1
|
Sun A, Bian S, Li L, Guo Z, Li W, Li J, Xu S, Liu PD. Preparation of highly adsorptive biochar by sequential iron impregnation under refluxing and pyrolysis at low temperature for removal of tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123886. [PMID: 38556153 DOI: 10.1016/j.envpol.2024.123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.
Collapse
Affiliation(s)
- Ahui Sun
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Siyao Bian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Linzhou Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Zijing Guo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Wanjie Li
- Danzhou Environmental Monitoring Station, Port Service Center, Danzhou, 578001, China
| | - Jihui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Shuying Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Pan-Dao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
2
|
Zhong X, Su G, Hao L, Chen H, Li C, Xu H, Zhou H, Zhou X. Foliar application of glycine-functionalized nanopesticides for effective prevention and control of root-knot nematodes via a targeted delivery strategy. PEST MANAGEMENT SCIENCE 2024; 80:2120-2130. [PMID: 38145906 DOI: 10.1002/ps.7948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) are the highly damaging pests for various crops, and the prevalence of RKNs has posed serious threats to worldwide agricultural harvest, severely affecting global food security and ecosystem health. Traditional pesticide systems on controlling RKNs generally cause environmental hazards and phytotoxicity due to the excessive use of pesticides resulted from low utilization efficiency. And effective approaches with biosafe and efficient features are highly demanded to break away from the dilemma caused by RKNs. RESULTS In this research, a nanopesticide system with root-targeted delivery function was developed to achieve effective prevention and control of RKNs. The nanocarriers (MSN-KH560-Gly) and the obtained nanopesticides (EB@MSN-KH560-Gly) were proved to be biosafe. Also, this nanopesticide system demonstrated sustained release behavior. The grafting of glycine (Gly) significantly improved the pesticide contents translocating to cucumber roots (about 304.7%). Besides, such root-targeted delivery function resulted in no root nodule in cucumber plants after the foliar application of these nanopesticides (prevention rate of 100%). In addition, the root nodule numbers of the infected cucumber plants decreased by 71.67%. CONCLUSION Foliar application of these Gly-functionalized nanopesticides achieved effective prevention and control of RKNs due to the root-targeted delivery property inherent in this nanopesticide system, and such root-targeted delivery strategy opens a novel and efficient method to protect crops from RKN invasion and thus facilitates the development of sustainable agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ximing Zhong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Guofeng Su
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Li Hao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Huayao Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Chao Li
- Shenzhen Noposion Crop Science Co., Ltd, Shenzhen, PR China
| | - Hua Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
3
|
Ali OI, Azzam AB. Functional Ag-EDTA-modified MnO 2 nanocoral reef for rapid removal of hazardous copper from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123751-123769. [PMID: 37991610 PMCID: PMC10746771 DOI: 10.1007/s11356-023-30805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
A novel MnO2@EDTA-Ag nanocoral reef was constructed via a simplified redox reaction followed by EDTA and Ag nanoparticles impregnation to capture hazardous copper (II) from wastewater. A comprehensive characterization of the synthesized materials was conducted. The morphology of MnO2@EDTA-Ag in the form of a nanocoral reef was constructed of two-dimensional nanoplatelets and nanorod-like nanostructures. The optimal adsorption conditions proposed by the Plackett-Burman design (PBD) that would provide a removal % of 99.95 were pH 5.5, a contact time of 32.0 min, a Cu(II) concentration of 11.2 mg L-1, an adsorbent dose of 0.05 g, and a temperature of 40.3 °C. The loading of Ag nanoparticles onto MnO2@EDTA improved the adsorption capability of MnO2@EDTA-Ag. Additionally, the recyclability of MnO2@EDTA-Ag nanocoral reef was maintained at 80% after three adsorption-desorption cycles, and there was no significant change in the XRD analysis before and after the recycling process, implying its stability. It was found that nanocoral reef-assisted EDTA formed a chelation/complexation reaction between COO- groups and C-N bonds of EDTA with Cu(II) ions. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis proved the synergistic effect of the electrostatic interaction and chelation/complexation was responsible for the removal mechanism of Cu(II). Also, the results demonstrated no significant variation in MnO2@EDTA-Ag removal efficiency for all the tested real water samples, revealing its efficacy in wastewater treatment. Therefore, the current study suggests that MnO2@EDTA-Ag has substantial potential to be used as a feasible adsorbent for probable hazardous metals remediation.
