1
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Jiang E, Blonde GD, Garcea M, Spector AC. ENaC-Dependent Sodium Chloride Taste Responses in the Regenerated Rat Chorda Tympani Nerve After Lingual Gustatory Deafferentation Depend on the Taste Bud Field Reinnervated. Chem Senses 2020; 45:249-259. [PMID: 32154568 DOI: 10.1093/chemse/bjaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chorda tympani (CT) nerve is exceptionally responsive to NaCl. Amiloride, an epithelial Na+ channel (ENaC) blocker, consistently and significantly decreases the NaCl responsiveness of the CT but not the glossopharyngeal (GL) nerve in the rat. Here, we examined whether amiloride would suppress the NaCl responsiveness of the CT when it cross-reinnervated the posterior tongue (PT). Whole-nerve electrophysiological recording was performed to investigate the response properties of the intact (CTsham), regenerated (CTr), and cross-regenerated (CT-PT) CT in male rats to NaCl mixed with and without amiloride and common taste stimuli. The intact (GLsham) and regenerated (GLr) GL were also examined. The CT responses of the CT-PT group did not differ from those of the GLr and GLsham groups, but did differ from those of the CTr and CTsham groups for some stimuli. Importantly, the responsiveness of the cross-regenerated CT to a series of NaCl concentrations was not suppressed by amiloride treatment, which significantly decreased the response to NaCl in the CTr and CTsham groups and had no effect in the GLr and GLsham groups. This suggests that the cross-regenerated CT adopts the taste response properties of the GL as opposed to those of the regenerated CT or intact CT. This work replicates the 5 decade-old findings of Oakley and importantly extends them by providing compelling evidence that the presence of functional ENaCs, essential for sodium taste recognition in regenerated taste receptor cells, depends on the reinnervated lingual region and not on the reinnervating gustatory nerve, at least in the rat.
Collapse
Affiliation(s)
- Enshe Jiang
- Institutes of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University, Kaifeng, China.,Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ginger D Blonde
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mircea Garcea
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Alan C Spector
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
3
|
Omelian JM, Berry MJ, Gomez AM, Apa KL, Sollars SI. Developmental time course of peripheral cross-modal sensory interaction of the trigeminal and gustatory systems. Dev Neurobiol 2015; 76:626-41. [PMID: 26361891 DOI: 10.1002/dneu.22349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/11/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
Few sensory modalities appear to engage in cross-modal interactions within the peripheral nervous system, making the integrated relationship between the peripheral gustatory and trigeminal systems an ideal model for investigating cross-sensory support. The present study examined taste system anatomy following unilateral transection of the trigeminal lingual nerve (LX) while leaving the gustatory chorda tympani intact. At 10, 25, or 65 days of age, rats underwent LX with outcomes assessed following various survival times. Fungiform papillae were classified by morphological feature using surface analysis. Taste bud volumes were calculated from histological sections of the anterior tongue. Differences in papillae morphology were evident by 2 days post-transection of P10 rats and by 8 days post in P25 rats. When transected at P65, animals never exhibited statistically significant morphological changes. After LX at P10, fewer taste buds were present on the transected side following 16 and 24 days survival time and remaining taste buds were smaller than on the intact side. In P25 and P65 animals, taste bud volumes were reduced on the denervated side by 8 and 16 days postsurgery, respectively. By 50 days post-transection, taste buds of P10 animals had not recovered in size; however, all observed changes in papillae morphology and taste buds subsided in P25 and P65 rats. Results indicate that LX impacts taste receptor cells and alters epithelial morphology of fungiform papillae, particularly during early development. These findings highlight dual roles for the lingual nerve in the maintenance of both gustatory and non-gustatory tissues on the anterior tongue.
Collapse
Affiliation(s)
- Jacquelyn M Omelian
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Marissa J Berry
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Adam M Gomez
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Kristi L Apa
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
4
|
Meng L, Jiang X, Ji R. Role of neurotrophin in the taste system following gustatory nerve injury. Metab Brain Dis 2015; 30:605-13. [PMID: 25381474 DOI: 10.1007/s11011-014-9626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Taste system is a perfect system to study degeneration and regeneration after nerve injury because the taste system is highly plastic and the regeneration is robust. Besides, degeneration and regeneration can be easily measured since taste buds arise in discrete locations, and nerves that innervate them can be accurately quantified. Neurotrophins are a family of proteins that regulate neural survival, function, and plasticity after nerve injury. Recent studies have shown that neurotrophins play an important role in the developmental and mature taste system, indicating neurtrophin might also regulate taste system following gustatory nerve injury. This review will summarize how taste system degenerates and regenerates after gustatory nerve cut and conclude potential roles of neurotrophin in regulating the process.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
5
|
|
6
|
King CT, Garcea M, Spector AC. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats. J Comp Neurol 2014; 522:2498-517. [PMID: 24477770 PMCID: PMC4157664 DOI: 10.1002/cne.23546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/12/2022]
Abstract
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation.
