of Mechanical Engineering, Universitas Muhammadiyah Semarang, Kampus Kedungmundu, Semarang 50254, Indonesia
| | - Agus Suprihanto
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
| | - Susilo Adi Widyanto
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
| | - Joko Triyono
- Department of Mechanical Engineering, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
| | - Januar Parlaungan Siregar
- Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
| | - Tezara Cionita
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
17
|
Effect of molecular structure of PEG/PCL multiblock copolymers on the morphology and interfacial properties of PLA/PCL blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
On the effective application of star-shaped polycaprolactones with different end functionalities to improve the properties of polylactic acid blend films. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
El-Taweel SH, Fathy R. Synergistic Effects of Multi-Wall Carbon Nanotubes and Polycaprolactone on the Thermal and Mechanical Properties of Polylactic Acid. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2098656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S. H. El-Taweel
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - R. Fathy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Aldhafeeri T, Alotaibi M, Barry CF. Impact of Melt Processing Conditions on the Degradation of Polylactic Acid. Polymers (Basel) 2022; 14:polym14142790. [PMID: 35890566 PMCID: PMC9320002 DOI: 10.3390/polym14142790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
To reduce the degradation of polylactic acid (PLA) during processing, which reduces the molecular weight of PLA and its properties, prior studies have recommended low processing temperatures. In contrast, this work investigated the impact of four factors affecting shear heating (extruder type, screw configuration, screw speed, and feed rate) on the degradation of PLA. The polylactic acid was processed using a quad screw extruder (QSE) and a comparable twin screw extruder (TSE), two screw configurations, higher screw speeds, and several feed rates. The processed PLA was characterized by its rheological, thermal, and material composition properties. In both screw configurations, the QSE (which has a greater free volume) produced 3–4 °C increases in melt temperature when the screw speed was increased from 400 rpm to 1000 rpm, whereas the temperature rise was 24–25 °C in the TSE. PLA processed at low screw speeds, however, exhibited greater reductions in molecular weight—i.e., 9% in the QSE and 7% in the TSE. Screw configurations with fewer kneading blocks, and higher feed rates in the QSE, reduced degradation of PLA. At lower processing temperatures, it was found that an increase in melt temperature and shear rate did not significantly contribute to the degradation of PLA. Reducing the residence time during processing minimized the degradation of PLA in a molten state.
Collapse
|
21
|
Martin A, Cai J, Schaedel AL, van der Plas M, Malmsten M, Rades T, Heinz A. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm 2022; 621:121809. [PMID: 35550408 DOI: 10.1016/j.ijpharm.2022.121809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
In a previous study, we developed electrospun antimicrobial microfiber scaffolds for wound healing composed of a core of zein protein and a shell containing polyethylene oxide. While providing a promising platform for composite nanofiber design, the scaffolds showed low tensile strengths, insufficient water stability, as well as burst release of the antimicrobial drug tetracycline hydrochloride, properties which are not ideal for the use of the scaffolds as wound dressings. Therefore, the aim of the present study was to develop fibers with enhanced mechanical strength and water stability, also displaying sustained release of tetracycline hydrochloride. Zein was chosen as core material, while the shell was formed by the hydrophobic polymer polycaprolactone, either alone or in combination with polyethylene oxide. As compared to control fibers of pristine polycaprolactone, the zein-polycaprolactone fibers exhibited a reduced diameter and hydrophobicity, which is beneficial for cell attachment and wound closure. Such fibers also demonstrated sustained release of tetracycline hydrochloride, as well as water stability, ductility, high mechanical strength and fibroblast attachment, hence representing a step towards the development of biodegradable wound dressings with prolonged drug release, which can be left on the wound for a longer time.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; School of Medicine, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan (current address)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mariena van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
23
|
Kahraman Y, Alkan Goksu Y, Özdemir B, Eker Gümüş B, Nofar M. Composition design of
PLA
/
TPU
emulsion blends compatibilized with multifunctional epoxy‐based chain extender to tackle high impact resistant ductile structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.51833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf Kahraman
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Yonca Alkan Goksu
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Burcu Özdemir
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Beril Eker Gümüş
- Science and Technology Application and Research Center Yıldız Technical University Istanbul Turkey
| | - Mohammadreza Nofar
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
- Polymer Science and Technology Program, Institute of Science and Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
24
|
Aliotta L, Vannozzi A, Cinelli P, Coltelli MB, Lazzeri A. Essential Work of Fracture and Evaluation of the Interfacial Adhesion of Plasticized PLA/PBSA Blends with the Addition of Wheat Bran By-Product. Polymers (Basel) 2022; 14:615. [PMID: 35160603 PMCID: PMC8838359 DOI: 10.3390/polym14030615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
In this work biocomposites based on plasticized poly(lactic acid) (PLA)-poly(butylene succinate-co-adipate) (PBSA) matrix containing wheat bran fiber (a low value by-product of food industry) were investigated. The effect of the bran addition on the mechanical properties is strictly correlated to the fiber-matrix adhesion and several analytical models, based on static and dynamic tests, were applied in order to estimate the interfacial shear strength of the biocomposites. Finally, the essential work of fracture approach was carried out to investigate the effect of the bran addition on composite fracture toughness.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (P.C.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (P.C.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (P.C.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Planet Bioplastics s.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (P.C.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (P.C.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Planet Bioplastics s.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| |
Collapse
|
25
|
Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. MATERIALS 2022; 15:ma15030762. [PMID: 35160709 PMCID: PMC8836401 DOI: 10.3390/ma15030762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young’s modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.
