1
|
Tan Z, Tian J, Zeng L, Ban W, Zhan Z, Xu J, Chen K, Xu H. Identification and expression analysis of dmc1 in Chinese soft-shell turtle (Pelodiscus sinensis) during gametogenesis. Gene 2025; 932:148866. [PMID: 39153704 DOI: 10.1016/j.gene.2024.148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
DNA meiotic recombinase 1 (disrupted meiotic cDNA, Dmc1) protein is homologous to the Escherichia coli RecA protein, was first identified in Saccharomyces cerevisiae. This gene has been well studied as an essential role in meiosis in many species. However, studies on the dmc1 gene in reptiles are limited. In this study, a cDNA fragment of 1,111 bp was obtained from the gonadal tissues of the Chinese soft-shell turtle via RT-PCR, containing a 60 bp 3' UTR, a 22 bp 5' UTR, and an ORF of 1,029 bp encoding 342 amino acids, named Psdmc1. Multiple sequence alignments showed that the deduced protein has high similarity (>95 %) to tetrapod Dmc1 proteins, while being slightly lower (86-88 %) to fish species.Phylogenetic tree analysis showed that PsDmc1 was clustered with the other turtles' Dmc1 and close to the reptiles', but far away from the teleost's. RT-PCR and RT-qPCR analyses showed that the Psdmc1 gene was specifically expressed in the gonads, and much higher in testis than the ovary, especially highest in one year-old testis. In situ hybridization results showed that the Psdmc1 was mainly expressed in the perinuclear cytoplasm of primary and secondary spermatocytes, weakly in spermatogonia of the testes. These results indicated that dmc1 would be majorly involved in the developing testis, and play an essential role in the germ cells' meiosis. The findings of this study will provide a basis for further investigations on the mechanisms behind the germ cells' development and differentiation in Chinese soft-shell turtles, even in the reptiles.
Collapse
Affiliation(s)
- Zhimin Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Jiamin Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Linhui Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Wenzhuo Ban
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Zeyu Zhan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Jianfei Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China
| | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China.
| | - Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Southwest University; Key Laboratory of Freshwater Fish Reproduction and Development; Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, 402460 Chongqing, China.
| |
Collapse
|
2
|
Ai X, Lin R, Ali Z, Zhu Q, Ding L, Shi H, Hong M. Seasonal changes in hepatic lipid metabolism and apoptosis in Chinese soft-shelled turtle (Pelodiscus sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109883. [PMID: 38437998 DOI: 10.1016/j.cbpc.2024.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Chinese soft-shelled turtle (Pelodiscus sinensis) hibernates without eating and drinking when the ambient temperature is very low. To better understand the characteristics of energy utilization during hibernation, the turtles in the physiological phases of summer active (SA), Pre-Hibernation (Pre-H), Mid-Hibernation (Mid-H) and early arousal (EA) were sampled. The results showed that the levels of serum triglyceride and hepatic lipid droplet were markedly increased in Pre-H and decreased in Mid-H compared with that in SA, indicating that P. sinensis experiences lipid accumulation in Pre-H and lipid is the predominant energy reserve during hibernation. The mRNA expression levels of genes (FABP and CPT-2) involved in lipolysis and lipid oxidation were up-regulated in Mid-H, while the genes related to lipid synthesis (FAS, ACSL-1, ACC, elovl5, and SCD1) were inhibited in Mid-H. Meanwhile, the mRNA expression levels of endoplasmic reticulum stress marker gene Bip and key genes (ATF4, ATF6, and IRE1α) involving the unfolded protein response were significantly increased in Mid-H and EA. Also, the expression levels of genes (ASK1, JNK1, and Bax) associated with cell apoptosis increased in Mid-H and EA, however, the expression of Bcl2 was inhibited in Mid-H. Therefore, hibernation can cause endoplasmic reticulum stress and apoptosis. The findings will provide a theoretical framework for an animal's cold adaptation and offer insights into preventing and managing metabolic syndrome.
Collapse
Affiliation(s)
- Xiaoqi Ai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zeeshan Ali
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Qingjun Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
3
|
Xu J, Guo Y, Tan Z, Ban W, Tian J, Chen K, Xu H. Molecular cloning and expression analysis of rad51 gene associated with gametogenesis in Chinese soft-shell turtle (Pelodiscus sinensis). Gene 2023; 887:147729. [PMID: 37619650 DOI: 10.1016/j.gene.2023.147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.