Collapse
Affiliation(s)
| | - Mircea Garcea
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee FL 32306
| |
Collapse
|
7
|
King CT, Garcea M, Stolzenberg DS, Spector AC. Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation. Am J Physiol Regul Integr Comp Physiol 2008; 294:R738-47. [PMID: 18184761 DOI: 10.1152/ajpregu.00668.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies examining the effects of transection and regeneration of the glossopharyngeal (GL) and chorda tympani (CT) nerves on various taste-elicited behaviors in rats have demonstrated that the GL (but not the CT) nerve is essential for the maintenance of both an unconditioned protective reflex (gaping) and the neural activity observed in central gustatory structures in response to lingual application of a bitter substance. An unresolved issue, however, is whether recovery depends more on the taste nerve and the central circuits that it supplies and/or on the tongue receptor cell field being innervated. To address this question, we experimentally cross-wired these taste nerves, which, remarkably, can regenerate into parts of the tongue they normally do not innervate. We report that quinine-stimulated gaping behavior was fully restored, and neuronal activity, as assessed by Fos immunohistochemistry in the nucleus of the solitary tract and the parabrachial nucleus, was partially restored only if the posterior tongue (PT) taste receptor cell field was reinnervated; the particular taste nerve supplying the input was inconsequential to the recovery of function. Thus, PT taste receptor cells appear to play a privileged role in triggering unconditioned gaping to bitter tasting stimuli, regardless of which lingual gustatory nerve innervates them. Our findings demonstrate that even when a lingual gustatory nerve (the CT) forms connections with taste cells in a non-native receptor field (the PT), unconditioned taste rejection reflexes to quinine can be maintained. These findings underscore the extraordinary ability of the gustatory system to adapt to peripherally reorganized input for particular behaviors.
Collapse
Affiliation(s)
- Camille T King
- Department of Psychology, Stetson University, 421 North Woodland Blvd., Unit 8281, DeLand, FL 32723 USA.
| | | | | | | |
Collapse
|
8
|
Guagliardo NA, Hill DL. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection. J Comp Neurol 2007; 504:206-16. [PMID: 17626272 PMCID: PMC2811721 DOI: 10.1002/cne.21436] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used.
Collapse
Affiliation(s)
- Nick A Guagliardo
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400, USA
| | | |
Collapse
|
9
|
Ganchrow D, Ganchrow J, Witt M, Arki-Burstyn E. The effect of β-bungarotoxin, or geniculate ganglion lesion on taste bud development in the chick embryo. Histochem Cell Biol 2006; 126:419-35. [PMID: 16604348 DOI: 10.1007/s00418-006-0177-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2006] [Indexed: 11/29/2022]
Abstract
Chick taste bud (gemmal) primordia normally appear on embryonic day (E) 16 and incipient immature, spherical-shaped buds at E17. In ovo injection of beta-bungarotoxin at E12 resulted in a complete absence of taste buds in lower beak and palatal epithelium at developmental ages E17 and E21. However, putative gemmal primordia (solitary clear cells; small, cell groupings) remained, lying adjacent to salivary gland duct openings as seen in normal chick gemmal development. Oral epithelium was immunonegative to neural cell adhesion molecule (NCAM) suggesting gemmal primordia are nerve-independent. Some NCAM immunoreactivity was evident in autonomic ganglion-like cells and nerve fibers in connective tissue. After unilateral geniculate ganglion/otocyst excision on E2.5, at developmental ages E18 and posthatching day 1, approximately 12% of surviving ipsilateral geniculate ganglion cells sustained approximately 54% of the unoperated gemmal counts. After E18, proportional stages of differentiation in surviving developing buds probably reflect their degree of innervation, as well as rate of differentiation. Irrespective of the degree of geniculate ganglion damage, the proportion of surviving buds can be sustained at the same differentiated bud stage as on the unoperated side, or may differentiate to a later bud stage, consistent with the thesis that bud maturation, maintenance, and survival are nerve-dependent.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Ramat Aviv, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
10
|
Oakley B, Witt M. Building sensory receptors on the tongue. ACTA ACUST UNITED AC 2005; 33:631-46. [PMID: 16217619 DOI: 10.1007/s11068-005-3332-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 04/05/2005] [Indexed: 12/01/2022]
Abstract
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds--the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.
Collapse
Affiliation(s)
- Bruce Oakley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
11
|
Sollars SI. Chorda tympani nerve transection at different developmental ages produces differential effects on taste bud volume and papillae morphology in the rat. ACTA ACUST UNITED AC 2005; 64:310-20. [PMID: 15898061 PMCID: PMC4965235 DOI: 10.1002/neu.20140] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chorda tympani nerve transection (CTX) results in morphological changes to fungiform papillae and associated taste buds. When transection occurs during neonatal development in the rat, the effects on fungiform taste bud and papillae structure are markedly more severe than observed following a comparable surgery in the adult rat. The present study examined the potential "sensitive period" for morphological modifications to tongue epithelium following CTX. Rats received unilateral transection at 65, 30, 25, 20, 15, 10, or 5 days of age. With each descending age at the time of transection, the effects on the structural integrity of fungiform papillae were more severe. Significant losses in total number of taste buds and filiform-like papillae were observed when transection occurred 5-30 days of age. Significant reduction in the number of taste pores was indicated at every age of transection. Another group of rats received chorda tympani transection at 10, 25, or 65 days of age to determine if the time course of taste bud degeneration differed depending on the age of the rat at the time of transection. Taste bud volumes differed significantly from intact sides of the tongue at 2, 8, and 50 days post-transection after CTX at 65 days of age. Volume measurements did not differ 2 days post-transection after CTX at 10 or 25 days of age, but were significantly reduced at the other time points. Findings demonstrate a transitional period throughout development wherein fungiform papillae are highly dependent upon the chorda tympani for maintenance of morphological integrity.