Collapse
|
26
|
Yodthong Baimark, Rungseesantivanon W, Prakymoramas N. Improvement in Crystallization and Toughness of Poly(L-lactide) by Melt Blending with Poly(L-lactide)-b-polyethylene glycol-b-poly(L-lactide) in the Presence of Chain Extender. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x22030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Davis BJ, Thapa K, Hartline MC, Fuchs WK, Blanton MD, Wiggins JS, Simon YC. Enhanced photodegradation of
TiO
2
‐containing poly(ε‐caprolactone)/poly(lactic acid) blends. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Brad J. Davis
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Kundu Thapa
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Matthew C. Hartline
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Witold K. Fuchs
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Michael D. Blanton
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Jeffrey S. Wiggins
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
28
|
Effects of the Manufacturing Methods on the Mechanical Properties of a Medical-Grade Copolymer Poly(L-lactide-co-D,L-lactide) and Poly(L-lactide-co-ε-caprolactone) Blend. MATERIALS 2021; 14:ma14216381. [PMID: 34771906 PMCID: PMC8585199 DOI: 10.3390/ma14216381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Biocompatible and biodegradable polymers represent the future in the manufacturing of medical implantable solutions. As of today, these are generally manufactured with metallic components which cannot be naturally absorbed within the human body. This requires performing an additional surgical procedure to remove the remnants after complete rehabilitation or to leave the devices in situ indefinitely. Nevertheless, the biomaterials used for this purpose must satisfy well-defined mechanical requirements. These are difficult to ascertain at the design phase since they depend not only on their physicochemical properties but also on the specific manufacturing methods used for the target application. Therefore, this research was focused on establishing the effects of the manufacturing methods on both the mechanical properties and the thermal behavior of a medical-grade copolymer blend. Specifically, Injection and Compression Molding were considered. A Poly(L-lactide-co-D,L-lactide)/Poly(L-lactide-co-ε-caprolactone) blend was considered for this investigation, with a ratio of 50/50 (w/w), aimed at the manufacturing of implantable devices for tendon repair. Interesting results were obtained.
Collapse
|
29
|
Otaegi I, Aranburu N, Guerrica-Echevarría G. Attaining Toughness and Reduced Electrical Percolation Thresholds in Bio-Based PA410 by Combined Addition of Bio-Based Thermoplastic Elastomers and CNTs. Polymers (Basel) 2021; 13:3420. [PMID: 34641235 PMCID: PMC8512475 DOI: 10.3390/polym13193420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
Multi-walled carbon nanotubes (CNTs) were added to provide electrical conductivity to bio-based polymer blends with improved toughness (based on commercially available Pebax thermoplastic elastomers and bio-based polyamide 4,10). A preliminary study including three different Pebax grades was carried out to select the grade and the composition that would best improve the impact properties of PA410. Thus, tough multiphasic PA/Pebax/CNT nanocomposites (NCs) with enhanced electrical conductivity were obtained. The CNTs were added either: (1) in the form of pristine nanotubes or (2) in the form of a PA6-based masterbatch. Hence, PA410/Pebax/CNT ternary NCs and PA410/PA6/Pebax/CNT quaternary NCs were obtained, respectively, up to a CNT content of 1 wt%. The ternary and quaternary NCs both showed similar mechanical and electrical properties. The electrical percolation threshold decreased with respect to previously studied corresponding NCs without Pebax, i.e., PA410/CNT and PA410/PA6/CNT, due to the partial volume exclusion effect of Pebax over the CNTs that were dispersed mainly in the PA matrix; materials with percolation concentrations as low as 0.38 wt% were obtained. With respect to mechanical properties, contrary to the NCs without Pebax, all the PA/Pebax/CNT NCs showed a ductile behavior and impact strength values that were from three to five-fold higher than that of the pure PA410.