Collapse
Affiliation(s)
- Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Ahmed B Azzam
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
4
|
Zhong X, Su G, Zeng Q, Li G, Xu H, Wu H, Zhou H, Zhou X. Preparation of Salicylic Acid-Functionalized Nanopesticides and Their Applications in Enhancing Salt Stress Resistance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43282-43293. [PMID: 37672316 DOI: 10.1021/acsami.3c06398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Soil salinization is one of the global ecological and environmental problems that are tremendously threatening to the sustainable development of agriculture and food supply. In this work, a facile strategy was proposed to enhance the salt stress resistance of plants by preparing salicylic acid (SA)-functionalized mesoporous silica nanocarriers loaded with emamectin benzoate (EB). The obtained nanopesticides demonstrated a particle size of less than 300 nm. As an endogenous plant hormone, the grafting of SA in this nanopesticide system improved the uptake and translocation of pesticides in cucumber plants by 145.06%, and the applications of such nanopesticides enhanced the salt stress resistance of plants. This phenomenon was accounted for by the SA-functionalized nanopesticides increasing the superoxide dismutase and peroxidase activities (640 and 175%, respectively) and reducing the malondialdehyde content (54.10%), correspondingly alleviating the accumulation of reactive oxygen species and cell damage in plants. The above results were also confirmed by Evans blue staining and NBT staining experiments on cucumber leaves. In addition, these nanopesticides exhibited high insecticidal toxicity, and they also demonstrated biosafety toward nontarget organisms due to their sustained release property. Therefore, this work developed a biosafe SA-functionalized nanopesticide system, and these newly developed nanopesticides have potential in the agricultural field for enhancing salt stress resistance of plants.
Collapse
Affiliation(s)
- Ximing Zhong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Guofeng Su
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Qiye Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Guangze Li
- Shenzhen Noposion Agrochemicals Co., Ltd., Shenzhen 518102, Guangdong, PR China
| | - Hua Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| |
Collapse
|
5
|
Ali OI, Zaki ER, Abdalla MS, Ahmed SM. Mesoporous Ag-functionalized magnetic activated carbon-based agro-waste for efficient removal of Pb(II), Cd(II), and microorganisms from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53548-53565. [PMID: 36859644 PMCID: PMC10119269 DOI: 10.1007/s11356-023-26000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Herein, eco-friendly mesoporous magnetic activated carbon-based agro-waste nanosorbents incorporating antimicrobial silver nanoparticles (Mag@AC1-Ag and Mag@AC1-Ag) have been prepared. Various techniques (XRD, SEM/EDX, TEM, FTIR, and BET analysis) were employed to characterize the prepared nanosorbents before being utilized as novel nanosorbents to remove Pb+2 and Cd+2 ions. Mag@AC1-Ag and Mag@AC1-Ag exhibited rapid and excellent uptake of Pb+2 and Cd+2. The pseudo-second-order kinetics and the Langmuir isotherm are more suitable for the explanation of the experimental results. The thermodynamic parameters showed that the Pb+2 and Cd+2 sorption by the nanosorbents was a spontaneous and endothermic reaction. The prepared nanosorbents can be effectively regenerated using HCl and recycled up to the fifth cycle. These nanosorbents' potential uses for eliminating Pb+2 and Cd+2 from real water samples were evaluated. Moreover, the results revealed that both Mag@AC1-Ag and Mag@AC2-Ag exhibited high antimicrobial activity against fecal coliform (gram-negative) and Bacillus subtilis (gram-positive).