Collapse
Affiliation(s)
- Suzanne I Sollars
- Department of Psychology, 418 Allwine Hall, University of Nebraska Omaha, Omaha, Nebraska 68182, USA.
| |
Collapse
|
12
|
Spector AC. The functional organization of the peripheral gustatory system: Lessons from behavior. PROGRESS IN PSYCHOBIOLOGY AND PHYSIOLOGICAL PSYCHOLOGY 2005. [DOI: 10.1016/s0363-0951(03)80008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Fan L, Girnius S, Oakley B. Support of trigeminal sensory neurons by nonneuronal p75 neurotrophin receptors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:23-39. [PMID: 15126035 DOI: 10.1016/j.devbrainres.2004.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 01/06/2023]
Abstract
The p75 neurotrophin receptor (p75NTR) binds all four mammalian neurotrophins, including neurotrophin-3 (NT-3) required for the development of select sensory neurons. This study demonstrated that many gustatory and somatosensory neurons of the tongue depend upon p75NTR. Each of thousands of filiform papillae at the front of the tongue as well as each somatosensory prominence at the back of the tongue has a small cluster of p75NTR-positive epithelial cells that is targeted by somatosensory innervation. This expression of p75NTR by epithelial target cells required NT-3 but not adult innervation. NT-3-secreting cells were adjacent to the p75NTR-positive target cells of each somatosensory organ, as demonstrated in NT-3(lacZneo) transgenic mice. In NT-3 null mutant mice, there were few lingual somatosensory neurons. In p75NTR null mutant mice, the lingual somatosensory axons were likewise absent or had deficient terminal arborizations. Cell culture indicated that substrate p75NTR can influence neuronal outgrowth. Specifically, dissociated trigeminal sensory neurons more than doubled their neurite lengths when grown on a lawn of p75NTR-overexpressing fibroblasts. This enhancement of neurite outgrowth by fibroblast p75NTR raises the possibility that epithelial target cell p75NTR may help to promote axonal arborization in vivo. The co-occurrence in p75NTR null mice of a 35% reduction in geniculate ganglion taste neurons and a shortfall of taste buds is consistent with the established role of gustatory innervation in prompting mammalian taste receptor cell differentiation.
Collapse
Affiliation(s)
- Lixin Fan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 3124 Natural Science Building, 830 N. University Ave., Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
14
|
Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. J Comp Neurol 2003; 455:25-39. [PMID: 12454994 DOI: 10.1002/cne.2164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unlike lingual taste buds in most mammals, fungiform buds on the anterior tongue of mature hamster survive sensory denervation. The role of the neurotrophin ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, in denervated taste buds is not known. The present report investigates changes in the degree of gemmal cell immunoreactivity (IR) (i.e., number of immunoreactive cells/bud profile) and density of nerve fiber-IR of these markers in unilaterally denervated mature hamsters. The fungiform bud field after chorda tympani/lingual nerve resection is compared with the nerve-dependent, posterior tongue foliate and circumvallate bud fields after glossopharyngeal nerve resection. Four weeks post lesion, the number of denervated fungiform buds matched that on the unoperated side, whereas denervated foliate and circumvallate bud counts decreased by 72% and 38%, respectively. In taste buds that survived on the posterior tongue, the degree of foliate bud cell BDNF-, NT-3-, and TrkB-like IR, and circumvallate bud cell BDNF- and NT-3-like IR, significantly decreased compared with the unoperated side. In contrast, for anterior tongue fungiform bud cells, the degree of neurotrophin- and receptor-like IR was relatively less affected: NT-3- and TrkB-like IR were unchanged; BDNF-like IR, although significantly decreased, was also maintained. Moreover, TrkB-like fiber IR was essentially eliminated within and surrounding fungiform buds. Hence, NT-3-, BDNF-, and TrkB-like IR in fungiform gemmal cells may reflect an autocrine capacity promoting survival. Because TrkC-like IR in bud cells is absent (i.e., immunonegative), and sparse in fibers intragemmally and perigemmally, NT-3 may also bind to bud cell TrkB so as to sustain fungiform gemmal cell viability post denervation.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
15
|
Sollars SI, Smith PC, Hill DL. Time course of morphological alterations of fungiform papillae and taste buds following chorda tympani transection in neonatal rats. JOURNAL OF NEUROBIOLOGY 2002; 51:223-36. [PMID: 11984844 PMCID: PMC4965232 DOI: 10.1002/neu.10055] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The time course of structural changes in fungiform papillae was analyzed in rats that received unilateral chorda tympani nerve transection at 10 days of age. Morphological differences between intact and denervated sides of the tongue were first observed at 8 days postsection, with an increase in the number of fungiform papillae that did not have a pore. In addition, the first papilla with a filiform-like appearance was noted on the denervated side at 8 days postsectioning. By 11 days after surgery, the total number of papillae and the number of papillae with a pore were significantly lower on the transected side of the tongue as compared to the intact side. At 50 days postsection, there was an average of 70.5 fungiform papillae on the intact side and a mean of only 20.8 fungiform papillae the denervated side. Of those few remaining papillae on the cut side, an average of 13.5 papillae were categorized as filiform-like, while no filiform-like papillae occurred on the intact side. Significant reduction in taste bud volume was noted at 4 days posttransection and further decrements in taste bud volume were noted at 8 and 30 days postsection. Electron microscopy of the lingual branch of the trigeminal nerve from adult rats that received neonatal chorda tympani transection showed normal numbers of both myelinated and unmyelinated fibers. Thus, in addition to the well-characterized dependence of taste bud maintenance on the chorda tympani nerve, the present study shows an additional role of the chorda tympani nerve in papilla maintenance during early postnatal development.