Collapse
Affiliation(s)
| | | | - Gonzalo Guerrica-Echevarría
- Department of Polymers and Advanced Materials—Physics, Chemistry and Technology & POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (I.O.); (N.A.)
| |
Collapse
|
30
|
Shaikh S, Yaqoob M, Aggarwal P. An overview of biodegradable packaging in food industry. Curr Res Food Sci 2021; 4:503-520. [PMID: 34401747 PMCID: PMC8349771 DOI: 10.1016/j.crfs.2021.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
For many years, conventional plastics are manufactured and used for packaging applications in different sectors. As the food industries are increasing, the demand for packaging material is also increasing. Plastics have transformed the food industry to higher levels; however, conventional petroleum-based plastics are non-degradable which has created severe ecological problems to the environment like a threat to aquatic life and degrading air quality. Biodegradable polymers or biopolymers emerged as an alternative approach for many industrial applications to control the risk caused by non-biodegradable plastic. According to the type of starting material, they have been categorized as polymers extracted from biomass, synthesized from monomers, and produced from microorganisms. The quality of biopolymers depends on the physical, mechanical, thermal, and barrier properties. The present review highlights the characteristics of various biopolymers and their blends, comparison of properties between non-biodegradable and biopolymers, the market potential for food packaging applications. The review also emphasizes different commercial forms like films, trays, bags, coatings, and foamed products for application as modified atmosphere packaging, active packaging, and edible packaging. Different issues affecting market growth like harmful products formed during production and consumer perception have also been discussed. Information on biopolymers is widely scattered over many sources, this article aims to provide an overview of biodegradable polymer packages for food applications.
Collapse
Affiliation(s)
- Salman Shaikh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mudasir Yaqoob
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Poonam Aggarwal
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| |
Collapse
|
31
|
Przybysz-Romatowska M, Barczewski M, Mania S, Tercjak A, Haponiuk J, Formela K. Morphology, Thermo-Mechanical Properties and Biodegradibility of PCL/PLA Blends Reactively Compatibilized by Different Organic Peroxides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4205. [PMID: 34361398 PMCID: PMC8347303 DOI: 10.3390/ma14154205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Reactive blending is a promising approach for the sustainable development of bio-based polymer blends and composites, which currently is gaining more and more attention. In this paper, biodegradable blends based on poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared via reactive blending performed in an internal mixer. The PCL and PLA content varied in a ratio of 70/30 and 55/45. Reactive modification of PCL/PLA via liquid organic peroxides (OP) including 0.5 wt.% of tert-butyl cumyl peroxide (BU), 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (HX), and tert-butyl peroxybenzoate (PB) is reported. The materials were characterized by rotational rheometer, atomic force microscopy (AFM), thermogravimetry (TGA), differential scanning calorimetry (DSC), tensile tests and biodegradability tests. It was found that the application of peroxides improves the miscibility between PCL and PLA resulted in enhanced mechanical properties and more uniform morphology. Moreover, it was observed that the biodegradation rate of PCL/PLA blends reactively compatibilized was lower comparing to unmodified samples and strongly dependent on the blend ratio and peroxide structure. The presented results confirmed that reactive blending supported by organic peroxide is a promising approach for tailoring novel biodegradable polymeric systems with controllable biodegradation rates.
