1
|
Priya AK, Alghamdi HM, Kavinkumar V, Elwakeel KZ, Elgarahy AM. Bioaerogels from biomass waste: An alternative sustainable approach for wastewater treatment. Int J Biol Macromol 2024; 282:136994. [PMID: 39491712 DOI: 10.1016/j.ijbiomac.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The generation of municipal solid waste is projected to increase from 2.1 billion tonnes in 2023 to 3.8 billion tonnes by 2050. In 2020, the direct global cost of managing this waste was approximately USD 252 billion. When considering additional hidden costs-such as those arising from pollution, adverse health effects, and climate change due to inadequate waste disposal-the total cost escalates to USD 361 billion. Without significant improvements in waste management practices, this figure could nearly double by 2050, reaching an estimated USD 640.3 billion annually. Among municipal solid waste, biowaste accounts for roughly 44 % of the global municipal solid waste, translating to about 840 million tonnes annually. They are widely accessible and economical, offering a cost-effective alternative to traditional treatment materials. Transforming biomass waste into carbon-based materials (e.g., bioaerogels) is a sustainable practice that reduces waste and repurposes it for environmental remediation. This approach not only decreases the volume of waste directed to landfills and mitigates harmful greenhouse gas emissions from decomposition but also aligns with the principles of a circular economy. Furthermore, it supports sustainable development goals by addressing issues such as water scarcity and pollution while promoting waste valorization and resource efficiency. The unique properties of bioaerogels-including their porosity, multi-layered structure, and chemical adaptability-make them highly effective for the remediation of different water pollutants from aquatic bodies. This review article comprehensively delves into multifaceted wastewater remediation strategies -based bioaerogels such as coagulation and flocculation, advanced oxidation processes, membrane filtration, catalytic processes, water disinfection, Oil-water separation, biodegradation, and adsorption. Additionally, it examines different mechanisms of interaction such as surface adsorption, electrostatic interaction, van der Waals forces, ion exchange, surface precipitation, complexation, pore-filling, hydrophobic interactions, and π-π stacking. Moreover, it conducts an integrated techno-economic evaluation to assess their feasibility in wastewater treatment. By valorizing biomass waste, a closed-loop system can be established, where waste is transformed into valuable bioaerogels. This approach not only addresses challenges related to effluent pollution but also generates economic, environmental, and social benefits. Ultimately, the review underscores the transformative potential of bioaerogels in wastewater treatment, emphasizing their crucial role in supporting long-term environmental goals and advancing the principles of resource circularity.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India.
| | - Huda M Alghamdi
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia.
| | - V Kavinkumar
- Department of Civil Engineering, KPR Institute of Engineering and Technology, India.
| | - Khalid Z Elwakeel
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| |
Collapse
|
2
|
Popoola O, Finny A, Dong I, Andreescu S. Smart and Sustainable 3D-Printed Nanocellulose-Based Sensors for Food Freshness Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60920-60932. [PMID: 39436980 DOI: 10.1021/acsami.4c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Annually, about one-third of the food produced around the world is wasted due to spoilage. Food contamination and spoilage, along with the use and disposal of nondegradable packaging materials, impact human health and have huge economic and sustainability implications. Achieving sustainability within the food system requires innovative solutions to reduce the environmental footprint. Herein, we describe the formulation, scalable manufacturing, and characterization of three-dimensional (3D)-printed sensors prepared from a mixture of edible biopolymer hydrogels, 8% alginate, and 10% gelatin and nanocellulose (CNC) as a reinforcement filler. We demonstrate that incorporating CNC improves the overall mechanical performance of the printed film and enables the stabilization of pH-responsive dyes for monitoring the release of total volatile basic nitrogen (TVB-N), an indicator of food freshness. Mechanical performance enhancement includes increases of 43% in load-depth indentation, 28.2% in hardness, and 17.4% in elastic modulus. This enhancement facilitates its use as a smart label technology, enabling the visual assessment of spoilage when placed inside packaging over a period of 3 days at room temperature. The 3D-printed film exhibits excellent durability, flexibility, shape memory, and robustness, along with pH responsiveness, showing distinctive color changes over the pH range of 2 to 13. These performances are demonstrated in packaged meat and fish, enabling monitoring over several days and illustrating potential as a real-time freshness indicator. The material formulations developed in this work are biodegradable, eco-friendly, and inexpensive, making them suitable candidates for smart and sustainable food packaging.