Collapse
Affiliation(s)
- Suzanne I Sollars
- 418 Allwine Hall, University of Nebraska, Omaha, Nebraska 68182, USA.
| | | | | |
Collapse
|
16
|
Sun H, Oakley B. Development of anterior gustatory epithelia in the palate and tongue requires epidermal growth factor receptor. Dev Biol 2002; 242:31-43. [PMID: 11795938 DOI: 10.1006/dbio.2001.0526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterized the gustatory phenotypes of neonatal mice having null mutations for epidermal growth factor receptor (egfr(-/-)), brain-derived neurotrophic factor (bdnf(-/-)), or both. We counted the number and diameter of fungiform taste buds, the prevalence of poorly differentiated or missing taste cells, and the incidence of ectopic filiform-like spines, each as a function of postnatal age and anterior/posterior location. Egfr(-/-) mice and bdnf(-/-) mice had similar reductions in the total number of taste buds on the anterior portions of the tongue and palate. Nonetheless, there were significant differences in their gustatory phenotypes. EGFR deficiency selectively impaired the development of anterior gustatory epithelia in the mouth. Only bdnf(-/-) mice had numerous taste buds missing from the foliate, vallate, and posterior fungiform papillae. Only egfr(-/-) fungiform taste papillae had robust gustatory innervation, markedly reduced cytokeratin 8 expression in taste cells, and a high incidence of a filiform-like spine. Egfr/bdnf double-null mutant mice had a higher frequency of failed fungiform taste bud differentiation. In bdnf(-/-) mice taste cell development failed because of sparse gustatory innervation. In contrast, in young egfr(-/-) mice the abundance of axons innervating fungiform papillae and the normal numbers of geniculate ganglion neurons implicate gustatory epithelial defects rather than neural defects.
Collapse
Affiliation(s)
- Hanshi Sun
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3127 Natural Science Building, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
17
|
Glossopharyngeal nerve regeneration is essential for the complete recovery of quinine-stimulated oromotor rejection behaviors and central patterns of neuronal activity in the nucleus of the solitary tract in the rat. J Neurosci 2001. [PMID: 11069950 DOI: 10.1523/jneurosci.20-22-08426.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The peripheral, central, and behavioral consequences of glossopharyngeal nerve transection (GLX), regeneration, and the prevention of regeneration on the quinine-elicited responses of adult rats were concurrently examined. Oromotor taste reactivity (TR) was videotaped during intraoral infusion of 7 ml of either quinine (3 mm) or distilled water at 17, 52, or 94 d after surgery. We confirmed previous findings by showing that 17 d after neurotomy, (1) the number of circumvallate (CV) and foliate taste buds, (2) gapes (a characteristic aversive TR response), and (3) the number of Fos-like immunoreactive (FLI) neurons in the gustatory NST (gNST), particularly in the medial portion (subfield 5) of the rostral central subdivision (RC), were all severely attenuated in GLX rats. We extended these findings by showing that these lesion-induced effects were enduring when the GL did not regenerate (up to 94 d). In contrast, when the GL regenerated, as few as 52 d were sufficient to re-establish quinine-elicited TR, especially gaping, and FLI expression in RC, particularly within subfield 5, to values comparable with quinine-stimulated sham-operated rats. Evidently, the gNST maintains its potential to restore accurately the organization of neural activity that is disrupted by nerve injury, as assessed by FLI, ultimately leading to the return of normal protective oromotor responses, provided the nerve regenerates. This recovery was complete despite the reappearance of a reduced population of CV taste buds ( approximately 75% control values) and may relate to peripheral and/or central changes that occur in tandem with regeneration of the GL.
Collapse
|
18
|
Kopka SL, Spector AC. Functional recovery of taste sensitivity to sodium chloride depends on regeneration of the chorda tympani nerve after transection in the rat. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.5.1073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Keskil S, Çalgüner E, Gözil R. Morphological Investigation of Nucleus Tractus Solitarius Somatotopy. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Semih Keskil
- Department of Neurosurgery, Fatih University Medical School
| | - Engin Çalgüner
- Department of Anatomy, Gazi University School of Medicine
| | - Rabet Gözil
- Department of Anatomy, Gazi University School of Medicine
| |
Collapse
|
20
|
Sollars SI, Bernstein IL. Neonatal chorda tympani transection permanently disrupts fungiform taste bud and papilla structure in the rat. Physiol Behav 2000; 69:439-44. [PMID: 10913782 DOI: 10.1016/s0031-9384(99)00259-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present report examined the morphology of fungiform papillae in adult rats that received bilateral chorda tympani transection at 10 days of age. Tongue tissue was examined using surface-structure analysis. Counts were made of fungiform papillae with a pore, fungiform papillae with no pore and fungiform papillae with a keratinized conical surface; a feature referred to as "filiform-like. " Neonatal chorda tympani nerve transection resulted not only in a loss of taste buds but also in a permanent loss in numbers of fungiform papillae. Compared with an average of 152 fungiform papillae in sham-operated control rats, there was an average of only 54 fungiform papillae after neonatal chorda tympani transection. Nearly 80% of these fungiform papillae in neonatal chorda tympani transected rats were filiform-like. No filiform-like papillae were noted in sham-operated rats. These results suggest that the chorda tympani nerve is necessary during an early postnatal period of development to maintain normal fungiform papillae morphology.
