1
|
Wang Y, Liu H, Yu J, Liao H, Yang L, Ren E, Lin S, Lan J. Ionic Conductive Cellulose-Based Hydrogels with Superior Long-Lasting Moisture and Antifreezing Features for Flexible Strain Sensor Applications. Biomacromolecules 2024; 25:838-852. [PMID: 38164823 DOI: 10.1021/acs.biomac.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nowadays, wearable devices derived from flexible conductive hydrogels have attracted enormous attention. Nevertheless, the utilization of conductive hydrogels in practical applications under extreme conditions remains a significant challenge. Herein, a series of inorganic salt-ion-enhanced conductive hydrogels (HPE-LiCl) consisting of hydroxyethyl cellulose, hydroxyethyl acrylate, lithium chloride, and ethylene glycol/water binary solvent were fabricated via a facile one-pot method. Apart from outstanding self-adhesion, high stretchability, and remarkable fatigue resistance, the HPE-LiCl hydrogels possessed especially excellent antifreezing and long-lasting moisture performances, which could maintain satisfactory flexibility and electric conductivity over extended periods of time, even in challenging conditions such as extremely low temperatures (as low as -40 °C) and high temperatures (as high as 80 °C). Consequently, the HPE-LiCl-based sensor could timely and accurately monitor various human motion signals even in adverse environments and after long-term storage. Hence, this work presents a facile strategy for the design of long-term reliable hydrogels as smart strain sensors, especially used in extreme environments.
Collapse
Affiliation(s)
- Yafang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Hongyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jincheng Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongjiang Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Liz-Basteiro P, Reviriego F, Martínez-Campos E, Reinecke H, Elvira C, Rodríguez-Hernández J, Gallardo A. Vat Photopolymerization 3D Printing of Hydrogels with Re-Adjustable Swelling. Gels 2023; 9:600. [PMID: 37623055 PMCID: PMC10452991 DOI: 10.3390/gels9080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Vat photopolymerization typically prints highly crosslinked networks. Printing hydrogels, which are also networks but with a high swelling capacity in water and therefore with low crosslinking density, is a challenge for this technique. However, it may be of interest in medicine and in other areas, since it would allow for the preparation of this type of 3D-shaped material. In this work, an approach for printing hydrogels via vat photopolymerization that uses a mixture of stable and hydrolysable crosslinkers has been evaluated so that an initial highly crosslinked network can be printed, although after hydrolysis it becomes a network with low crosslinking. This approach has been studied with PEO/PEG-related formulations, that is, with a PEG-dimethacrylate as a stable crosslinker, a PEO-related derivative carrying β-aminoesters as a degradable crosslinker, and PEG-methyl ether acrylate and hydroxyethyl acrylate as monofunctional monomers. A wide family of formulations has been studied, maintaining the weight percentage of the crosslinkers at 15%. Resins have been studied in terms of viscosity, and the printing process has been evaluated through the generation of Jacobs working curves. It has been shown that this approach allows for the printing of pieces of different shapes and sizes via vat photopolymerization, and that these pieces can re-ajust their water content in a tailored fashion through treatments in different media (PBS or pH 10 buffer).
Collapse
Affiliation(s)
- Pedro Liz-Basteiro
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| | - Enrique Martínez-Campos
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| | - Carlos Elvira
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| | - Alberto Gallardo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.L.-B.); (F.R.); (E.M.-C.); (H.R.); (C.E.)