Collapse
Affiliation(s)
- Oluwatosin Popoola
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Abraham Finny
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Ivy Dong
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University (FIU), Miami, Florida 33199, United States
| |
Collapse
|
3
|
Azka MA, Adam A, Ridzuan SM, Sapuan SM, Habib A. A review on the enhancement of circular economy aspects focusing on nanocellulose composites. Int J Biol Macromol 2024; 269:132052. [PMID: 38704068 DOI: 10.1016/j.ijbiomac.2024.132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Researchers are now focusing on using the circular economy model to manufacture nanocellulose composites due to growing environmental issues related to waste management. The circular economy model offers a sustainable solution to the problem by optimizing resource efficiency and waste management by reducing waste, maintaining value over time, minimizing the use of primary resources, and creating closed loops for goods, components, and materials. With the use of the circular economy model, waste, such as industrial, agricultural, and textile waste, is used again to produce new products, which can solve waste management issues and improve resource efficiency. In order to encourage the use of circular economy ideas with a specific focus on nanocellulose composites, this review examines the concept of using circular economy, and explores ways to make nanocellulose composites from different types of waste, such as industrial, agricultural, and textile waste. Furthermore, this review investigates the application of nanocellulose composites across multiple industries. In addition, this review provides researchers useful insights of how circular economics can be applied to the development of nanocellulose composites, which have the goal of creating a flexible and environmentally friendly material that can address waste management issues and optimize resource efficiency.
Collapse
Affiliation(s)
- Muhammad Adlan Azka
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adib Adam
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Ridzuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abdul Habib
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
5
|
Mumtaz N, Li Y, Artiaga R, Farooq Z, Mumtaz A, Guo Q, Nisa FU. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review. Heliyon 2024; 10:e25381. [PMID: 38352797 PMCID: PMC10862693 DOI: 10.1016/j.heliyon.2024.e25381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The internet of things and growing demand for smaller and more advanced devices has created the problem of high heat production in electronic equipment, which greatly reduces the work performance and life of the electronic instruments. Thermal interface material (TIM) is placed in between heat generating micro-chip and the heat dissipater to conduct all the produced heat to the heat sink. The development of suitable TIM with excellent thermal conductivity (TC) in both in-plane and through-plane directions is a very important need at present. For efficient thermal management, polymer composites are potential candidates. But in general, their thermal conductivity is low compared to that of metals. The filler integration into the polymer matrix is one of the two approaches used to increase the thermal conductivity of polymer composites and is also easy to scale up for industrial production. Another way to achieve this is to change the structure of polymer chains, which fall out of the scope of this work. In this review, considering the first approach, the authors have summarized recent developments in many types of fillers with different scenarios by providing multiple cases with successful strategies to improve through-plane thermal conductivity (TPTC) (k⊥). For a better understanding of TC, a comprehensive background is presented. Several methods to improve the effective (out-plane) thermal conductivity of polymer composites and different theoretical models for the calculation of TC are also discussed. In the end, it is given a detailed conclusion that provides drawbacks of some fillers, multiple significant routes recommended by other researchers to build thermally conductive polymer composites, future aspects along with direction so that the researchers can get a guideline to design an effective polymer-based thermal interface material.
Collapse
Affiliation(s)
- Nighat Mumtaz
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanchun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ramón Artiaga
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Centro de Investigación en Tecnologías Navales e Industriales. Campus Industrial de Ferrol, University of A Coruña, Avda. Mendizábal s/n, 15403 Ferrol, Spain
| | - Zunaira Farooq
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210094, China
| | - Amina Mumtaz
- Department of Physics, The Women University Multan, Multan 66000, Pakistan
| | - Qian Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fakhr-Un Nisa
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan
| |
Collapse
|
6
|
Du K, Zhang D, Zhang S, Tam KC. Advanced Functionalized Materials Based on Layer-by-Layer Assembled Natural Cellulose Nanofiber for Electrodes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304739. [PMID: 37726489 DOI: 10.1002/smll.202304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 09/21/2023]
Abstract
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
7
|
Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, Hassan MR. Exploring nanocellulose frontiers: A comprehensive review of its extraction, properties, and pioneering applications in the automotive and biomedical industries. Int J Biol Macromol 2024; 255:128121. [PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Collapse
Affiliation(s)
- J Yusuf
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mubashshir Ahmad Ansari
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India.
| | - Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tarique Jamal
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - R A Ilyas
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - M R Hassan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Yang J, Han X, Yang W, Hu J, Zhang C, Liu K, Jiang S. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications. ENVIRONMENTAL RESEARCH 2023; 236:116736. [PMID: 37495064 DOI: 10.1016/j.envres.2023.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Nanocellulose aerogel has the advantages of porosity, low density and high specific surface area, which can effectively realize the adsorption and treatment of wastewater waste gas. The methods of preparing nanocellulose mainly include mechanical, chemical and biological methods. Nanocellulose is formed into nanocellulose aerogel after gelation, solvent replacement and drying processes. Based on the advantages of easy modification of nanocellulose aerogels, nanocellulose aerogels can be functionalized with conductive fillers, reinforcing fillers and other materials to give nanocellulose aerogels in electrical, mechanical and other properties. Through functionalization, the properties of nanocellulose composite aerogel such as hydrophobicity and adsorption are improved, and the aerogel is endowed with the ability of electrical conductivity and electromagnetic shielding. Through functionalization, the applicability and general applicability of nanocellulose composite aerogel in the field of environmental protection are improved. In this paper, the preparation and functional modification methods of nanocellulose aerogels are reviewed, and the application prospects of nanocellulose composite aerogels in common environmental protection fields such as dye adsorption, heavy metal ion adsorption, gas adsorption, electromagnetic shielding, and oil-water separation are specifically reviewed, and new solutions are proposed.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| |
Collapse
|
9
|
Nitodas S(S, Skehan M, Liu H, Shah R. Current and Potential Applications of Green Membranes with Nanocellulose. MEMBRANES 2023; 13:694. [PMID: 37623755 PMCID: PMC10456796 DOI: 10.3390/membranes13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products.
Collapse
Affiliation(s)
- Stefanos (Steve) Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Meredith Skehan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| | - Henry Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Raj Shah
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| |
Collapse
|
10
|
Chen WC, Chen LC, Liu FJ, Tsai WC, Tung BH, Venkatesan M, Tsai ML, Lin JH, Kuo CC. Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207685. [PMID: 36897028 DOI: 10.1002/smll.202207685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Because of their exceptional physical and thermal properties, cellulose nanocrystals (CNCs) are a highly promising bio-based material for reinforcing fillers. Studies have revealed that some functional groups from CNCs can be used as a capping ligand to coordinate with metal nanoparticles or semiconductor quantum dots during the fabrication of novel complex materials. Therefore, through CNCs ligand encapsulation and electrospinning, perovskite-NC-embedded nanofibers with exceptional optical and thermal stability are demonstrated. The results indicate that, after continuous irradiation or heat cycling, the relative photoluminescence (PL) emission intensity of the CNCs-capped perovskite-NC-embedded nanofibers is maintained at ≈90%. However, the relative PL emission intensity of both ligand-free and long-alkyl-ligand-doped perovskite-NC-embedded nanofibers decrease to almost 0%. These results are attributable to the formation of specific clusters of perovskite NCs along with the CNCs structure and thermal property improvement of polymers. CNCs-doped luminous complex materials offer a promising avenue for stability-demanding optoelectronic devices and other novel optical applications.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
- Department of Chemical Engineering and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Lung-Chih Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Fu-Jie Liu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Wei-Chen Tsai
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Bo-Han Tung
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Meng-Lin Tsai
- Institute of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
11
|
Liu W, Wu L, Dang Y, Gou J, Xie W, Tang A. An image reconstruction modeling approach for micro‐ fibrous network of cellulose polymer separator concerning tensile and pore properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Wangyu Liu
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou P. R. China
| | - Lin Wu
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou P. R. China
| | - Yanping Dang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou P. R. China
| | - Jingren Gou
- Department of Chemical Engineering Tsinghua University Beijing P. R. China
| | - Weigui Xie
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou P. R. China
| | - Aimin Tang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou P. R. China
| |
Collapse
|
12
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
13
|
Lv C, Liu J. Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review. Molecules 2023; 28:1868. [PMID: 36838855 PMCID: PMC9963550 DOI: 10.3390/molecules28041868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Plant fibers (PFs), such as hemp, Coir, and straw, are abundant in resources, low in price, light weight, biodegradable, have good adhesion to the matrix, and have a broad prospect as reinforcements. However, the degradation of PFs in the alkaline matrix is one of the main factors that affects the durability of these composites. PFs have good compatibility with cement and the geopolymer matrix. They can induce gel growth of cement-based materials and have a good toughening effect. The water absorption of the hollow structure of the PF can accelerate the degradation of the fiber on the one hand and serve as the inner curing fiber for the continuous hydration of the base material on the other. PF is easily deteriorated in the alkaline matrix, which has a negative effect on composites. The classification and properties of PFs, the bonding mechanism of the interface between PF reinforcements and the matrix, the water absorption of PF, and its compatibility with the matrix were summarized. The degradation of PFs in the alkaline matrix and solution, drying and wetting cycle conditions, and high-temperature conditions were reviewed. Finally, some paths to improve the alkaline degradation of PF reinforcement in the alkaline matrix were proposed.