Collapse
Affiliation(s)
- Marta Przybysz-Romatowska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
| | - Szymon Mania
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Agnieszka Tercjak
- Group ‘Materials + Technologies’ (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering, University of the Basque Country (UPV/EHU), Pza Europa 1, 20018 Donostia-San Sebastian, Gipuzkoa, Spain;
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
32
|
Pfau MR, McKinzey KG, Roth AA, Graul LM, Maitland DJ, Grunlan MA. Shape memory polymer (SMP) scaffolds with improved self-fitting properties. J Mater Chem B 2021; 9:3826-3837. [PMID: 33979417 DOI: 10.1039/d0tb02987d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
"Self-fitting" shape memory polymer (SMP) scaffolds prepared as semi-interpenetrating networks (semi-IPNs) with crosslinked linear-poly(ε-caprolactone)-diacrylate (PCL-DA, Mn∼10 kg mol-1) and linear-poly(l-lactic acid) (PLLA, Mn∼15 kg mol-1) [75/25 wt%] exhibited robust mechanical properties and accelerated degradation rates versus a PCL-DA scaffold control. However, their potential to treat irregular craniomaxillofacial (CMF) bone defects is limited by their relatively high fitting temperature (Tfit∼55 °C; related to the Tm of PCL) required for shape recovery (i.e. expansion) and subsequent shape fixation during press fitting of the scaffold, which can be harmful to surrounding tissue. Additionally, the viscosity of the solvent-based precursor solutions, cast over a fused salt template during fabrication, can limit scaffold size. Thus, in this work, analogous semi-IPN SMP scaffolds were formed with a 4-arm star-PCL-tetracryalate (star-PCL-TA) (Mn∼10 kg mol-1) and star-PLLA (Mn∼15 kg mol-1). To assess the impact of a star-polymer architecture, four semi-IPN compositions were prepared: linear-PCL-DA/linear-PLLA (L/L), linear-PCL-DA/star-PLLA (L/S), star-PCL-TA/linear-PLLA (S/L) and star-PCL-TA/star-PLLA (S/S). Two PCL controls were also prepared: LPCL (i.e. 100% linear-PCL-DA) and SPCL (i.e. 100% star-PCL-TA). The S/S semi-IPN scaffold exhibited particularly desirable properties. In addition to achieving a lower, tissue-safe Tfit (∼45 °C), it exhibited the fastest rate of degradation which is anticipated to more favourably permit neotissue infiltration. The radial expansion pressure exerted by the S/S semi-IPN scaffold at Tfit was greater than that of LPCL, which is expected to enhance osseointegration and mechanical stability. The intrinsic viscosity of the S/S semi-IPN macromer solution was also reduced such that larger scaffold specimens could be prepared.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Development and Characterization of 3D Printed Multifunctional Bioscaffolds Based on PLA/PCL/HAp/BaTiO3 Composites. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone substitute materials are placed in bone defects and play an important role in bone regeneration and fracture healing. The main objective of the present research is fabrication through the technique of 3D printing and the characterization of innovative composite bone scaffolds composed of polylactic acid (PLA), poly (ε-caprolactone) (PCL) while hydroxyapatite (HAp), and/or barium titanate (BaTiO3—BT) used as fillers. Composite filaments were prepared using a single screw melt extruder, and finally, 3D composite scaffolds were fabricated using the fused deposition modeling (FDM) technique. Scanning electron microscopy (SEM) images showed a satisfactory distribution of the fillers into the filaments and the printed objects. Furthermore, differential scanning calorimetry (DSC) measurements revealed that PLA/PCL filaments exhibit lower glass transition and melting point temperatures than the pure PLA filaments. Finally, piezoelectric and dielectric measurements of the 3D objects showed that composite PLA/PCL scaffolds containing HAp and BT exhibited piezoelectric coefficient (d33) values close to the human bone and high dielectric permittivity values.
Collapse
|
34
|
Development of Polylactic Acid Thermoplastic Starch Formulations Using Maleinized Hemp Oil as Biobased Plasticizer. Polymers (Basel) 2021; 13:polym13091392. [PMID: 33922939 PMCID: PMC8123297 DOI: 10.3390/polym13091392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, hemp seed oil was reacted with maleic anhydride in an ene reaction to obtain maleinized hemp seed oil (MHO). The use of MHO as a plasticizer and compatibilizer has been studied for polylactic acid (PLA) and thermoplastic starch (TPS) blends (80/20, respectively). By mechanical, thermal and morphological characterizations, the addition of MHO provides a dual effect, acting as plasticizer and compatibilizer between these two partially miscible biopolymers. The addition of MHO up to 7.5 phr (parts by weight of MHO per hundred parts of PLA and TPS) revealed a noticeable increase in the ductile properties, reaching an elongation at break 155% higher than the PLA/TPS blend. Furthermore, contrary to what has been observed with maleinized oils such as linseed oil, the thermal properties do not decrease significantly as a result of the plasticizing effect, due to the compatibilizing behavior of the MHO and the natural antioxidants present in the oil. Finally, a disintegration test was carried out in aerobic conditions at 58 °C, for 24 days, to demonstrate that the incorporation of the MHO, although causing a slight delay, does not impair the biodegradability of the blend, obtaining total degradation in 24 days.