Collapse
Affiliation(s)
- Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Eman R Zaki
- Soil, Water and Environment Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Saber M Ahmed
- Soil, Water and Environment Research Institute, Agriculture Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Li J, Qian L, Xi W, Qiu Y, Tang W, Li S. Alloying synergistic flame retardant effect improving fire resistance and mechanical properties of polyamide 6. J Appl Polym Sci 2022. [DOI: 10.1002/app.53226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junxiao Li
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| | - Lijun Qian
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| | - Wang Xi
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| | - Yong Qiu
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| | - Wei Tang
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| | - Shanzhe Li
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
| |
Collapse
|
7
|
Shabani S, Dinari M. Ag/LDH-itaconic acid-gellan gam nanocomposites: Facile and green synthesis, characterization, and excellent catalytic reduction of 4-nitrophenol. Int J Biol Macromol 2021; 193:1645-1652. [PMID: 34742553 DOI: 10.1016/j.ijbiomac.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
The catalytic reduction reaction is one of the most commonly used solutions to convert high-risk contaminants into safe or low-risk materials. Today, with the increasing water pollution, the urgent need for efficient and effective catalysts is felt more than ever. For this purpose, for the first time, a green catalyst composed of silver nanoparticles anchored on itaconic acid-modified Ca-Al layered double hydroxide/gellan gum nanocomposite (Ag/LDH-ITA-GG NC) was prepared from a green approach without the use of any toxic organic solvents. To gain an in-depth insight into the physicochemical properties of the catalyst, different techniques including nitrogen adsorption-desorption isotherms, FESEM/mapping, FTIR, TGA, and XRD were used. The catalytic performance of the Ag/LDH-ITA-GG NC toward 4-nitrophenol reduction by NaBH4 was investigated. The calculated values of the apparent rate constant for this reaction are 0.2142 min-1 (for 1.0 mg of the catalyst), 0.2375 min-1 (for 3.0 mg of the catalyst), and 0.2550 min-1 (for 5.0 mg of the catalyst), indicating that the catalytic conversion of 4-nitrophenol to 4-aminophenol on the Ag/LDH-ITA-GG NC catalyst follows the pseudo-first-order kinetics and is comparable to the previous findings in the literature. The results of this study indicated that Ag/LDH-ITA-GG NC can potentially be utilized as an auspicious high efficient green catalyst for the reduction of pollutants like 4-nitrophenol.
Collapse
Affiliation(s)
- Shirin Shabani
- Chemistry Group, Pardis College, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
8
|
Ghaforinejad H, Mazaheri H, Hassani Joshaghani A, Marjani A. Study on novel modified large mesoporous silica FDU-12/polymer matrix nanocomposites for adsorption of Pb(II). PLoS One 2021; 16:e0245583. [PMID: 33481897 PMCID: PMC7822333 DOI: 10.1371/journal.pone.0245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, porous methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 nanocomposites were synthesized via a facile solution casting protocol. The physicochemical properties of the prepared materials were studied using various characterization techniques including Fourier transform-infrared spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption. After characterization of the materials, the prepared nanocomposites were applied as novel adsorbents for the removal of Pb(II) from aqueous media. In this regard, the effect of various parameters including solution pH, adsorbent amount, contact time, and initial concentration of Pb(II) on the adsorption process was investigated. To study the mechanism of adsorption, kinetic studies were conducted. The kinetic models of pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion were employed. The results revealed that the adsorption of Pb(II) onto methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 adsorbents followed the pseudo-second-order kinetic model. Also, different isotherms including Langmuir, Freundlich, and Dubinin-Radushkevich were applied to evaluate the equilibrium adsorption data. Langmuir isotherm provided the best fit with the equilibrium data of both adsorbents with maximum adsorption capacities of 99.0 and 94.3 mg g-1 for methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6, respectively, for the removal of Pb(II).