Collapse
Affiliation(s)
- S I Sollars
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA 22904-4400, USA.
| | | |
Collapse
|
21
|
Abstract
Maintenance of constant relations between receptor cell types and branching from a single gustatory nerve fiber during normal cell turnover and regeneration requires cell-cell recognition likely mediated by timed expression of molecules at surfaces of taste bud cells, nerve endings, and in extracellular matrix. These processes assure stability of gustatory quality representation during intragemmal remodeling. Coincidentally, features of gemmal cell lifespan, including elongation, differentiation, and migration prior to apoptosis, must also be orchestrated by molecular signals. This article reviews the potential roles played by a variety of molecular markers for some relevant classes of proteins, peptides, and enzymes, which were presumed to be important for carrying out these gustatory cellular functions.
Collapse
Affiliation(s)
- J R Ganchrow
- Department of Oral Biology, The Hebrew University-Hadassah Faculty of Dental Medicine Founded by the Alpha Omega Fraternity, Jerusalem, Israel.
| |
Collapse
|
22
|
Kopka SL, Geran LC, Spector AC. Functional status of the regenerated chorda tympani nerve as assessed in a salt taste discrimination task. Am J Physiol Regul Integr Comp Physiol 2000; 278:R720-31. [PMID: 10712294 DOI: 10.1152/ajpregu.2000.278.3.r720] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether the recovered ability of rats to discriminate NaCl from KCl after chorda tympani nerve transection (CTX) is causally linked to nerve regeneration or some other compensatory process. Rats were presurgically trained in an operant NaCl vs. KCl discrimination task. Rats with regenerated nerves, histologically confirmed by anterior tongue taste pore counts and tested 62 days after CTX (CTX-62R; n = 5), performed as well as those tested 62 days after sham surgery (Sham-62; n = 5), but both of these groups initially performed slightly worse than animals tested 7 days after sham surgery (Sham-7; n = 4). Performance of rats tested either 7 (CTX-7P; n = 5) or 62 (CTX-62P; n = 4) days after CTX in which nerve regeneration was prevented was severely disrupted. Adulteration of the stimuli with amiloride, an epithelial sodium channel blocker, impaired discrimination performance in a similar dose-dependent manner in the Sham-7 (n = 2), Sham-62 (n = 5), and CTX-62R (n = 5) groups, suggesting that the functional status of the amiloride-sensitive transduction pathway returns to normal in rats with regenerated chorda tympani nerves. Performance of CTX rats without regenerated nerves (CTX-7P, n = 2; CTX-62P, n = 4) was further degraded by amiloride treatment, suggesting that taste receptors innervated by other nerves are sensitive to amiloride. In conclusion, nerve regeneration is an essential component underlying full recovery of salt discrimination function after CTX.
Collapse
Affiliation(s)
- S L Kopka
- University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
23
|
Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999. [PMID: 10191326 DOI: 10.1523/jneurosci.19-08-03107.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationship between specific gustatory nerve activity and central patterns of taste-evoked neuronal activation is poorly understood. To address this issue within the first central synaptic relay in the gustatory system, we examined the distribution of neurons in the nucleus of the solitary tract (NST) activated by the intraoral infusion of quinine using Fos immunohistochemistry in rats with bilateral transection of the chorda tympani (CTX), bilateral transection of the glossopharyngeal nerve (GLX), or combined neurotomy (DBLX). Compared with nonstimulated and water-stimulated controls, quinine evoked significantly more Fos-like-immunoreactive (FLI) neurons across the rostrocaudal extent of the gustatory NST (gNST), especially within its dorsomedial portion (subfield 5). Although the somatosensory aspects of fluid stimulation contributed to the observed increase in FLI neurons, the elevated number and spatial distribution of FLI neurons in response to quinine were remarkably distinguishable from those in response to water. GLX and DBLX produced a dramatic attenuation of quinine-evoked FLI neurons and a shift in their spatial distribution such that their number and pattern were indiscernable from those observed in water-stimulated controls. Although CTX had no effect on the number of quinine-evoked FLI neurons within subfield 5 at intermediate levels of the gNST, it produced intermediate effects elsewhere; yet, the spatial distribution of the quinine-evoked FLI neurons was not altered by CTX. These findings suggest that the GL provides input to all FLI neurons responsive to quinine, however, some degree of convergence with CT input apparently occurs in this subpopulation of neurons. Although the role of these FLI neurons in taste-guided behavioral responses to quinine remains speculative, their possible function in oromotor reflex control is considered.