Collapse
|
35
|
Beltran FO, Houk CJ, Grunlan MA. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates. ACS Biomater Sci Eng 2021; 7:1631-1639. [PMID: 33667062 DOI: 10.1021/acsbiomaterials.1c00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A material-guided, regenerative approach to heal cranial defects requires a scaffold that cannot only achieve conformal fit into irregular geometries but also has bioactivity and suitable resorption rates. We have previously reported "self-fitting" shape-memory polymer (SMP) scaffolds based on poly(ε-caprolactone) diacrylate (PCL-DA) that shape recover to fill irregular defect geometries. However, PCL-DA scaffolds lack innate bioactivity and degrade very slowly. Polydimethylsiloxane (PDMS) has been shown to impart innate bioactivity and modify degradation rates when combined with organic cross-linked networks. Thus, this work reports the introduction of PDMS segments to form PCL/PDMS SMP scaffolds. These were prepared as co-matrices with three types of macromers to systematically alter PDMS content and cross-link density. Specifically, PCL90-DA was combined with linear-PDMS66-dimethacrylate (DMA) or 4-armed star-PDMS66-tetramethacrylate (TMA) macromers at 90:10, 75:25, and 60:40 wt % ratios. Additionally, a triblock macromer (AcO-PCL45-b-PDMS66-b-PCL45-OAc), having a 65:35 wt % ratio PCL/PDMS, was used. Scaffolds exhibited pore interconnectivity and uniform pore sizes and further maintained excellent shape-memory behavior. Degradation rates increased with PDMS content and reduced cross-link density, with phase separation contributing to this effect. Irrespective of PDMS content, all PCL/PDMS scaffolds exhibited the formation of carbonated hydroxyapatite (HAp) following exposure to simulated body fluid (SBF). While inclusion of PDMS expectedly reduced scaffold modulus and strength, mineralization increased these properties and, in some cases, to values exceeding or similar to the PCL-DA, which did not mineralize.
Collapse
Affiliation(s)
- Felipe O Beltran
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher J Houk
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A Grunlan
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
36
|
Xia Y, Wang G, Feng Y, Hu Y, Zhao G, Jiang W. Highly toughened poly(lactic acid) blends prepared by reactive blending with a renewable poly(ether‐block‐amide) elastomer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiwei Xia
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Guangxin Wang
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Yulin Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Yuexin Hu
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Guiyan Zhao
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Wei Jiang
- Shenzhen Rayform Technology Co., Ltd Shenzhen China
| |
Collapse
|
37
|
Barral V, Dropsit S, Cayla A, Campagne C, Devaux É. Study of the Influence of PCL on the In Vitro Degradation of Extruded PLA Monofilaments and Melt-Spun Filaments. Polymers (Basel) 2021; 13:polym13020171. [PMID: 33418932 PMCID: PMC7825054 DOI: 10.3390/polym13020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
This work presents the effect of a melt-spinning process on the degradation behavior of bioresorbable and immiscible poly(d,l-lactide) (PLA) and polycaprolactone (PCL) polymer blends. A large range of these blends, from PLA90PCL10 (90 wt% PLA and 10 wt% PCL) to PLA60PCL40 in increments of 10%, was processed via extrusion (diameter monofilament: ∅ ≈ 1 mm) and melt spinning (80 filaments: 50 to 70 µm each) to evaluate the impact of the PCL ratio and then melt spinning on the hydrolytic degradation of PLA, which allowed for highlighting the potential of a textile-based scaffold in bioresorbable implants. The morphologies of the structures were investigated via extracting PCL with acetic acid and scanning electron microscopy observations. Then, they were immersed in a Dulbecco's Modified Eagle Medium (DMEM) media at 50 °C for 35 days and their properties were tested in order to evaluate the relation between the morphology and the evolution of the crystallinity degree and the mechanical and physical properties. As expected, the incorporation of PCL into the PLA matrix slowed down the hydrolytic degradation. It was shown that the degradation became heterogeneous with a small ratio of PCL. Finally, melt spinning had an impact on the morphology, and consequently, on the other properties over time.