Collapse
Affiliation(s)
- Hamed Ghaforinejad
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hossein Mazaheri
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | | | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Jiang W, Xing Y, Zhang L, Guo X, Lu Y, Yang M, Wang J, Wei G. Polyethylenimine‐modified sugarcane bagasse cellulose as an effective adsorbent for removing Cu(
II
) from aqueous solution. J Appl Polym Sci 2020. [DOI: 10.1002/app.49830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenyan Jiang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
- Agro‐Products Quality Safety and Testing Technology Research Institute Guangxi Academy of Agricultural Sciences Nanning China
| | - Yihao Xing
- Agro‐Products Quality Safety and Testing Technology Research Institute Guangxi Academy of Agricultural Sciences Nanning China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
- Guangxi Key Laboratory of Bio‐refinery Guangxi University Nanning China
| | - Xiaoming Guo
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Yiwen Lu
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Mei Yang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Jing Wang
- Key Laboratory of Agro‐product Quality and Safety Institute of Quality Standards & Testing Technology for Agro‐Products, Chinese Academy of Agricultural Sciences Beijing China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| |
Collapse
|
10
|
Bashir A, Manzoor T, Malik LA, Qureashi A, Pandith AH. Enhanced and Selective Adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) Ions by a Dumbbell- and Flower-Shaped Potato Starch Phosphate Polymer: A Combined Experimental and DFT Calculation Study. ACS OMEGA 2020; 5:4853-4867. [PMID: 32201771 PMCID: PMC7081328 DOI: 10.1021/acsomega.9b03607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/10/2020] [Indexed: 05/24/2023]
Abstract
Microwave-ultrasound-assisted facile synthesis of a dumbbell- and flower-shaped potato starch phosphate (PSP) polymer, hereafter PSP, was carried out by cross-linking the hydroxyl groups of native potato starch (NPS) using phosphoryl chloride as a cross-linking agent. Structural and morphological analysis manifested the successful formation of the dumbbell- and flower-shaped PSP biosorbent with enhanced specific surface area and thermal stability. Viscoelastic behavior of NPS and PSP suggested increased rigidity in PSP, which helped the material to store more deformation energy in an elastic manner. The synthesized PSP biosorbent material was successfully tested for efficient and quick uptake of Zn(II), Pb(II), Cd(II), and Hg(II) ions from aqueous medium under competitive and noncompetitive batch conditions with q m values of 130.54, 106.25, 91.84, and 51.38 mg g-1, respectively. The adsorption selectivity was in consonance with Pearson's hard and soft acids and bases (HSAB) theory in addition to their order of hydrated radius. Adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) followed a second-order kinetics and the adsorption data fitted well with the Langmuir isotherm model. Quantum computations using density functional theory (DFT) further supported the experimental adsorption selectivity, Zn(II) > Pb(II) > Cd(II) > Hg(II), in terms of metal-oxygen binding energy measurements. What was more intriguing about PSP was its reusability over multiple adsorption cycles by treating the metal(II)-complexed PSP with 0.1 M HCl without any appreciable loss of its adsorption capacity.
Collapse
Affiliation(s)
- Arshid Bashir
- Key Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Taniya Manzoor
- Key Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Lateef Ahmad Malik
- Key Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Aaliya Qureashi
- Key Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Altaf Hussain Pandith
- Key Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
11
|
Yang Z, Chen X, Li S, Ma W, Li Y, He Z, Hu H, Wang T. Effective removal of Cd(II) from aqueous solution based on multifunctional nanoporous silicon derived from solar kerf loss waste. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121522. [PMID: 31740312 DOI: 10.1016/j.jhazmat.2019.121522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Recycling of kerf-loss slurry waste has become a meaningful and urgent issue in recent years. In this study, a novel hybrid material was prepared by Ag-assisted chemical etching kerf loss silicon waste and subsequently functionalized by a facile three-step graft process of 3-aminopropyltrimethoxy-silane, maleic anhydride, and ethylenediamine, named as EDA-MAH-APTES-NPSi, which could work as an effective adsorbent for removal of Cd(Ⅱ) from aqueous solution. The effect of initial pH, absorption duration, and metal ion concentrations on absorption performance were investigated. The adsorption equilibrium achieved after 120 min, the maximum adsorption capacity reached up to 210.01 mg/g and pH was at 5.5. The adsorption kinetic was fitted in the pseudo-second-order model and the Freundlich equation provided an accurate description for adsorption behavior. The XPS and FT-IR analysis manifested that Cd(Ⅱ) removal might be ascribed to the adsorption on the surface organic functional group by chemical chelating reaction and the ion exchange reaction. The EDA-MAH-APTES-NPSi maintained excellent adsorption capacity which decreased approximately 15.3 % (from 40.5-34.3 mg/g) after five successive regenerated cycles. The work confirms the potential of Cd(Ⅱ) removal from aqueous solution based on the modified NPSi and opens up a new way for recycling silicon cutting waste.
Collapse
Affiliation(s)
- Ziheng Yang
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiuhua Chen
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Shaoyuan Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China.