Collapse
|
24
|
Abstract
The embryonic loss of brain-derived neurotropic factor (BDNF)-dependent taste axons in bdnf null mutant mice secondary impairs the development of gustatory epithelia and taste buds. In normal mice gustatory development continues for at least two weeks postnatally as axons promote taste bud formation. We conclude that taste axons in the fungiform, foliate, vallate and nasopalate papillae: i) promote papilla development, and ii) establish competent gustatory cells and iii) mature taste buds. Hence, gustatory innervation contributes critically to at least three of the multiple inductive interactions controlling the development of mammalian gustatory structures.
Collapse
Affiliation(s)
- B Oakley
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| |
Collapse
|
25
|
Behavioral discrimination between quinine and KCl is dependent on input from the seventh cranial nerve: implications for the functional roles of the gustatory nerves in rats. J Neurosci 1998. [PMID: 9592112 DOI: 10.1523/jneurosci.18-11-04353.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rat glossopharyngeal nerve (GL), which innervates posterior tongue taste buds, contains several physiologically defined taste fiber types; at least one type is primarily responsive to certain alkaloids (such as quinine), and another is primarily responsive to acids and salts. In contrast, the chorda tympani (CT), which innervates anterior tongue taste buds, does not appear to contain fibers that differentially respond to quinine relative to salts and acids. It was therefore predicted that GL transection should disrupt behavioral discriminations between quinine and either acids or salts. Water-restricted rats were trained to press one of two levers if a sampled taste stimulus was quinine (0.1-1.0 mM) and the second lever if the sampled stimulus was KCl (0.1-1.0 M). Sham surgery, GL transection, and sublingual and submaxillary salivary gland extirpation were found to have no effect relative to presurgical performance. Both CT transection and combined GL and CT transection caused a substantial and approximately equal decrement in discrimination performance. Removal of the gustatory branches of the seventh cranial nerve [CT and greater superficial petrosal (GSP)] nearly eliminated the discrimination of the taste stimuli, and combined transection of the CT, GL, and GSP unequivocally reduced performance to chance levels. Although these findings were not presaged by the known electrophysiology, they nonetheless compare favorably with other studies reporting little effect of GL transection on behavioral responses to quinine. These results, in the context of other discrimination studies reported in the literature, suggest that, in rats, the neural coding of taste quality depends primarily on the input of the facial nerve.
Collapse
|
26
|
Abstract
The goals of this study were to characterize the responses of: (1) thermally-sensitive fibers of the lingual branch of the trigeminal nerve to cooling from 35 degrees to 10 degrees C at a rate of 1 degrees C/s; and (2) these neurons to a mid-range concentration of NaCl (150 mM), glucose (150 mM), citric acid (0.3 mM), and quinine-HCl (3 mM) at 35 degrees and 25 degrees C. A cluster analysis of 47 neurons' responses to cooling revealed two major groups and one minor group. Group 1 neurons (n=19) had a shorter latency, exhibited faster time-to-peak activity, and responded over a smaller range of temperature compared to Group 2 neurons (n=22). Group 3 neurons (n=6) exhibited the longest response latency and responded over a wider cooler range of temperature. Twenty-five out of thirty-one thermally-sensitive, non-tactile lingual neurons responded weakly to at least one chemical stimulus, with some neurons responding to 2, 3, or all 4 chemical stimuli. Group 1 neurons responded to more chemical stimuli at 35 degrees C, while Group 2 neurons responded more at 25 degrees C. Under their optimal temperature conditions, Group 1 and Group 2 neurons responded most often to citric acid and least often to glucose, with NaCl and Q-HCl eliciting an intermediate number of responses. As a whole, the responses of thermally-sensitive fibers to chemical stimulation were modest at best with an absence of chemical specificity. There was no evidence of a 'best' stimulus, although there was a suggestion of temporal coding.
Collapse
Affiliation(s)
- D W Pittman
- The Florida State University, Department of Psychology, Tallahassee, FL 32306-1270, USA
| | | |
Collapse
|
27
|
Whitehead MC, Ganchrow JR, Ganchrow D, Yao B. Neural cell adhesion molecule, neuron-specific enolase and calcitonin gene-related peptide immunoreactivity in hamster taste buds after chorda tympani/lingual nerve denervation. Neuroscience 1998; 83:843-56. [PMID: 9483568 DOI: 10.1016/s0306-4522(97)00442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hamster fungiform papilla taste buds persist in an atrophic form following sensory denervation. While atrophic and innervated taste buds are morphologically similar, it is not known whether their gemmal cells have similar molecular characteristics. Three neurochemicals, neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide have been implicated in trophic phenomena, synaptogenesis and cell recognition in neurons and sensory neuroepithelia. The present study uses immunocytochemical localization of these molecular markers to characterize normal and denervated fungiform taste buds following unilateral chorda tympani/lingual nerve denervation in hamsters. In normal taste buds, immunoreactivity to neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide was present in a group of cells located centrally in the bud as well as in fungiform nerve fibres and endings. After denervation, gemmal cell immunoreactivity to all three markers was reduced and often confined to a single or a few bud cell(s). Also, fibre staining was absent except for sparse calcitonin gene-related peptide-immunoreactive fibres associated with blood vessels and within the fungiform papillae. These remaining fibres may be autonomic or somatomotor in origin. These results indicate that sensory denervation of hamster taste buds reduces, but does not wholly eliminate the immunoreactivity of surviving gemmal cells to neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide. While the number of taste bud cells expressing the markers appears to be nerve-dependent, immunoreactivity in sensory-denervated bud cells of hamster may reflect the influence of local tissue factors.