Collapse
Affiliation(s)
- Vivien Barral
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France, 2 Allée Louise et Victor Champier, 59056 Roubaix CEDEX 1, France; (A.C.); (C.C.); (É.D.)
- Correspondence:
| | - Sophie Dropsit
- MATERIA NOVA—R&D CENTER, Avenue Nicolas Copernic 3, 7000 Mons, Belgique;
| | - Aurélie Cayla
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France, 2 Allée Louise et Victor Champier, 59056 Roubaix CEDEX 1, France; (A.C.); (C.C.); (É.D.)
| | - Christine Campagne
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France, 2 Allée Louise et Victor Champier, 59056 Roubaix CEDEX 1, France; (A.C.); (C.C.); (É.D.)
| | - Éric Devaux
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France, 2 Allée Louise et Victor Champier, 59056 Roubaix CEDEX 1, France; (A.C.); (C.C.); (É.D.)
| |
Collapse
|
38
|
Doganci MD. Effects of star-shaped PCL having different numbers of arms on the mechanical, morphological, and thermal properties of PLA/PCL blends. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02380-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Nucleation modalities in poly(lactide), poly(butylene succinate), and poly(ε‐caprolactone) ternary blends with partial wetting morphology. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Yang X, Liu S, Yu E, Wei Z. Toughening of Poly(l-Lactide) with Branched Polycaprolactone: Effect of Chain Length. ACS OMEGA 2020; 5:29284-29291. [PMID: 33225159 PMCID: PMC7675962 DOI: 10.1021/acsomega.0c04070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/29/2020] [Indexed: 05/27/2023]
Abstract
In this work, a series of branched polycaprolactone (BPCL) samples with different ε-caprolactone (CL) chain lengths were synthesized and used to toughen poly (lactic acid) (PLA). The spherical structure increased the free volume, facilitating the free movement of the PLA chain segment and increasing the ductility. In addition, the hydrogen bonds between the multi-terminal hydroxyl group of BPCL x and PLA improved the interaction between them. The glass-transition temperatures (T g) and crystallization temperatures (T c) of the blends were significantly lower than those of PLA, and these temperatures increased with the chain length of polycaprolactone. BPCL x increased the crystallization rate of PLA through heterogeneous nucleation. A longer chain length of CL increased the mutual entanglement in the blends, reduced the hydrogen bonding between BPCL x and PLA, and increased the entanglement of BPCL x chains. When the chain length of CL was 6, the impact strength and elongation at break of the PLA/BPCL blends exhibited an increase of 151.72 and 465.8%, respectively, as compared with PLA.
Collapse
Affiliation(s)
- Xiangming Yang
- Key
Laboratory for Green Processing of Chemical Engineering of Xinjiang
Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shuaibo Liu
- Key
Laboratory for Green Processing of Chemical Engineering of Xinjiang
Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Erlei Yu
- Key
Laboratory for Green Processing of Chemical Engineering of Xinjiang
Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Key
Laboratory of Materials-Oriented Chemical Engineering of Xinjiang
Uygur Autonomous Region/Engineering Research Center of Materials-Oriented
Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and
Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- Key
Laboratory for Green Processing of Chemical Engineering of Xinjiang
Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Key
Laboratory of Materials-Oriented Chemical Engineering of Xinjiang
Uygur Autonomous Region/Engineering Research Center of Materials-Oriented
Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and
Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
41
|
Biodegradable poly(lactic acid)/poly(butylene succinate) Nanofibrous membrane with Core-shell structure and high density for improved mechanical properties. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02265-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Demina TS, Kuryanova AS, Bikmulina PY, Aksenova NA, Efremov YM, Khaibullin ZI, Ivanov PL, Kosheleva NV, Timashev PS, Akopova TA. Multicomponent Non-Woven Fibrous Mats with Balanced Processing and Functional Properties. Polymers (Basel) 2020; 12:E1911. [PMID: 32854227 PMCID: PMC7563478 DOI: 10.3390/polym12091911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya st., 117393 Moscow, Russia; (Z.I.K.); (P.L.I.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
| | - Anastasia S. Kuryanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., 119991 Moscow, Russia
| | - Polina Y. Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
| | - Nadejda A. Aksenova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., 119991 Moscow, Russia
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
| | - Zulfar I. Khaibullin
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya st., 117393 Moscow, Russia; (Z.I.K.); (P.L.I.); (T.A.A.)