| | - Wenhui Ma
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Yi Li
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Zudong He
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Huanran Hu
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Tong Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
12
|
Surface modified layered double hydroxide/polyaniline nanocomposites: Synthesis, characterization and Pb2+ removal. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Polymer matrix nanocomposites for heavy metal adsorption: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01864-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Adeeyo RO, Edokpayi JN, Bello OS, Adeeyo AO, Odiyo JO. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4596. [PMID: 31756953 PMCID: PMC6926873 DOI: 10.3390/ijerph16234596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023]
Abstract
Numerous pollutants, including dyes, heavy metals, pesticides, and microorganisms, are found in wastewater and have great consequences when discharged onto natural freshwater sources. Heavy metals are predominantly reported in wastewater. Heavy metals are persistent, non-biodegradable and toxic, transforming from a less toxic form to more toxic forms in environmental media under favourable conditions. Among heavy metals, copper is dominantly found in wastewater effluent. In this review, the effects of high concentration of copper in plants and living tissues of both aquatic animals and humans are identified. The performance of different polymer adsorbents and the established optimum conditions to assess the resultant remediation effect as well as the amount of copper removed are presented. This procedure allows the establishment of a valid conclusion of reduced time and improved Cu (II) ion removal in association with recent nano-polymer adsorbents. Nano-polymer composites are therefore seen as good candidates for remediation of Cu ions while pH range 5-6 and room temperature were mostly reported for optimum performance. The optimum conditions reported can be applied for other metal remediation and development of potent novel adsorbents and process conditions.
Collapse
Affiliation(s)
- Rebecca O. Adeeyo
- School of Environmental Sciences, University of Venda, Thohoyandou Private Bag X5050, South Africa;
| | - Joshua N. Edokpayi
- Hydrology and Water Resource Department, School of Environmental Sciences, University of Venda, Thohoyandou Private Bag X5050, South Africa; (J.N.E.); (J.O.O.)
| | - Olugbenga S. Bello
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria;
| | - Adeyemi O. Adeeyo
- School of Environmental Sciences, University of Venda, Thohoyandou Private Bag X5050, South Africa;
| | - John O. Odiyo
- Hydrology and Water Resource Department, School of Environmental Sciences, University of Venda, Thohoyandou Private Bag X5050, South Africa; (J.N.E.); (J.O.O.)
| |
Collapse
|
15
|
Zarei F, Marjani A, Soltani R. Novel and green nanocomposite-based adsorbents from functionalised mesoporous KCC-1 and chitosan-oleic acid for adsorption of Pb(II). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Preparation and characterization of sulphonated bio-adsorbent from waste hawthorn kernel for dye (MB) removal. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Calcium Iron Layered Double Hydroxide/Poly(vinyl chloride) Nanocomposites: Synthesis, Characterization and Cd2+ Removal Behavior. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01265-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Dinari M, Maleki MH, Bagheri R. Synthesis and characterization of new nitrogen‐ and oxygen‐rich cyclohexanone–formaldehyde resin for fast Cd(II) adsorption in aqueous solution. POLYM INT 2019. [DOI: 10.1002/pi.5870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Dinari
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| | | | - Rouhollah Bagheri
- Department of Chemical EngineeringIsfahan University of Technology Isfahan Iran
| |
Collapse
|
19
|
Hosseinzadeh M. Removal of Heavy Metal Ions from Aqueous Solutions Using Modified Poly(styrene-alt-maleic anhydride) Copolymer as a Chelating Resin. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427218120108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Toor SK, Kushwaha JP, Sangal VK. Single and Binary Adsorption of Zn (II) and Cr (VI) Heavy Metals onto Synthesized Silica ‐Based MCM‐41. ChemistrySelect 2019. [DOI: 10.1002/slct.201803399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sehaspreet Kaur Toor
- Department of Chemical EngineeringThapar Institute of Engineering and Technology (Deemed to be University) Patiala- 147004, Punjab India
| | - Jai Prakash Kushwaha
- Department of Chemical EngineeringThapar Institute of Engineering and Technology (Deemed to be University) Patiala- 147004, Punjab India
| | - Vikas Kumar Sangal
- Department of Chemical EngineeringThapar Institute of Engineering and Technology (Deemed to be University) Patiala- 147004, Punjab India
- Department of Chemical EngineeringMalviya National Institute of Technology Jaipur-302017, Rajasthan India
| |
Collapse
|
21
|
Bagheri S, Amini MM, Behbahani M, Rabiee G. Low cost thiol-functionalized mesoporous silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Tomara GN, Karahaliou PK, Anastassopoulos DL, Georga SN, Krontiras CA, Karger‐Kocsis J. Effect of moisture and filler content on the structural, thermal and dielectric properties of polyamide‐6/boehmite alumina nanocomposites. POLYM INT 2019. [DOI: 10.1002/pi.5777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | | | | | - Jozsef Karger‐Kocsis
- Department of Polymer Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and Economics Budapest Hungary
- MTA‐BME Research Group for Composite Science and Technology Budapest Hungary
| |
Collapse
|
23
|
In situ synthesis of nanocomposite materials based on modified-mesoporous silica MCM-41 and methyl methacrylate for copper (II) adsorption from aqueous solution. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01628-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Yang T, Wang L, Liang M, Chen Y, Zou H. Cross-linked polyvinyl amidoxime fiber: a highly selective and recyclable adsorbent of gallium from Bayer liquor. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0635-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Li J, Song Y, Ma Z, Li N, Niu S, Li Y. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties. ULTRASONICS SONOCHEMISTRY 2018; 43:1-8. [PMID: 29555263 DOI: 10.1016/j.ultsonch.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 06/08/2023]
Abstract
In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively.