Collapse
Affiliation(s)
- Jianfei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yonglin Guo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Zhimin Tan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wenzhuo Ban
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Jiaming Tian
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Kaili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hongyan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
4
|
Li N, Rao W, Dai S, Iqbal MS, Shi H, Ding L, Hong M. Seasonal spermatogenesis in the red-eared slider (Trachemys scripta elegans): The roles of GnRH, actin cytoskeleton, and MAPK. Anim Reprod Sci 2023; 253:107253. [PMID: 37224664 DOI: 10.1016/j.anireprosci.2023.107253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Reproduction is the key to the ecological invasion of alien species. As an invasive species, the characteristic and regularity of red-eared slider (Trachemys scripta elegans) spermatogenesis is an index for evaluating reproduction and ecological adaptation. Here, we investigated the characteristics of spermatogenesis i.e., the gonadosomatic index (GSI), plasma reproductive hormone levels, and the histological structure of testes by HE and TUNEL staining, and then RNA-Seq in T. s. elegans. The histomorphological evidence confirmed that seasonal spermatogenesis in T. s. elegans has four successive phases: quiescence (December-May of the following year), early-stage (June-July), mid-stage (August-September), and late-stage (October-November). In contrast to 17β-estradiol, testosterone levels were higher during quiescence (breeding season) compared to mid-stage (non-breeding season). Based on RNA-seq transcriptional analysis, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to analyze the testis in the quiescent and mid-stage. Our study found that circannual spermatogenesis is regulated by interactive networks including gonadotropin-releasing hormone (GnRH) secretion, regulation of actin cytoskeleton, and MAPK signaling pathways. Moreover, the number of genes associated with proliferation and differentiation (srf, nr4a1), cell cycle (ppard, ccnb2), and apoptosis (xiap) were up-regulated in the mid-stage. With the maximum energy saving, this seasonal pattern of T. s. elegans determines optimal reproductive success and thus adapts better to the environment. These results provide the basis for the invasion mechanism of T. s. elegans and lay the foundation for deeper insight into the molecular mechanism of seasonal spermatogenesis in reptiles.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenzhuo Rao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shiyu Dai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Muhammad Shahid Iqbal
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
5
|
Smith HF, Laitman JT. Turtles creep through the pages of The Anatomical Record. Anat Rec (Hoboken) 2023; 306:1189-1192. [PMID: 36913169 DOI: 10.1002/ar.25201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Heather F Smith
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jeffrey T Laitman
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
6
|
Yang YF, Wu JH, Lin RL, Yin SJ, Qian GY, Wang W, Park YD. Seasonal spermatogenesis, epididymal storage, and creatine kinase expression in Pelodiscus sinensis. Anim Reprod Sci 2023; 249:107198. [PMID: 36791599 DOI: 10.1016/j.anireprosci.2023.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The soft-shelled turtle, Pelodiscus sinensis, is an important economic aquaculture species. Its reproduction exhibits seasonality; however, there is a lack of systematic studies focused on sperm maturation and epididymal storage. The testes and epididymides of P. sinensis were sampled from March to December. The seasonal reproduction and maturation of the spermatozoa were examined by anatomy, hematoxylin and eosin staining, AB-PAS staining, and immunohistochemistry. Spermatogenesis exhibited obvious seasonality in P. sinensis. It was found that the spermatogenic epithelium was most active during June to September, whereas the diameter of the epididymal tubules was smallest during June to October. As key enzymes of ATP metabolism, creatine kinases were highly expressed in the epididymal tubule epithelium during the breeding season, which may be important for the regulation of sperm maturation. In addition, the epididymal tubule epithelium changed with the season in June to September, the epididymal tubule epithelium proliferated to form villous structures, and secreted a large number of glycoproteins, which may be related to the rapid maturation of sperm during the breeding season. In conclusion, this study provided insights into the spermatogenesis of P. sinensis through histological analysis and enriched our understanding of reproduction in reptiles.
Collapse
Affiliation(s)
- Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China
| | - Jia-Hao Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China.