| |
Collapse
|
3
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
4
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
5
|
Damonte G, Maddalena L, Fina A, Cavallo D, Müller AJ, Caputo MR, Mariani A, Monticelli O. On novel hydrogels based on poly(2-hydroxyethyl acrylate) and polycaprolactone with improved mechanical properties prepared by frontal polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
7
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. Biological tissues and components, and synthetic substrates for conjunctival cell transplantation. Ocul Surf 2021; 22:15-26. [PMID: 34119712 DOI: 10.1016/j.jtos.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
The conjunctiva is the largest component of the ocular surface. It can be damaged by various pathological processes leading to scarring, loss of tissue and dysfunction. Depending on the amount of damage, restoration of function may require a conjunctival graft. Numerous studies have investigated biological and synthetic substrates in the search for optimal conditions for the ex vivo culture of conjunctival epithelial cells that can be used as tissue grafts for transplantation. These substrates have advantages and disadvantages that are specific to the characteristics of each material; the development of an improved material remains a priority. This review is the second of a two-part review in The Ocular Surface. In the first review, the structure and function of the conjunctiva was evaluated with a focus on the extracellular matrix and the basement membrane, and biological and mechanical characteristics of the ideal substrate with recommendations for further studies. In this review the types of biological and synthetic substrates used for conjunctival transplantation are discussed including substrates based on the extracellular matrix. .
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road, Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
8
|
Sabater i Serra R, Molina-Mateo J, Torregrosa-Cabanilles C, Andrio-Balado A, Meseguer Dueñas JM, Serrano-Aroca Á. Bio-Nanocomposite Hydrogel Based on Zinc Alginate/Graphene Oxide: Morphology, Structural Conformation, Thermal Behavior/Degradation, and Dielectric Properties. Polymers (Basel) 2020; 12:polym12030702. [PMID: 32235735 PMCID: PMC7183265 DOI: 10.3390/polym12030702] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Bio-nanocomposite hydrogels based on sodium alginate (SA) as polymer matrix and graphene oxide (GO) nanosheets with zinc as crosslinking agent were synthesized with the aim of incorporating the intrinsic properties of their constituents (bioactivity and antimicrobial activity). Thus, stable and highly interconnected networks were obtained from GO nanosheets dispersed in SA matrices through interactions with low amounts of zinc. The GO nanosheets were successfully incorporated into the alginate matrix in the form of a complex nano-network involving different interactions: Bonds between alginate chains induced by Zn ions (egg box structure), interactions between GO nanosheets through Zn ions and hydrogen bonds between alginate chains, and GO nanosheets. The molecular interactions and morphology were confirmed by Fourier-transform infrared spectroscopy and transmission electron microscopy. The composite’s structural organization showed enhanced thermal stability. The glass transition temperature shifted to a higher temperature due to the reduced mobility induced by additional crosslinking bonds after incorporating the GO nanosheets and Zn into the polymer matrix. Finally, the dielectric behavior revealed that charge carrier mobility was hampered by the compact structure of the nanonetwork, which reduced conductivity. The combined properties of these nanocomposite hydrogels make them attractive biomaterials in the field of regenerative medicine and wound care since both surface bioactivity and antibacterial behavior are two critical factors involved in the success of a biomaterial.
Collapse
Affiliation(s)
- Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.M.-M.); (C.T.-C.); (J.M.M.D.)
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain
- Correspondence: (R.S.i.S.); (Á.S.-A.)
| | - José Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.M.-M.); (C.T.-C.); (J.M.M.D.)
| | - Constantino Torregrosa-Cabanilles
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.M.-M.); (C.T.-C.); (J.M.M.D.)
| | | | - José María Meseguer Dueñas
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.M.-M.); (C.T.-C.); (J.M.M.D.)
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 València, Spain
- Correspondence: (R.S.i.S.); (Á.S.-A.)
| |
Collapse
|
9
|
Study of 1D and 2D Carbon Nanomaterial in Alginate Films. NANOMATERIALS 2020; 10:nano10020206. [PMID: 31991605 PMCID: PMC7074849 DOI: 10.3390/nano10020206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Alginate-based materials hold great promise in bioengineering applications such as skin wound healing and scaffolds for tissue engineering. Nevertheless, cell adhesion of mammalian cells on these hydrophilic materials is very poor. In cases such as polycaprolactone, poly(hydroxy-3-butyrate-co-3-valerate) and gelatin, the incorporation of hydrophobic carbon nanofibers (CNFs) and hydrophilic graphene oxide (GO) has shown significant improvement of cell adhesion and proliferation. The incorporation of these carbon nanomaterials (CNMs) into alginate films can enhance their mechanical performance, wettability, water diffusion and antibacterial properties. Herein, we report the effect of adding these CNMs into alginate films on cell adhesion for the first time. Thus, the results of this study showed that these nanocomposites are non-cytotoxic in human keratinocyte HaCaT cells. Nevertheless, contrary to what has been reported for other polymers, cell adhesion on these advanced alginate-based composites was not improved. Therefore, both types of composite films possess similar biological behavior, in terms of cell adhesion and non-cytotoxicity, and enhanced physical and antibacterial properties in comparison to neat alginate for potential biomedical and bioengineering applications.