Collapse
Affiliation(s)
- Chun Lv
- College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jie Liu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
14
|
Bhandari M, Kaur DP, Raj S, Yadav T, Abourehab MAS, Alam MS. Electrically Conducting Smart Biodegradable Polymers and Their Applications. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:391-413. [DOI: 10.1007/978-3-031-09710-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
|
16
|
Norizan MN, Shazleen SS, Alias AH, Sabaruddin FA, Asyraf MRM, Zainudin ES, Abdullah N, Samsudin MS, Kamarudin SH, Norrrahim MNF. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193483. [PMID: 36234612 PMCID: PMC9565736 DOI: 10.3390/nano12193483] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/31/2023]
Abstract
Nanocellulose has emerged in recent years as one of the most notable green materials available due to its numerous appealing factors, including its non-toxic nature, biodegradability, high aspect ratio, superior mechanical capabilities, remarkable optical properties, anisotropic shape, high mechanical strength, excellent biocompatibility and tailorable surface chemistry. It is proving to be a promising material in a range of applications pertinent to the material engineering to biomedical applications. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations. This review presents an overview of general concepts in nanocellulose-based nanocomposites for sustainable applications. Beginning with a brief introduction of cellulose, nanocellulose sources, structural characteristics and the extraction process for those new to the area, we go on to more in-depth content. Following that, the research on techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance, as well as their characteristics and functionalization strategies, were explained. The usage of nanocellulose in nanocomposites in versatile fields, as well as novel and foreseen markets of nanocellulose products, are also discussed. Finally, the difficulties, challenges and prospects of materials based on nanocellulose are then discussed in the last section for readers searching for future high-end eco-friendly functional materials.
Collapse
Affiliation(s)
- Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Shazra Shazleen
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aisyah Humaira Alias
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Fatimah Atiyah Sabaruddin
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Hasnah Kamarudin
- Department of Ecotechnology, School of Industrial Technology, Faculty of Applied Science, UiTM Shah Alam, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
17
|
Yan M, Wu T, Ma J, Lu H, Zhou X. Characteristic comparison of lignocellulose nanofibrils from wheat straw having different mechanical pretreatments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Yan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
| | - Jinxia Ma
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Xiaofan Zhou
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| |
Collapse
|
18
|
Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydr Polym 2022; 297:120039. [DOI: 10.1016/j.carbpol.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
20
|
Yuan B, Cong Z, Cheng Z, Li L, Xia L, Yan J, Shen F, Zhao B, Han X. Bacteria cellulose framework-supported solid composite polymer electrolytes for ambient-temperature lithium metal batteries. NANOTECHNOLOGY 2022; 33:415401. [PMID: 35385837 DOI: 10.1088/1361-6528/ac64ab] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Composite polymer electrolyte (CPE) films with high room temperature ionic conductivity are urgently needed for the practical application of high-safety solid-state batteries (SSBs). Here, a flexible polymer-polymer CPE thin film reinforced by a three-dimensional (3D) bacterial cellulose (BC) framework derived from natural BC hydrogel was prepared via thein situphoto-polymerization method. The BC film was utilized as the supporting matrix to ensure high flexibility and mechanical strength. The BC-CPE attained a high room temperature ionic conductivity of 1.3 × 10-4S cm-1. The Li∣BC-CPE∣Li symmetric cell manifested stable cycles of more than 1200 h. The LCO∣BC-CPE∣Li full cell attained an initial discharge specific capacity of 128.7 mAh g-1with 82.6% discharge capacity retention after 150 cycles at 0.2 C under room temperature. The proposed polymer-polymer CPE configuration represents a promising route for manufacturing environmental SSBs, especially since cellulose biomaterials are abundant in nature.
Collapse
Affiliation(s)
- Boheng Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhi Cong
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhi Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Lei Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Linan Xia
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Jieda Yan
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Fei Shen
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Bin Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Xiaogang Han
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Key Laboratory of Smart Grid of Shaanxi Province, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
21
|
Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting. Carbohydr Polym 2022; 288:119407. [DOI: 10.1016/j.carbpol.2022.119407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
|
22
|
Mahdavi H, Zeinalipour N, Heidari AA. Fabrication of
PVDF
mixed matrix nanofiltration membranes incorporated with
TiO
2
nanoparticles and an amphiphilic
PVDF‐g‐PMMA
copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
23
|
Yao X, Song X, Zhang F, Ma J, Jiang H, Wang L, Liu Y, Ang EH, Xiang H. Enhancing Cellulose‐Based Separator with Polyethyleneimine and Polyvinylidene Fluoride‐Hexafluoropropylene Interpenetrated 3D Network for Lithium Metal Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Yao
- Hefei University of Technology Materials science and engineering CHINA
| | - Xiaohui Song
- Hefei University of Technology Materials science and engineering CHINA
| | - Fan Zhang
- Hefei University of Technology Materials science and engineering CHINA
| | - Jian Ma
- Hefei University of Technology Materials science and engineering CHINA
| | - Hao Jiang
- Hefei University of Technology Materials science and engineering CHINA
| | - Lulu Wang
- Hefei University of Technology Materials science and engineering CHINA
| | - Yongchao Liu
- Hefei University of Technology Materials science and engineering CHINA
| | - Edison Huixiang Ang
- Nanyang Technological University Natural Sciences and Science Education CHINA
| | - Hongfa Xiang
- Hefei University of Technology School of Materials Science and Engineering 193 Tunxi Road 230009 Hefei CHINA
| |
Collapse
|
24
|
Mombeshora ET, Muchuweni E, Garcia-Rodriguez R, Davies ML, Nyamori VO, Martincigh BS. A review of graphene derivative enhancers for perovskite solar cells. NANOSCALE ADVANCES 2022; 4:2057-2076. [PMID: 36133440 PMCID: PMC9418678 DOI: 10.1039/d1na00830g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 05/22/2023]
Abstract