Collapse
Affiliation(s)
- Jihui Li
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Hebei, Shijiazhuang 050024, China
| | - Yunna Song
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Hebei, Shijiazhuang 050024, China
| | - Zheng Ma
- College of Huihua, Hebei Normal University, Hebei, Shijiazhuang 050024, China
| | - Ning Li
- The Real Estate CO., LTD. of CSCEC, Beijing 100070, China
| | - Shuai Niu
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Hebei, Shijiazhuang 050024, China.
| | - Yongshen Li
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Hebei, Shijiazhuang 050024, China.
| |
Collapse
|
26
|
He Y, Luo L, Liang S, Long M, Xu H. Synthesis of mesoporous silica-calcium phosphate hybrid nanoparticles and their potential as efficient adsorbent for cadmium ions removal from aqueous solution. J Colloid Interface Sci 2018; 525:126-135. [PMID: 29702319 DOI: 10.1016/j.jcis.2018.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Since adsorption and nanomaterials had been respectively found to be the most promising technique and the preferred adsorbents for heavy metal ions removal, in this study, novel mesoporous silica-calcium phosphate (MS-CP) hybrid nanoparticles were synthesized by a facile one-pot method, and subsequently assessed as adsorbent for Cd2+ removal from aqueous solution. MS-CP were characterized by scanning and transmission electron microscopies, etc. The influences of initial Cd2+ concentration, contact time, solution temperature and solution pH on removal efficiency of Cd2+ were investigated in detail. The results revealed that MS-CP were nanospheres of ∼20 nm and presented a bimodal pore distribution (3.82 nm and 12.40 nm), a high surface area (314.56 m2/g) and a large pore volume (1.21 cm3/g). The Cd2+ removal experiments demonstrated that MS-CP had a high adsorption capacity due to electrostatic interaction between Cd2+ and silanol groups on MS-CP surface, as well as ion-exchange between Cd2+ and calcium in MS-CP. Additionally, removal efficiency of Cd2+ increased with increasing contact time and solution temperature, while decreased as initial Cd2+ concentration increased. The maximum adsorption capacity of Cd2+ by MS-CP was above 153 mg/L. These results suggested that the as-synthesized MS-CP could be promising adsorbent for Cd2+ removal from aqueous solution.
Collapse
Affiliation(s)
- Yongju He
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China; Lab of Nano-biology Technology, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Liangyu Luo
- School of Life Science and Technology, Central South University Of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuquan Liang
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mengqiu Long
- Lab of Nano-biology Technology, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China.
| | - Hui Xu
- Lab of Nano-biology Technology, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
27
|
Dinari M, Tabatabaeian R. Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites. Carbohydr Polym 2018; 192:317-326. [PMID: 29691027 DOI: 10.1016/j.carbpol.2018.03.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/25/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Finding effective methodologies for the removal of heavy metals from contaminated water are really significant. Facile and "green" techniques for adsorbents fabrication are in high demand to satisfy a wide range of practical applications. This report presents of an efficient method for preparing Fe3O4@ layered double hydroxide@ guargum bionanocomposites (GLF-BNCs). First of all, the LDH coated Fe3O4 nanoparticles were simply synthesized, using ultrasonic irradiation. The citrate coated Fe3O4 nanoparticles which were under negative charging and LDH nanocrystals which were charged positively make electrostatic interaction which formed a stable self-assembly component, and then guargum as a biopolymer were linked onto Fe3O4@LDH via an in situ growth method. Furthermore, the GLF-BNCs had the ability to remove cadmium ions (Cd2+) from the aqueous solutions. Adsorption studies indicate that the Langmuir isotherm model and the kinetic model in pseudo-second order were appropriate for Cd(II) removal. The maximum Cd(II) adsorption capacity of the GLF8% was 258 mg g-1. The Cd(II) was adsorbed from aqueous solutions very quickly with the contact time of 5 min by the GLF 8%, suggesting that GLF-BNCs may be a promising adsorbent for removing Cd(II) from wastewater. The effect of Fe3O4@LDH contents (2, 4 and 8 wt.%) on the thermal, physicomechanical, and morphological properties of guargum were investigated by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), field emission scanning electron microscopy, transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy and Brunauer-Emmett-Teller (BET) specific surface area techniques. The TEM results indicated that the LDH platelets are distributed within the polymer matrix.