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, Zhejiang, PR China; Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, PR China.
| |
Collapse
|
7
|
The Divergent and Conserved Expression Profile of Turtle Nanog Gene Comparing with Fish and Mammals. BIOLOGY 2022; 11:biology11091342. [PMID: 36138820 PMCID: PMC9495436 DOI: 10.3390/biology11091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Nanog is a homeodomain-containing transcription factor, and it plays a vital role in maintaining the pluripotency of embryonic stem cells. Nanog’s function has been well studied in many species. However, there is lack of reporting on the Nanog gene in reptile. Here, we identified a 1032 bp cDNA sequence of a Nanog gene in Pelidiscus sinensis, known as PsNanog. PsNanog has a highly conserved HD domain and shares a high identity with that of Chelonia mydas and the lowest identity with Oryzias latipes. Similarly, PsNanog presented a tight cluster with C. mydas Nanog, but was far from those of teleosts. Additionally, we cloned a length of 1870 bp PsNanog promoter. Dual luciferase assay showed that the DNA fragment of −1560 to +1 exhibited a high promoter activity. The RT-PCR and RT-qPCR results showed that PsNanog was predominantly expressed in ovary, and then in testis. The in situ hybridization and immunohistochemical analysis showed that PsNanog was expressed in the early primary oocytes and the cytoplasm of the cortical region of stage VIII oocytes in ovary, and distributed in most stages of germ cells in testis. Collectively, the results imply that PsNanog probably has the conserved function in regulating germ cell development across phyla and is also a pluripotent cell gene and expressed in germ cells, which is similar to that in teleosts and mammals.
Collapse
|
8
|
Expression and Characterization of the Spats1 Gene and Its Response to E2/MT Treatment in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12141858. [PMID: 35883403 PMCID: PMC9311554 DOI: 10.3390/ani12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17β-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.
Collapse
|
9
|
Li W, Zhu J, Lei L, Chen C, Liu X, Wang Y, Hong X, Yu L, Xu H, Zhu X. The Seasonal and Stage-Specific Expression Patterns of HMGB2 Suggest Its Key Role in Spermatogenesis in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biochem Genet 2022; 60:2489-2502. [PMID: 35554782 DOI: 10.1007/s10528-022-10229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
HMGB2, a member of the high-mobility group (HMG) proteins, was identified as a male-biased gene and plays a crucial role in the germ cells differentiation of mammals. However, its role in spermatogenesis of turtle is still poorly understood. Here, we cloned the Pelodiscus sinensis HMGB2 and analyzed its expression profile in different tissues and in testis at different developmental ages. P. sinensis HMGB2 mRNA was highly expressed in the testis of 3-year-old turtles (P < 0.01), but was hardly detected in ovaries and other somatic tissues. The results of chemical in situ hybridization (CISH) showed that HMGB2 mRNA was specifically expressed in germ cells, where it was mainly distributed in round spermatids and sperm, but not detected in somatic cells, spermatogonia, primary spermatocytes, or secondary spermatocyte. The relative expression of HMGB2 also responded to seasonal changes in testis development in P. sinensis. In different seasons of the year, the relative expression of HMGB2 transcripts in the testis of 1 year and 2 year olds showed an overall upward trend, whereas, in the testis of 3 year old, it peaked in July and then declined in October. Moreover, in April and July, with an increase in ages, the expression of HMGB2 transcripts showed an upward trend. However, in January and October, there was a decline in expression in testis in 3-year-old turtles. These results showed that HMGB2 is closely related to spermatogenesis in P. sinensis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China.