Collapse
Affiliation(s)
- M C Whitehead
- University of California, Department of Surgery, La Jolla, San Diego 92093, USA
| | | | | | | |
Collapse
|
28
|
Oakley B, Brandemihl A, Cooper D, Lau D, Lawton A, Zhang C. The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-3806(97)00178-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Montavon P, Hellekant G, Farbman A. Immunohistochemical, electrophysiological, and electron microscopical study of rat fungiform taste buds after regeneration of chorda tympani through the non-gustatory lingual nerve. J Comp Neurol 1996; 367:491-502. [PMID: 8731221 DOI: 10.1002/(sici)1096-9861(19960415)367:4<491::aid-cne2>3.0.co;2-#] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sensory innervation of fungiform papillae on the rat dorsal tongue is derived from branches of two cranial nerves: the lingual branch of the trigeminal nerve which provides somatosensory innervation and the chorda tympani (CT) branch of the facial nerve, which provides innervation to the taste buds. Removal of the CT results in degeneration of the taste buds. Removal of both nerves results in reduction in size of fungiform papillae and an altered pattern of keratinization in its epithelium. Regeneration of nerves to the epithelium restores the pre-operative condition. Thus, in addition to their sensory functions, both the CT and lingual seem to exert trophic effects on the phenotypic expression of epithelial cells in the fungiform papillae. We severed both the CT and lingual nerves in rats and sutured the proximal stump of the CT to the distal stump of the lingual to promote regeneration of the CT along the lingual nerve pathway. At the same time, we prevented the proximal stump of the lingual from regenerating into the tongue. Our purpose was to determine whether and how the innervation pattern of the regenerated taste bud might be different from normal under these experimental conditions. We found that reinnervation by the CT through the lingual nerve occurs, that this restores the anatomical and functional integrity of the fungiform taste buds and papillae, and that some papillae, but not all, were richly innervated with subgemmal, extragemmal, and perigemmal neuron-specific enolase, calcitonin gene-related peptide, substance P, and neurokinin A-positive fibers. Moreover, responses to taste stimuli were recorded electrophysiologically from the CT.
Collapse
Affiliation(s)
- P Montavon
- Nestec, Ltd, Research Centre, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | |
Collapse
|
30
|
Oakley B, Lawton A, Riddle DR, Wu LH. Morphometric and immunocytochemical assessment of fungiform taste buds after interruption of the chorda-lingual nerve. Microsc Res Tech 1993; 26:187-95. [PMID: 8241558 DOI: 10.1002/jemt.1070260302] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Unilateral interruption of the chorda-lingual nerve led to a loss of most epithelial axons and to the deterioration of fungiform taste buds in the anterior portion of the tongue of albino rats, mongolian gerbils, and golden hamsters. By three weeks after surgery the following percentages of fungiform taste buds had completely disappeared: 71% in gerbils, 28% in rats, and 26% in hamsters. Residual taste buds were classified into two groups: atrophic taste buds and taste bud remnants. Atrophic taste buds were smaller than normal and typically had no visible taste pore, although they retained the characteristic oval shape of a taste bud and numerous elongated cells. Taste bud remnants were non-oval fragments of taste buds with few elongated cells. Specific markers for elongated taste cells (monoclonal antibodies to keratin 19) confirmed that atrophic taste buds, as well as some taste bud remnants, had elongated taste cells. By 180 days after chorda-lingual nerve transection, 44% of rat fungiform taste buds had disappeared; morphometric analysis of the 311 residual taste buds established that 241 atrophic taste buds and 69 taste bud remnants were, respectively, 50% and 75% smaller than the average volume of 480 normal taste buds. The aggregate loss of gustatory tissue, calculated from the shrinkage of residual taste buds and the volume lost by the outright disappearance of many taste buds, was 88% for gerbils, 72% for rats, and 65% for hamsters. Evaluation in gerbils of the co-occurrence of taste buds and axons suggests residual taste buds were neurotrophically supported. Every gerbil fungiform papilla that lacked axons lacked a taste bud.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Oakley
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
31
|
Ganchrow JR, Ganchrow D, Royer SM, Kinnamon JC. Aspects of vertebrate gustatory phylogeny: morphology and turnover of chick taste bud cells. Microsc Res Tech 1993; 26:106-19. [PMID: 8241547 DOI: 10.1002/jemt.1070260204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The taste bud is a receptor form observed across vertebrates. The present report compares chick taste buds to those of other vertebrates using light and electron microscopy. Unlike mammals, but common to many modern avians, the dorsal surface of chick anterior tongue lacks taste papillae and taste buds. Ultrastructurally, chick buds located in the anterior floor of the mouth (as in some reptiles and amphibians) and palate contain dark, intermediate, light, and basal cell types. Dark, intermediate, and light cells extend microvilli into intragemmal lumina and pores communicating with the oral cavity. As specialized features, dark cell apices lack dense granules and exhibit short microvilli relative to light and intermediate cells. Dark cell cytoplasmic fingers envelop intragemmal nerve fibers and cells as in other species, and sometimes contain abundant clear vesicles. Nerve profile expansions often are located adjacent to dark, intermediate, and light cell nuclei. Classical afferent synaptic contacts are rarely observed. Taste cell turnover is suggested by mitotic and degenerating figures in chick buds. In addition, tritiated thymidine injected into hatchlings, whose anterior mandibular oral taste bud population approximates that in adults, reveals a turnover rate of about 4.5 days. This is about half that observed in altricial mammals, reflecting a species difference or developmental factor in precocial avians. It is concluded that chick taste buds exhibit morphologic features common to other vertebrate buds with specializations reflecting the influences of niche, glandular relations, and/or age.