Due to the finite nature, health and environmental hazards currently associated with the use of fossil energy resources, there is a global drive to hasten the development and deployment of renewable energy technologies. One such area encompasses perovskite solar cells (PSCs) that have shown photoconversion efficiencies (PCE) comparable to silicon-based photovoltaics, but their commercialisation has been set back by short-term stability and toxicity issues, among others. A tremendous potential to overcome these drawbacks is presented by the emerging applications of graphene derivative-based materials in PSCs as substitutes or components, composites with other functional materials, and enhancers of charge transport, blocking action, exciton dissociation, substrate coverage, sensitisation and stabilisation. This review aims to illustrate how these highly capable carbon-based materials can advance PSCs by critically outlining and discussing their current applications and strategically identifying prospective research avenues. The reviewed works show that graphene derivatives have great potential in boosting the performance and stability of PSCs through morphological modifications and compositional engineering. This can drive the sustainability and commercial viability aspects of PSCs.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Edigar Muchuweni
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Rodrigo Garcia-Rodriguez
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Matthew L Davies
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
25
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
26
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
A novel method to prepare a highly porous separator based on nanocellulose with multi-scale pore structures and its application for rechargeable lithium ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Fingolo AC, de Morais VB, Costa SV, Corrêa CC, Lodi B, Santhiago M, Bernardes JS, Bufon CCB. Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices. ACS APPLIED BIO MATERIALS 2021; 4:6682-6689. [PMID: 35006971 DOI: 10.1021/acsabm.1c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocellulose is a promising material for fabricating green, biocompatible, flexible, and foldable devices. One of the main issues of using nanocellulose as a fundamental component for wearable electronics is the influence of environmental conditions on it. The water adsorption promotes the swelling of nanopaper substrates, which directly affects the devices' electrical properties prepared on/with it. Here, plant-based nanocellulose substrates, and ink composites deposited on them, are chemically modified using hexamethyldisilazane to enhance the system's hydrophobicity. After the treatment, the electrical properties of the devices exhibit stable operation under humidity levels around 95%. Such stability demonstrates that the hexamethyldisilazane modification substantially suppresses the water adsorption on fundamental device structures, namely, substrate plus conducting ink. These results attest to the robustness necessary to use nanocellulose as a key material in wearable devices such as electronic skins and tattoos and contribute to the worldwide efforts to create biodegradable devices engineered in a more deterministic fashion.
Collapse
Affiliation(s)
- Ana C Fingolo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil.,Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru17033-360 , São Paulo Brazil
| | - Vitória B de Morais
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Saionara V Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Cátia C Corrêa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Beatriz Lodi
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil.,Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, São Paulo, Brazil
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil.,Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, São Paulo, Brazil
| | - Carlos C B Bufon
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil.,Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru17033-360 , São Paulo Brazil
| |
Collapse
|
30
|
Lay R, Deijs GS, Malmström J. The intrinsic piezoelectric properties of materials - a review with a focus on biological materials. RSC Adv 2021; 11:30657-30673. [PMID: 35498945 PMCID: PMC9041315 DOI: 10.1039/d1ra03557f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piezoelectricity, a linear electromechanical coupling, is of great interest due to its extensive applications including energy harvesters, biomedical, sensors, and automobiles. A growing amount of research has been done to investigate the energy harvesting potential of this phenomenon. Traditional piezoelectric inorganics show high piezoelectric outputs but are often brittle, inflexible and may contain toxic compounds such as lead. On the other hand, biological piezoelectric materials are biodegradable, biocompatible, abundant, low in toxicity and are easy to fabricate. Thus, they are useful for many applications such as tissue engineering, biomedical and energy harvesting. This paper attempts to explain the basis of piezoelectricity in biological and non-biological materials and research involved in those materials as well as applications and limitations of each type of piezoelectric material. Piezoelectricity, a linear electromechanical coupling, is of great interest due to its extensive applications including energy harvesters, biomedical, sensors, and automobiles.![]()
Collapse
Affiliation(s)
- Ratanak Lay
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Gerrit Sjoerd Deijs
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand.,Department of Chemistry, Faculty of Science, The University of Auckland Auckland New Zealand
| | - Jenny Malmström
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
31
|
Finny AS, Popoola O, Andreescu S. 3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2358. [PMID: 34578674 PMCID: PMC8471614 DOI: 10.3390/nano11092358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials obtained from sustainable and natural sources have seen tremendous growth in recent times due to increasing interest in utilizing readily and widely available resources. Nanocellulose materials extracted from renewable biomasses hold great promise for increasing the sustainability of conventional materials in various applications owing to their biocompatibility, mechanical properties, ease of functionalization, and high abundance. Nanocellulose can be used to reinforce mechanical strength, impart antimicrobial activity, provide lighter, biodegradable, and more robust materials for packaging, and produce photochromic and electrochromic devices. While the fabrication and properties of nanocellulose are generally well established, their implementation in novel products and applications requires surface modification, assembly, and manufacturability to enable rapid tooling and scalable production. Additive manufacturing techniques such as 3D printing can improve functionality and enhance the ability to customize products while reducing fabrication time and wastage of materials. This review article provides an overview of nanocellulose as a sustainable material, covering the different properties, preparation methods, printability and strategies to functionalize nanocellulose into 3D-printed constructs. The applications of 3D-printed nanocellulose composites in food, environmental, and energy devices are outlined, and an overview of challenges and opportunities is provided.