Collapse
|
10
|
Rozhina E, Batasheva S, Danilushkina A, Kryuchkova M, Gomzikova M, Cherednichenko Y, Nigamatzyanova L, Akhatova F, Fakhrullin R. Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MEDCHEMCOMM 2019; 10:1457-1464. [PMID: 31534660 PMCID: PMC6748275 DOI: 10.1039/c8md00633d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 11/21/2022]
Abstract
The development of novel nanoscale vehicles for drug delivery promotes the growth of interest in investigations of interaction between nanomaterials. In this paper, we report the in vitro studies of eukaryotic cell physiological response to incubation with graphene oxide and planar kaolin nanoclay. Graphene family materials, including graphene oxide (GO), hold promise for numerous applications due to their unique electronic properties. However, graphene oxide reveals toxicity to some cell lines through an unidentified mechanism. Thus, methods and agents reducing the toxicity of graphene oxide can widen its practical application. We used a colorimetric test, flow cytometry and cell index assay methods to evaluate the effects of separate and combined application of graphene oxide and kaolin on mammalian cells. We have shown that the joint application of graphene oxide and kaolin reduced the negative effects of graphene by almost 20%, most likely because of coagulation of the nanoparticles with each other, which was detected by atomic force microscopy.
Collapse
Affiliation(s)
- Elvira Rozhina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Anna Danilushkina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Gomzikova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Yuliya Cherednichenko
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| |
Collapse
|
11
|
Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens. Int J Mol Sci 2019; 20:ijms20143603. [PMID: 31340560 PMCID: PMC6678746 DOI: 10.3390/ijms20143603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. Methods: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. Results: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. Conclusions: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.
Collapse
|
12
|
Castilla-Cortázar I, Vidaurre A, Marí B, Campillo-Fernández AJ. Morphology, Crystallinity, and Molecular Weight of Poly(ε-caprolactone)/Graphene Oxide Hybrids. Polymers (Basel) 2019; 11:polym11071099. [PMID: 31261770 PMCID: PMC6680561 DOI: 10.3390/polym11071099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
A study was carried out to determine the effects of graphene oxide (GO) filler on the properties of poly(ε-caprolactone) (PCL) films. A series of nanocomposites were prepared, incorporating different graphene oxide filler contents (0.1, 0.2, and 0.5 wt%) by the solution mixing method, and an in-depth study was made of the morphological changes, crystallization, infrared absorbance, molecular weight, thermal properties, and biocompatibility as a function of GO content to determine their suitability for use in biomedical applications. The infrared absorbance showed the existence of intermolecular hydrogen bonds between the PCL’s carbonyl groups and the GO’s hydrogen-donating groups, which is in line with the apparent reduction in molecular weight at higher GO contents, indicated by the results of the gel permeation chromatography (GPC), and the thermal property analysis. Polarized optical microscopy (POM) showed that GO acts as a nucleating point for PCL crystals, increasing crystallinity and crystallization temperature. The biological properties of the composites studied indicate that adding only 0.1 wt% of GO can improve cellular viability and that the composite shows promise for use in biomedical applications.