| |
Collapse
|
10
|
Zeng LF, Jin XY, Yin SJ, Qian GY, Wang W, Park YD. Seasonal expression of cytoplasmic creatine kinase in the epididymal epithelium of Pelodiscus sinensis. Biotech Histochem 2021; 97:21-29. [PMID: 33595373 DOI: 10.1080/10520295.2021.1887935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During hibernation of Pelodiscus sinensis, sperm mature and are stored in the epididymis. We investigated seasonal changes in the morphology of epithelial cells of the epididymis of P. sinensis and changes in expression of cytoplasmic creatine kinase (CK). We found that the epididymal epithelium proliferates rapidly to form multiple layers from June to September, while the epididymal epithelial cells are arranged in a single layer from October to May. From the March before the mating period to the end of the mating period in September, a large amount of neutral glycoprotein is secreted in the epididymal epithelium and in the sperm aggregation area; after October, the glycoprotein in the epididymis decreases. At sperm maturation, cytoplasmic CK is expressed abundantly in the villous epithelium, which is formed by proliferation of epididymal epithelial cells. During hibernation and reproduction, the epididymal epithelium of P. sinensis exhibits different proliferation and secretion patterns as the animal adapts to two types of sperm storage. Cytoplasmic CK may participate in regulating the energy metabolism of the epididymal epithelium; it is an important enzyme for regulating sperm maturation.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Xin-Yi Jin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
11
|
Huang Y, Chen H, Yang P, Bai X, Shi Y, Vistro WA, Tarique I, Haseeb A, Chen Q. Hepatic lipid droplet breakdown through lipolysis during hibernation in Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Aging (Albany NY) 2020; 11:1990-2002. [PMID: 30926766 PMCID: PMC6503876 DOI: 10.18632/aging.101887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Hibernation is an adaptive survival strategy in response to cold and foodless winter. To determine the underlying mechanisms of seasonal adaptions, transcriptome sequencing studies have been conducted in bears, ground squirrels and bats. Despite advances in identifying differentially expressed genes involved in metabolism, the precise mechanisms of these physiological adaptions remain unclear. In the present study, we examined liver of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) and found that the contents of lipid droplet (LD) and triglyceride (TG) were significantly decreased during hibernation. Increases in mRNA expression levels of lipolysis-related genes and decreased levels of lipogenesis-related genes during hibernation indicated that LD hydrolysis was stimulated during hibernation. To continuously release fatty acids (FAs) from LD, adipose triglyceride lipase (ATGL) was recruited and accumulated on the surface of LDs via activation of Cyclic Adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling. Meanwhile, increased phosphorylation of the LD-associated protein, perilipin-5, activated the enzyme activity of ATGL via interaction between comparative gene identification-58 (CGI-58) and ATGL. Taken together, our results indicated that ATGL accumulation on the LD surface and its induced enzyme activity during hibernation promoted LD breakdown in the liver of Chinese Soft-Shelled Turtle (Pelodiscus sinensis), thereby enhancing mitochondrial β-oxidation to maintain energy hemostasis.
Collapse
Affiliation(s)
- Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
12
|
Chen H, Huang Y, Liu T, Haseeb A, Ahmed N, Zhang L, Bian X, Chen Q. Characteristics of seasonal spermatogenesis in the soft-shelled turtle. Anim Reprod Sci 2020; 214:106307. [PMID: 32087920 DOI: 10.1016/j.anireprosci.2020.106307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Spermatogenesis in reptiles is a seasonally dependent physiological process that is not temporally associated with male mating behavior. Characteristics of seasonal spermatogenesis in reptiles, however, remain largely unknown. In this review, there is a coverage of the characteristics of soft-shelled turtle, Pelodiscus sinensis, during seasonal spermatogenesis that provides insights into spermatogenesis of testudines. The seminiferous epithelium of P. sinensis are undergoing spermatogenesis during the summer and fall, but are quiescent throughout the rest of the year; germ cells progress through spermatogenic stages in a temporal rather than a spatial pattern. While apoptotic germ cells mainly appear in the non-spermatogenic phase, these are seldom present during active spermatogenesis. It is inferred that apoptosis may be one of the reasons for germ cell loss during the resting phase of spermatogenesis. During the period