Collapse
Affiliation(s)
| | | | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA; (A.S.F.); (O.P.)
| |
Collapse
|
32
|
Research Progress on Durability of Cellulose Fiber-Reinforced Cement-Based Composites. INT J POLYM SCI 2021. [DOI: 10.1155/2021/1014531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The performance of cellulose fiber-reinforced cement-based composites (CFCCs) depends not only on the characteristics of the cement matrix and fibers but also on the bonding property of the matrix and fibers. The durability of cement-based composites including various properties such as impermeability, frost resistance, and carbonization resistance has an important impact on the long-term service life of the matrix structure. The presence of a large number of hydroxyl groups on the molecular chain of cellulose can promote the formation of intra- and intermolecular hydrogen bonds of cellulose. This special structure imparts the cellulose high hydrophilicity, which leads the cement hydration C-S-H gel to adhere to the surface of cellulosic fibers (CFs) and induce its growth. The cavity of CFs has good water absorption and can be used as an internal curing fiber for the continuous hydration of cement-based composites. But CFs in the Portland cement matrix tend to deteriorate under strong alkali conditions. This paper presents a review of the research on the durability of CFCCs. The methods and paths to improve the durability of CFCCs are summarized and analyzed from the perspectives of the internal curing of CFs, the deterioration of the performance of CFs in the matrix, and the use of many types of supplementary cementitious materials. Finally, the development and engineering application of CFCCs have been prospected.
Collapse
|
33
|
Sabrina Q, Ratri CR, Hardiansyah A, Lestariningsih T, Subhan A, Rifai A, Yudianti R, Uyama H. Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion battery applications. RSC Adv 2021; 11:22929-22936. [PMID: 35480471 PMCID: PMC9034343 DOI: 10.1039/d1ra03480d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022] Open
Abstract
A novel bacterial cellulose (BC)-based nanofiber material has been utilized as an ionic template for the battery system solid polymer electrolyte (SPE). The effect of drying techniques such as oven and freeze-drying on the gel-like material indicate differences in both visual and porous structures. The morphological structure of BC after oven and freeze-drying observed by field-emission scanning electron microscopy indicates that a more compact porous structure is found in freeze-dried BC than oven-dried BC. After the BC-based nanofiber immersion process into lithium hexafluorophosphate solution (1.0 M), the porous structure becomes a host for Li-ions, demonstrated by significant interactions between Li-ions from the salt and the C[double bond, length as m-dash]O groups of freeze-dried BC as shown in the infrared spectra. X-ray diffraction analysis of freeze-dried BC after immersion in electrolyte solution shows a lower degree of crystallinity, thus allowing an increase in Li-ion movement. As a result, freeze-dried BC has a better ionic conductivity of 2.71 × 10-2 S cm-1 than oven-dried BC, 6.00 × 10-3 S cm-1. Freeze-dried BC as SPE also shows a larger electrochemical stability window around 3.5 V, reversible oxidation/reduction peaks at 3.29/3.64 V, and an initial capacity of 18 mAHr g-1 at 0.2C. The high tensile strength of the freeze-dried BC membrane of 334 MPa with thermal stability up to 250 °C indicates the potential usage of freeze-dried BC as flexible SPE to dampen ionic leakage transfer.