| | - Pavel L. Ivanov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya st., 117393 Moscow, Russia; (Z.I.K.); (P.L.I.); (T.A.A.)
| | - Nastasia V. Kosheleva
- Faculty of Biology, Lomonosov Moscow State University, 12-1, Leninskie Gory, 119234 Moscow, Russia;
- FSBSI “Institute of General Pathology and Pathophysiology”, 8, Baltiyskaya st., 125315 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991 Moscow, Russia; (A.S.K.); (P.Y.B.); (N.A.A.); (Y.M.E.); (P.S.T.)
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya st., 117393 Moscow, Russia; (Z.I.K.); (P.L.I.); (T.A.A.)
| |
Collapse
|
43
|
DANDAN DOĞANCI M. The Effects of Blending Ratio of Poly(lactic acid)/POSS Cored Star Poly(ε-caprolactone) Biopolymers. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.752190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Van de Voorde KM, Pokorski JK, Korley LTJ. Exploring Morphological Effects on the Mechanics of Blended Poly(lactic acid)/Poly(ε-caprolactone) Extruded Fibers Fabricated Using Multilayer Coextrusion. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kris M. Van de Voorde
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
45
|
Aliotta L, Vannozzi A, Panariello L, Gigante V, Coltelli MB, Lazzeri A. Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers (Basel) 2020; 12:polym12061366. [PMID: 32560520 PMCID: PMC7361961 DOI: 10.3390/polym12061366] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films containing chitin nanofibrils (CN) and calcium carbonate were prepared by extrusion and compression molding. On the basis of previous studies, processability was controlled by the use of a few percent of a commercial acrylic copolymer acting as melt strength enhancer and calcium carbonate. Furthermore, acetyl n-tributyl citrate (ATBC), a renewable and biodegradable plasticizer (notoriously adopted in PLA based products) was added to facilitate not only the processability but also to increase the mechanical flexibility and toughness. However, during the storage of these films, a partial loss of plasticizer was observed. The consequence of this is not only correlated to the change of the mechanical properties making the films more rigid but also to the crystallization and development of surficial oiliness. The effect of the addition of calcium carbonate (nanometric and micrometric) and natural nanofibers (chitin nanofibrils) to reduce/control the plasticizer migration was investigated. The prediction of plasticizer migration from the films’ core to the external surface was carried out and the diffusion coefficients, obtained by regression of the experimental migration data plotted as the square root of time, were evaluated for different blends compositions. The results of the diffusion coefficients, obtained thanks to migration tests, showed that the CN can slow the plasticizer migration. However, the best result was achieved with micrometric calcium carbonate while nanometric calcium carbonate results were less effective due to favoring of some bio polyesters’ chain scission. The use of both micrometric calcium carbonate and CN was counterproductive due to the agglomeration phenomena that were observed.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|
46
|
Pfau MR, McKinzey KG, Roth AA, Grunlan MA. PCL-Based Shape Memory Polymer Semi-IPNs: The Role of Miscibility in Tuning the Degradation Rate. Biomacromolecules 2020; 21:2493-2501. [DOI: 10.1021/acs.biomac.0c00454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michaela R. Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Kelly G. McKinzey
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Abigail A. Roth
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station Texas 77843, United States
| |
Collapse
|
47
|
De La Rosa‐Ramírez H, Aldas M, Ferri JM, López‐Martínez J, Samper MD. Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. J Appl Polym Sci 2020. [DOI: 10.1002/app.49346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV) Alicante Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y AgroindustriaEscuela Politécnica Nacional Quito Ecuador
| | - José Miguel Ferri
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV) Alicante Spain
| | - Juan López‐Martínez
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV) Alicante Spain
| | - María Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV) Alicante Spain
| |
Collapse
|
48
|