when spermatogenesis is occurring, Sertoli cells become very narrow and are in contact with several round/elongated spermatids. Many residual spermatozoa can be internalized and degraded within Sertoli cells by entosis during the non-spermatogenic phase, which precedes the next reproductive cycle in P. sinensis. In the late spermatogenic phase, round-shaped mitochondria of spermatids become elongated and swollen, subsequently forming a crescent-like shape and develop into "onion-like" shaped mitochondria. As spermiogenesis progresses, the endoplasmic reticulum of spermatids is transferred into a specialized structure called the "Chrysanthemum flower center", which may be a source of autophagosomal membranes. The information provided in this review will help improve understanding of characteristics of seasonal spermatogenesis, which will hopefully promote interest in the study of reptilian species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Nisar Ahmed
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
13
|
Chen H, Huang Y, Yang P, Shi Y, Ahmed N, Liu T, Bai X, Haseeb A, Chen Q. Autophagy enhances lipid droplet development during spermiogenesis in Chinese soft-shelled turtle, Pelodiscus sinensis. Theriogenology 2019; 147:154-165. [PMID: 31787469 DOI: 10.1016/j.theriogenology.2019.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/22/2022]
Abstract
Spermiogenesis is a highly organized process of the metamorphosis of round spermatids into spermatozoa in the testes. Autophagy is involved in the physiological process of spermiogenesis and its crucial role in germ-plasm clearance conserved across kingdoms. However, the fate of by-products generated through autophagy during spermiogenesis is still largely unknown. In the present study, we showed that the autophagy enhanced lipid droplets (LDs) formation during spermiogenesis in Chinese soft-shelled turtle, Pelodiscus sinensis. TEM and Oil Red O staining results found that the number and size of LDs within spermatid increased considerably during the process of spermiogenesis. RNA-Seq analysis revealed that autophagy was highly activated via the PI3K pathway during spermatogenesis. Inhibiting autophagy with 3-methyladenine (3-MA) significantly decreased testicular triglycerides (TGs) and fatty acid (FAs) content. In comparison with the control group, the number and size of LD within elongating spermatids was reduced significantly in the 3-MA group. Moreover, DGAT1, a diacylglycerol acyltransferase, which normally localize to the endoplasmic reticulum, was found to co-localize with LDs. Taken together, our results showed that FAs released through the autophagic degradation of germ-plasm was replenished LDs of spermatid, increasing LD number and size, during the process of spermiogenesis. These LDs facilitate long-term sperm storage in the epididymis of Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Nisar Ahmed
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
14
|
Haseeb A, Chen H, Huang Y, Yang P, Sun X, Iqbal A, Ahmed N, Wang T, Samad Gandahi N, Bai X, Chen Q. Remodelling of mitochondria during spermiogenesis of Chinese soft-shelled turtle (Pelodiscus sinensis). Reprod Fertil Dev 2019; 30:1514-1521. [PMID: 29759112 DOI: 10.1071/rd18010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are vital cellular organelles that have the ability to change their shape under different conditions, such as in response to stress, disease, changes in metabolic rate, energy requirements and apoptosis. In the present study, we observed remodelling of mitochondria during spermiogenesis and its relationship with mitochondria-associated granules (MAG). At the beginning of spermiogenesis, mitochondria are characterised by their round shape. As spermiogenesis progresses, the round-shaped mitochondria change into elongated and then swollen mitochondria, subsequently forming a crescent-like shape and finally developing into onion-like shaped mitochondria. We also noted changes in mitochondrial size, location and patterns of cristae at different stages of spermiogenesis. Significant differences (P<0.0001) were found in the size of the different-shaped mitochondria. In early spermatids transitioning to the granular nucleus stage, the size of the mitochondria decreased, but increased subsequently during spermiogenesis. Changes in size and morphological variations were achieved through marked mitochondrial fusion. We also observed a non-membranous structure (MAG) closely associated with mitochondria that may stimulate or control fusion during mitochondrial remodelling. The end product of this sophisticated remodelling process in turtle spermatozoa is an onion-like mitochondrion. The acquisition of this kind of mitochondrial configuration is one strategy for long-term sperm storage in turtles.