Collapse
Affiliation(s)
- Qolby Sabrina
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Christin Rina Ratri
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Andri Hardiansyah
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Titik Lestariningsih
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Achmad Subhan
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Abdulloh Rifai
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Rike Yudianti
- Research Center for Physics, Indonesian Institute of Sciences Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan Banten 15314 Indonesia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
34
|
Babicka M, Woźniak M, Szentner K, Bartkowiak M, Peplińska B, Dwiecki K, Borysiak S, Ratajczak I. Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3264. [PMID: 34204804 PMCID: PMC8231636 DOI: 10.3390/ma14123264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023]
Abstract
Nanocellulose has gained increasing attention during the past decade, which is related to its unique properties and wide application. In this paper, nanocellulose samples were produced via hydrolysis with ionic liquids (1-ethyl-3-methylimidazole acetate (EmimOAc) and 1-allyl-3-methylimidazolium chloride (AmimCl)) from microcrystalline celluloses (Avicel and Whatman) subjected to enzymatic pretreatment. The obtained material was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and thermogravimetric analysis (TG). The results showed that the nanocellulose had a regular and spherical structure with diameters of 30-40 nm and exhibited lower crystallinity and thermal stability than the material obtained after hydrolysis with Trichoderma reesei enzymes. However, the enzyme-pretreated Avicel had a particle size of about 200 nm and a cellulose II structure. A two-step process involving enzyme pretreatment and hydrolysis with ionic liquids resulted in the production of nanocellulose. Moreover, the particle size of nanocellulose and its structure depend on the ionic liquid used.
Collapse
Affiliation(s)
- Marta Babicka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.B.); (M.W.); (K.S.)
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.B.); (M.W.); (K.S.)
| | - Kinga Szentner
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.B.); (M.W.); (K.S.)
| | - Monika Bartkowiak
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60627 Poznań, Poland;
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61614 Poznań, Poland;
| | - Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Mazowiecka 48, 60623 Poznań, Poland;
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznań, Poland;
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.B.); (M.W.); (K.S.)
| |
Collapse
|
35
|
Yazdi MK, Seidi F, Jin Y, Zarrintaj P, Xiao H, Esmaeili A, Habibzadeh S, Saeb MR. Crystallization of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Hartmann F, Baumgartner M, Kaltenbrunner M. Becoming Sustainable, The New Frontier in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004413. [PMID: 33336520 PMCID: PMC11468029 DOI: 10.1002/adma.202004413] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Indexed: 06/12/2023]
Abstract
The advancement of technology has a profound and far-reaching impact on the society, now penetrating all areas of life. From cradle to grave, one is supported by and depends on a wide range of electronic and robotic appliances, with an ever more intimate integration of the digital and biological spheres. These advances, however, often come at the price of negatively impacting our ecosystem, with growing demands on energy, contributions to greenhouse gas emissions and environmental pollution-from production to improper disposal. Mitigating these adverse effects is among the grand challenges of the society and at the forefront of materials research. The currently emerging forms of soft, biologically inspired electronics and robotics have the unique potential of becoming not only like their natural antitypes in performance and capabilities, but also in terms of their ecological footprint. This review outlines the rise of sustainable materials in soft and bioinspired robotics, targeting all robotic components from actuators to energy storage and electronics. The state-of-the-art in biobased robotics spans flourishing fields and applications ranging from microbots operating in vivo to biohybrid machines and fully biodegradable yet resilient actuators. These first steps initiate the evolution of robotics and guide them into a sustainable future.
Collapse
Affiliation(s)
- Florian Hartmann
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| | - Melanie Baumgartner
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
- Institute of Polymer ScienceJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| | - Martin Kaltenbrunner
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| |
Collapse
|
37
|
Camani PH, Gonçalo MGM, Barbosa RFS, Rosa DS. Comprehensive insight of crosslinking agent concentration influence on starch‐based aerogels porous structure. J Appl Polym Sci 2021. [DOI: 10.1002/app.50863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paulo H. Camani
- Center for Engineering, Modeling and Applied Social Sciences (CECS) Federal University of ABC (UFABC) Santo André São Paulo Brazil
| | - Maria G. M. Gonçalo
- Center for Engineering, Modeling and Applied Social Sciences (CECS) Federal University of ABC (UFABC) Santo André São Paulo Brazil
| | - Rennan F. S. Barbosa
- Center for Engineering, Modeling and Applied Social Sciences (CECS) Federal University of ABC (UFABC) Santo André São Paulo Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling and Applied Social Sciences (CECS) Federal University of ABC (UFABC) Santo André São Paulo Brazil
| |
Collapse
|
38
|
Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS NANO 2021; 15:3849-3874. [PMID: 33710860 DOI: 10.1021/acsnano.0c09678] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Naturally derived nanocellulose (NC) is a renewable, biodegradable nanomaterial with high strength, low density, high surface area, and tunable surface chemistry, which allows its interaction with other polymers and nanomaterials in a controlled manner. In recent years, NC aerogel has gathered a lot of attention due to environmental concerns. This review presents recent developments of NC-based aerogels and their controlled interactions with other polymers and nanomaterials for thermal applications that include electronic devices, the apparel industry, superinsulating materials, and flame-retardant smart building materials. After going through the distinctive properties of NC aerogels, they are orderly categorized and discussed as thermally insulated, thermally conductive, and flame-retardant materials.