Hsu WH, Chang HM, Lee YL, Prasannan A, Hu CC, Wang JS, Lai JY, Yang JM, Jebaranjitham N, Tsai HC. Biodegradable polymer-nanoclay composites as intestinal sleeve implants installed in digestive tract for obesity and type 2 diabetes treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110676. [PMID: 32204104 DOI: 10.1016/j.msec.2020.110676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes have become serious health problems in 21st century. Development of non-invasive treatment to treat obesity and type-2 diabetes is still unmet needs. For targeting on this, one of the promising treatments is to implant an intestine sleeve in the gastrointestinal tract for limitation of food absorption. In this context, biodegradable polymer intestine sleeve was composed of polycaprolactone (PCL), poly-DL-lactic acid (PDLLA) and disk-shape nano-clay (Laponite®), and fabricated as an implantable device. Here, Laponite® as a rheological additive to improve the compatibility of PCL and PDLLA, and the polymers/clay composites were also evaluated by scanning electron microscopy SEM analysis and mechanical measurements. The mass ratio 90/10/1 of PCL/PDLLA/Laponite® composite was selected for fabrication of intestine sleeve, because of the highest toughness and flexibility, which are tensile strength of 91.9 N/mm2 and tensile strain of 448% at the failure point. The prepared intestine sleeve was implanted and deployed at the duodenum in type2 diabetic rats, providing significant benefits in control of the body weight and blood glucose, while compared with the non-implanted type 2 diabetic rats. More importantly, the food intake records and histopathological section reports presented that the implanted rats still have normal appetites and no noticeable acute symptoms of inflammation in the end of the test. These appreciable performances suggested the implantation of biocompatible polymer composites has a highly potential treatment for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC; Taiwan Instrument Research Institute, National Applied Research Laboratories, Taiwan, ROC
| | - Hao-Ming Chang
- Division of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, ROC
| | - Ya-Lun Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC
| | - Adhimoorthy Prasannan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taiwan, ROC
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Taiwan, ROC
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Taiwan, ROC
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taiwan, ROC
| | - Nimita Jebaranjitham
- PG Department of Chemistry, Women's Christian College, (An Autonomous Institution Affiliated to University of Madras), Chennai, India
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taiwan, ROC.
| |
Collapse
|
49
|
Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv 2020; 10:13316-13368. [PMID: 35492128 PMCID: PMC9051451 DOI: 10.1039/d0ra01801e] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Poly(lactic acid) or poly(lactide) (PLA) is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications. However, PLA is inherently brittle, with less than 10% elongation at break and a relatively poor impact strength, which limit its use in some specific areas. Therefore, enhancing the toughness of PLA has been widely explored in academic and industrial fields over the last two decades. This work aims to summarize and organize the current development in super tough PLA fabricated via polymer blending. The miscibility and compatibility of PLA-based blends, and the methods and approaches for compatibilized PLA blends are briefly discussed. Recent advances in PLA modified with various polymers for improving the toughness of PLA are also summarized and elucidated systematically in this review. Various polymers used in toughening PLA are discussed and organized: elastomers, such as petroleum-based traditional polyurethanes (PUs), bio-based elastomers, and biodegradable polyester elastomers; glycidyl ester compatibilizers and their copolymers/elastomers, such as poly(ethylene-co-glycidyl methacrylate) (EGMA), poly(ethylene-n-butylene-acrylate-co-glycidyl methacrylate) (EBA-GMA); rubber; petroleum-based traditional plastics, such as PE and PP; and various biodegradable polymers, such as poly(butylene adipate-co-terephthalate) (PBAT), polycaprolactone (PCL), poly(butylene succinate) (PBS), and natural macromolecules, especially starch. The high tensile toughness and high impact strength of PLA-based blends are briefly outlined, while the super tough PLA-based blends with impact strength exceeding 50 kJ m−2 are elucidated in detail. The toughening strategies and approaches of PLA based super tough blends are summarized and analyzed. The relationship of the properties of PLA-based blends and their morphological parameters, including particle size, interparticle distance, and phase morphologies, are presented. PLA is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications.![]()
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Huan Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xiaolei Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| |
Collapse
|
50
|
Enhanced compatibility of starch with poly(lactic acid) and poly(ɛ-caprolactone) by incorporation of POSS nanoparticles: Study on thermal properties. Int J Biol Macromol 2019; 141:578-584. [DOI: 10.1016/j.ijbiomac.2019.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022]
|