Collapse
Affiliation(s)
- Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Reyhane Tabatabaeian
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
28
|
Soltani R, Dinari M, Mohammadnezhad G. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: A green adsorbent for Cd(II) removal. ULTRASONICS SONOCHEMISTRY 2018; 40:533-542. [PMID: 28946455 DOI: 10.1016/j.ultsonch.2017.07.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/30/2017] [Accepted: 07/30/2017] [Indexed: 05/26/2023]
Abstract
Amino-modified MCM-41/poly(vinyl alcohol) nanocomposite (M-MCM-41/PVOH NC) was developed for the adsorption of Cd(II) from aqueous media. M-MCM-41/PVOH NC was prepared through ultrasonic-assisted and simple blending procedure with economical and environmentally friendly polymer. The as-prepared adsorbent was characterized by FT-IR, TEM, FE-SEM and TGA. The contact time, solution pH and initial concentration of Cd(II) were found to affect the adsorption of Cd(II) from aqueous media. Kinetic studies were carried out and pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intra-particle diffusion (IPD) reaction kinetic models were examined. The kinetic results revealed that the adsorption of Cd(II) onto M-MCM-41/PVOH NC followed PSO kinetic model and is a chemical adsorption. The equilibrium adsorption data were evaluated by different isotherms viz. Langmuir, Freundlich, and Dubinin Radushkevich (D-R) equations. The equilibrium data fitted better with the Langmuir isotherm and the maximum adsorption capacity of M-MCM-41/PVOH NC at 298K was calculated to be 46.73mgg-1 for Cd(II) on a typical saturated monomolecular layer with a fixed number of localized adsorption sites.
Collapse
Affiliation(s)
- Roozbeh Soltani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | | |
Collapse
|
29
|
Soltani R, Shahvar A, Dinari M, Saraji M. Environmentally-friendly and ultrasonic-assisted preparation of two-dimensional ultrathin Ni/Co-NO 3 layered double hydroxide nanosheet for micro solid-phase extraction of phenolic acids from fruit juices. ULTRASONICS SONOCHEMISTRY 2018; 40:395-401. [PMID: 28946438 DOI: 10.1016/j.ultsonch.2017.07.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we report an environmentally-friendly and low cost synthetic approach for large-scale fabrication of 2-dimentional porous Ni/Co-NO3-based layered double hydroxide (Ni/Co-NO3-LDH) nanosheet through ultrasonic-assisted process. The synthesis procedure used ethylene glycol/water system as an eco-friendly solvent system. The synthesized LDH was characterized by FE-SEM, TEM, XRD, and FT-IR techniques. FE-SEM and TEM images showed porous structure surface morphology of the synthesized LDH. Also, For Ni/Co-NO3-LDH, a hexagonal ultrathin layered was obtained owing to ultrasonic irradiation and applied processing conditions. The prepared LDH was used as sorbent in dispersive micro solid-phase extraction procedure. Two phenolic acids including p-hydroxybenzoic acid and p-coumaric acid were selected as model compounds. Some experimental factors affecting the extraction efficiency of the analytes were investigated and optimized. Finally, the sorbent was used for the extraction of model compound from fruit juice samples followed by high performance liquid chromatography. Linear dynamic range of 0.5-500µgL-1 with a low detection limit (0.1µgL-1) was obtained by the method. The relative standard deviations were 2.5 and 4.3% for p-hydroxybenzoic acid and p-coumaric acid, respectively. All recoveries were between 82 and 92%.
Collapse
Affiliation(s)
- Roozbeh Soltani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Shahvar
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|