Collapse
Affiliation(s)
- Sandeep Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Pradyumn Paliwal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Aditya Subhedar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
39
|
Ee LY, Yau Li SF. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. NANOSCALE ADVANCES 2021; 3:1167-1208. [PMID: 36132876 PMCID: PMC9418582 DOI: 10.1039/d0na00408a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/26/2020] [Indexed: 05/08/2023]
Abstract
Emerging cellulose nanomaterials extracted from agricultural biomasses have recently received extensive attention due to diminishing fossil resources. To further reduce the carbon footprints and wastage of valuable resources, additive manufacturing techniques of new nanocellulosic materials have been developed. Studies on the preparation and characterization of 3D-printable functional nanocellulosic materials have facilitated a deeper understanding into their desirable attributes such as high surface area, biocompatibility, and ease of functionalization. In this critical review, we compare and highlight the different methods of extracting nanocellulose from biorenewable resources and the strategies for transforming the obtained nanocellulose into nanocomposites with high 3D printability. Optimistic technical applications of 3D-printed nanocellulose in biomedical, electronics, and environmental fields are finally described and evaluated for future perspectives.
Collapse
Affiliation(s)
- Liang Ying Ee
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| |
Collapse
|
40
|
Peng N, Huang D, Gong C, Wang Y, Zhou J, Chang C. Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. ACS NANO 2020; 14:16169-16179. [PMID: 33314921 DOI: 10.1021/acsnano.0c08906] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanocellulose, the most abundant crystalline polysaccharide nanomaterial on Earth, has been widely used for the reinforcement of polymeric materials owing to its high elastic modulus, low density, high aspect ratio, biocompatibility, and biodegradability. In this Perspective, we offer a brief overview of recent progress in the controllable arrangement of nanocellulose in polymeric matrices, including highly oriented structure, helical structure, and gradient structure. We then discuss the current nanotechnologies that enable the arrangement of nanocellulose in nanocomposite materials. Finally, we describe future opportunities, challenges, and research directions in this active research area.
Collapse
Affiliation(s)
- Na Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Da Huang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chen Gong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
41
|
Nyamayaro K, Keyvani P, D'Acierno F, Poisson J, Hudson ZM, Michal CA, Madden JDW, Hatzikiriakos SG, Mehrkhodavandi P. Toward Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystal-Agarose Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52182-52191. [PMID: 33166106 DOI: 10.1021/acsami.0c15601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioderived cellulose nanocrystals (CNCs) are used to create light, flexible, biocompatible, and biodegradable electronic devices. Herein, surface modification of cellulose nanocrystals was employed to fabricate cationic and anionic CNCs. Subsequently, we demonstrated rectification behavior from a fixed junction between two agarose hydrogels doped with cationic and anionic cellulose nanocrystals. The current rectification ratio reaches 70 reproducibly, which is significantly higher than that for analogous diodes generated with microfibrillated cellulose (∼15) and the first polyelectrolyte gel diode (∼40). The current-voltage characteristics of the CNC-hydrogel diode are influenced by concentration, gel thickness, scanning frequency, and applied voltage. The high surface area of CNC resulted in high charge density after surface modification, which in turn resulted in good rectification behavior from only small amounts of dopant material.
Collapse
|
42
|
Trache D, Thakur VK, Boukherroub R. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1523. [PMID: 32759691 PMCID: PMC7466521 DOI: 10.3390/nano10081523] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
With the growth of global fossil-based resource consumption and the environmental concern, there is an urgent need to develop sustainable and environmentally friendly materials, which exhibit promising properties and could maintain an acceptable level of performance to substitute the petroleum-based ones. As elite nanomaterials, cellulose nanocrystals (CNC) derived from natural renewable resources, exhibit excellent physicochemical properties, biodegradability and biocompatibility and have attracted tremendous interest nowadays. Their combination with other nanomaterials such as graphene-based materials (GNM) has been revealed to be useful and generated new hybrid materials with fascinating physicochemical characteristics and performances. In this context, the review presented herein describes the quickly growing field of a new emerging generation of CNC/GNM hybrids, with a focus on strategies for their preparation and most relevant achievements. These hybrids showed great promise in a wide range of applications such as separation, energy storage, electronic, optic, biomedical, catalysis and food packaging. Some basic concepts and general background on the preparation of CNC and GNM as well as their key features are provided ahead.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520—IEMN, F-59000 Lille, France;
| |
Collapse
|
43
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|