Collapse
Affiliation(s)
- J R Ganchrow
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | |
Collapse
|
32
|
Simon SA, Elliott EJ, Erickson RP, Holland VF. Ion transport across lingual epithelium is modulated by chorda tympani nerve fibers. Brain Res 1993; 615:218-28. [PMID: 8364732 DOI: 10.1016/0006-8993(93)90031-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Each chorda tympani (CT) nerve innervates taste cells in fungiform papillae on one side of the anterior two-thirds of mammalian tongues. In this study, three effects of unilateral CT transection were investigated: (1) the persistence of taste cells on the ipsilateral and contralateral sides; (2) the ability of the CT to modulate ion transport across the ipsilateral and contralateral sides of canine lingual lingual epithelia; and (3) the effect on contralateral CT responses. Unilateral transection of dog CT caused the mean number of taste buds/fungiform papilla on the ipsilateral side to decrease from five to zero by 29-30 days after surgery. Taste buds reappeared after 44 days but in reduced numbers (two taste buds/papilla). This reappearance of taste buds after 44 days is consistent with the time predicted for the CT to regenerate and reach the anterior portion of the tongue. The number of taste buds/papilla remained unchanged on the contralateral side. Measurements of the short-circuit current (Isc) across both ipsilateral and contralateral sections of isolated canine lingual epithelia were performed at various times after unilateral CT transection. Both sides responded similarly. The Isc began to decline after 3 days, reached a minimum after approximately 18 days (approximately 40% of control Isc) and increased to control values after approximately 40 days. This includes experiments performed 30 days after surgery, when no taste buds were present on the ipsilateral side and the Isc was 80% of control values. For all times after CT transection, amiloride, an epithelial Na+ channel blocker, inhibited Isc. Thus, epithelial cells in dog tongue have amiloride-inhibitable pathways. These results show that proteins involved in active Na+ transport across lingual epithelial can be modulated by CT nerve fibers.
Collapse
Affiliation(s)
- S A Simon
- Department of Neurobiology, Duke University, Durham, NC 27710
| | | | | | | |
Collapse
|
33
|
Barry MA, Savoy LD. Persistence and calcium-dependent ATPase staining of denervated fungiform taste buds in the hamster. Arch Oral Biol 1993; 38:5-15. [PMID: 7680199 DOI: 10.1016/0003-9969(93)90148-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Some fungiform taste buds in the hamster have been previously shown to persist for indefinite periods when deprived of their gustatory, chorda tympani (CT), innervation or both their CT and their trigeminal, lingual nerve, innervation (CT-L). The properties and numbers of persisting fungiform taste buds were examined 1 or 3 weeks after permanent CT or combined CT-L nerve cuts. The purpose was to reveal the status of taste buds at a time (3 weeks) when regenerating nerve fibres would normally be expected to reinnervate the epithelium. Denervated taste buds retain many normal characteristics including the pattern of histochemical staining for ectocalcium-dependent ATPase (Ca-ATPase). Taste-bud cells (including basal cells) have an intensely Ca-ATPase stained core surrounded by lightly stained peripheral cells. The Ca-ATPase stain was used to help identify and to define the size of the taste-bud core in denervated taste buds. Following CT-L or CT denervation most taste buds persisted; however the size of the taste-bud core was dramatically reduced. Fungiform taste buds differed in size based on their location in one of three tongue regions. The percentage decrease in size after denervation was also region specific and about the same for CT-L or CT cuts, suggesting that trigeminal fibres have no trophic effect on taste buds. However, trigeminal denervation caused a reduction in the number of persisting taste buds relative to CT denervation alone, which may be due to damage because of the loss of somatosensation.
Collapse
Affiliation(s)
- M A Barry
- Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030-3705
| | | |
Collapse
|
34
|
Zuniga JR, Hegtvedt AK, Alling CC. Future Applications in the Management of Trigeminal Nerve Injuries. Oral Maxillofac Surg Clin North Am 1992. [DOI: 10.1016/s1042-3699(20)30609-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
|
36
|
Nakashima T, Toyoshima K, Shimamura A, Yamada N. Morphological changes of taste buds and fungiform papillae following long-term neurectomy. Brain Res 1990; 533:321-3. [PMID: 2289146 DOI: 10.1016/0006-8993(90)91356-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-term neurectomy of chorda tympani-lingual nerves results in a complete disappearance of taste buds from rabbit fungiform papillae. This supports the view that taste buds of mammalian fungiform papillae are neurally dependent. Furthermore, the covering epithelium of denervated fungiform papillae develops a characteristic keratinization pattern corresponding to that of filiform papillae.
Collapse
Affiliation(s)
- T Nakashima
- Department of Oral Surgery, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | |
Collapse
|