Collapse
Affiliation(s)
- Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Xuejing Sun
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Adeela Iqbal
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Noor Samad Gandahi
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Xuebing Bai
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
15
|
Liu X, Tang Z, Zhang P, Zhu X, Chu Z, Li W, Xu H. Identification and characterization of DAZ family genes in Chinese soft-shell turtle (Pelodiscus sinensis). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:258-268. [PMID: 31531931 DOI: 10.1002/jez.b.22900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 11/12/2022]
Abstract
The DAZ family genes, including boule, dazl, and daz, play pivotal roles in germ cell development and differentiation during gametogenesis in organisms, which have been widely studied in mammals, reptiles, or fishes. Dazl was bisexual expressed in both mitotic and meiotic germ cells, daz was male premeiotic expressed, whereas boule exhibits largely in unisexual meiotic germ cells but bisexual expression in several fishes, however, there is lack of report on boule gene and the evolutionary conservation and divergence of dazl and boule in reptile. Here, both boule and dazl genes were characterized in Pelodiscus sinensis. The quantitative real-time polymerase chain reaction analysis showed that boule and dazl were abundantly expressed in adult ovary and testis but barely in somatic tissues, such as heart, brain, liver, spleen, and kidney. Moreover, through fluorescent in situ hybridization, bisexual and germline-specific expression profiles of boule and dazl messenger RNAs (mRNAs) were demonstrated. Boule mRNA exhibited a maximal meiotic expression in spermatocytes, and a relatively low, but distinct expression in oocytes at meiotic stages in P. sinensis, similar to the expression profile of human boule in ovary. However, dazl mRNA was richly distributed in male germ cells at almost all stages during spermatogenesis, and predominantly expressed in most of stages of oocytes including premeiotic and meiotic stages. These findings imply that boule and dazl would play distinct roles in the sexual differentiation of germ cells during turtle gametogenesis, and the major functions of daz family members involved in germ cell differentiation would be conserved across species including P. sinensis.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Piaoyi Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhangjie Chu
- Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
16
|
Chen H, Liu T, Holt WV, Yang P, Zhang L, Zhang L, Han X, Bian X, Chen Q. Advances in understanding mechanisms of long-term sperm storage-the soft-shelled turtle model. Histol Histopathol 2019; 35:1-23. [PMID: 31290136 DOI: 10.14670/hh-18-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term sperm storage is a special reproductive strategy, which can extend the time window between mating and fertilization in some animal species. Spermatozoa of the soft-shelled turtle, Pelodiscus sinensis, can be stored in the epididymis and oviduct for at least six months and one year, respectively. How spermatozoa can be stored in vivo for such a prolonged period is yet to be explained. We analyze the mechanisms that contribute to long-term sperm storage in P. sinensis, and compare them with other species from three different perspectives: the spermatozoon itself, the storage microenvironment and the interaction between the spermatozoon and microenvironment. Characteristics of soft-shelled turtle spermatozoa itself, such as the huge cytoplasmic droplet with its content of several large lipid droplets (LDs) and onion-like mitochondira, facilitate long-term sperm storage. The microenvironment of reproductive tract, involving in the secretions, structural barriers, exosomes, androgen receptors, Toll-like receptors and survival factor Bcl-2, are important for the maintenance of spermatozoa long-term storage. Sperm heads are always embedded among the oviductal cilia and even intercalate into the apical hollowness of the ciliated cells, indicating that the ciliated cells support the stored spermatozoa. RNA seq is firstly used to detect the molecular mechanism of sperm storage, which shows that autophagy, apoptosis and immune take part in the long-term sperm storage in this species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, United Kingdom
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Linli Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiangkun Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Haseeb A, Tarique I, Bai X, Yang P, Ali Vistro W, Huang Y, Ali Fazllani S, Ahmed Z, Chen Q. Inhibition of autophagy impairs acrosome and mitochondrial crista formation during spermiogenesis in turtle: Ultrastructural evidence. Micron 2019; 121:84-89. [PMID: 30953869 DOI: 10.1016/j.micron.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a subcellular process that is extensively involved in spermiogenesis. In this study, we observed ultrastructural malformation of acrosome and mitochondrial cristae during the spermiogenesis of Chinese soft-shelled turtle due to the inhibition of autophagy. Autophagy was blocked with 3-MA, and the inhibition of autophagy was confirmed through western blot analysis. The morphological abnormalities of acrosomes and mitochondria were observed under transmission electron microscopy (TEM). In the early spermiogenesis (Golgi and cap phases), damaged macrovesicle was observed, and its proper expansion over the nucleus failed to be form a normal acrosomal cap. As spermiogenesis proceeded, the malformation of the acrosome in spermatids became more severe. In the late spermiogenesis (acrosomal and maturation phases), defective acrosome with damaged acrosomal membrane that was detached from the nucleus was observed. Along with malformed acrosome, elongation failed nucleus having oval or round shaped morphology was also observed. Moreover, morphological damage to the mitochondrial cristae was observed. Lacuna formation, half and complete loss of cristae were observed in the mitochondria of developing spermatids. We proposed that autophagy is required for normal formation of the acrosome and mitochondrial cristae during turtle spermiogenesis.
Collapse
Affiliation(s)
- Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China; Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | | | - Zulfqur Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China.
| |
Collapse
|
18
|
Chen H, Yang P, Chu X, Huang Y, Liu T, Zhang Q, Li Q, Hu L, Waqas Y, Ahmed N, Chen Q. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis. Oncotarget 2017; 7:19242-50. [PMID: 26992236 PMCID: PMC4991379 DOI: 10.18632/oncotarget.8092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage.