Collapse
Affiliation(s)
- Isabel Castilla-Cortázar
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Ana Vidaurre
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, 46022 Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.
| | - Bernabé Marí
- Departamento de Física Aplicada-IDF, Universitat Politècnica de València, 46022 Valencia, Spain.
| | | |
Collapse
|
13
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
14
|
Frígols B, Martí M, Salesa B, Hernández-Oliver C, Aarstad O, Teialeret Ulset AS, Inger Sӕtrom G, Aachmann FL, Serrano-Aroca Á. Graphene oxide in zinc alginate films: Antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity. PLoS One 2019; 14:e0212819. [PMID: 30845148 PMCID: PMC6405205 DOI: 10.1371/journal.pone.0212819] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation. Furthermore, the synergic effect of GO with other divalent cations with intrinsic antibacterial and cytotoxic activity such as Zn2+ has not been explored yet. Thus, here, two commercially available sodium alginates were characterised and utilized in the synthesis of zinc alginate films with GO following the same chemical route reported for the calcium alginate/GO composites. The results of this study showed that zinc release, water sorption/diffusion and wettability depended significantly on the type of alginate utilized. Furthermore, Zn2+ and GO produced alginate films with increased water diffusion, wettability and opacity. However, neither the combination of GO with Zn2+ nor the use of different types of sodium alginates modified the antibacterial activity and cytotoxicity of the zinc alginates against these Gram-positive pathogens and human cells respectively.
Collapse
Affiliation(s)
- Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Beatriz Salesa
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Carolina Hernández-Oliver
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Olav Aarstad
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann-Sissel Teialeret Ulset
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerd Inger Sӕtrom
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Lillelund Aachmann
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
15
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
16
|
Wang J, Li H, Zhang L, Lai X, Wu W, Zeng X. In situ
preparation of reduced graphene oxide reinforced acrylic rubber by self-assembly. J Appl Polym Sci 2018. [DOI: 10.1002/app.47187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Wang
- College of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials; South China University of Technology, No. 381, Wushan Road, Tianhe District; Guangzhou 510640 China
| | - Hongqiang Li
- College of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials; South China University of Technology, No. 381, Wushan Road, Tianhe District; Guangzhou 510640 China
| | - Lin Zhang
- College of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials; South China University of Technology, No. 381, Wushan Road, Tianhe District; Guangzhou 510640 China
| | - Xuejun Lai
- College of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials; South China University of Technology, No. 381, Wushan Road, Tianhe District; Guangzhou 510640 China
| | - Wenjian Wu
- School of Environment and Civil Engineering; Dongguan University of Technology, No. 1, Daxue Road, Songshanhu District; Dongguan 523808 China
| | - Xingrong Zeng
- College of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials; South China University of Technology, No. 381, Wushan Road, Tianhe District; Guangzhou 510640 China
| |
Collapse
|
17
|
Serrano-Aroca Á, Iskandar L, Deb S. Green synthetic routes to alginate-graphene oxide composite hydrogels with enhanced physical properties for bioengineering applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Llorens-Gámez M, Serrano-Aroca Á. Low-Cost Advanced Hydrogels of Calcium Alginate/Carbon Nanofibers with Enhanced Water Diffusion and Compression Properties. Polymers (Basel) 2018; 10:E405. [PMID: 30966440 PMCID: PMC6415267 DOI: 10.3390/polym10040405] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
A series of alginate films was synthesised with several calcium chloride cross-linker contents (from 3 to 18% w/w) with and without a very low amount (0.1% w/w) of carbon nanofibers (CNFs) in order to reduce the production costs as much as possible. The results of this study showed a very significant enhancement of liquid water diffusion and mechanical compressive modulus for high calcium chloride contents when this minuscule amount of CNFs is incorporated into calcium alginate hydrogels. These excellent results are attributed to a double cross-linking process, in which calcium cations are capable of cross-linking both alginate chains and CNFs creating a reinforced structure exhibiting ultrafast water diffusion through carbon nanochannels. Thus, these excellent results render these new alginate composites very promising for many bioengineering fields in need of low-cost advanced hydrogels with superior water diffusion and compression properties.
Collapse
Affiliation(s)
- Mar Llorens-Gámez
- Escuela Técnica Superior de Arquitectura, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|