Collapse
Affiliation(s)
- Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiaoya Chu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Quanfu Li
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lisi Hu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
19
|
Ahmed N, Liu Y, Chen H, Yang P, Waqas Y, Liu T, Gandahi JA, Huang Y, Wang L, Song X, Rajput IR, Wang T, Chen Q. Novel cellular evidence of lipophagy within the Sertoli cells during spermatogenesis in the turtle. Aging (Albany NY) 2017; 9:41-51. [PMID: 27750210 PMCID: PMC5310655 DOI: 10.18632/aging.101070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Spermatogenesis is a complex process producing haploid spermatozoa, and the formation of lipid droplets (LDs) within Sertoli cells is critical to maintaining normal spermatogenesis. However, the utilization of LDs within Sertoli cells is still largely unknown. In the present study, proliferation of spermatogonial cells had begun in May, whereas the meiotic cells occurred predominately in July and majority of spermiogenic cells were observed in the seminiferous tubules in October. However, TEM and Oil Red O staining demonstrated that a larger number of LDs had accumulated within the Sertoli cells in May compared to that in October. There were several LDs attached to the isolation membrane/phagophore, suggesting that the LDs may be a source of endogenous energy for the biogenesis of autophagosomes. The LDs were enclosed within the autophagosomes in May, whereas, autophagosomes and mitochondria were directly attached with large LDs within the Sertoli cells in October. Furthermore, immunohistochemistry results demonstrated the stronger localization of LC3 on the Sertoli cells in May than in October. This study is the first to provide clear evidence of the two different modes of lipophagy for lipid consumption within Sertoli cells, which is a key aspect of Sertoli germ cell communication during spermatogenesis.
Collapse
Affiliation(s)
- Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.,Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jameel Ahmed Gandahi
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xuejing Song
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | | | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
20
|
Ahmed M, Aldokhi O, Alenezy E. Ultrastructural differentiation of spermiogenesis in Scincus scincus ( Scincidae, Reptilia). Saudi J Biol Sci 2017; 24:1711-1721. [PMID: 30294239 PMCID: PMC6169513 DOI: 10.1016/j.sjbs.2016.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 10/09/2016] [Accepted: 10/25/2016] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Knowledge of spermiogenesis in reptiles, especially in lizards, is very limited. Lizards found in Arabian deserts have not been considered for detailed studies due to many reasons and the paucity of these animals. Therefore, we designed a study on the differentiation and morphogenesis of spermiogenesis, at an ultrastructural level, in a rare lizard species, Scincus scincus. RESULTS The spermiogenesis process includes the development of an acrosomal vesicle, aggregation of acrosomal granules, formation of subacrosomal nuclear space, and nuclear elongation. A role for manchette microtubules was described in nuclear shaping and organelle movement. During head differentiation, the fine granular chromatin of the early spermatid is gradually replaced by highly condensed contents in a process called chromatin condensation. Furthermore, ultrastructural features of sperm tail differentiation in S. scincus were described in detail. The commencement was with caudal migration toward centrioles, insertion of the proximal centriole in the nuclear fossa, and extension of the distal centrioles to form the microtubular axoneme. Subsequently, tail differentiation consists of the enlargement of neck portion, middle piece, the main and end pieces. CONCLUSIONS This study aids in the understanding of different aspects of spermiogenesis in the lizard family and unfurls evolutionary links within and outside reptiles.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
21
|
Ahmed N, Yang P, Huang Y, Chen H, Liu T, Wang L, Nabi F, Liu Y, Chen Q. Entosis Acts as a Novel Way within Sertoli Cells to Eliminate Spermatozoa in Seminiferous Tubule. Front Physiol 2017; 8:361. [PMID: 28611685 PMCID: PMC5447735 DOI: 10.3389/fphys.2017.00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/16/2017] [Indexed: 01/14/2023] Open
Abstract
The present study was designed to investigate the hypothesis that in vivo entosis is a novel pathway for eliminating spermatozoa in the seminiferous tubules (ST) during hibernation of the Chinese soft-shelled turtle. Western blot analysis revealed that the expression of LAMP1 in the testis was significantly higher during hibernation than that during non-hibernation. Immunohistochemistry reaction showed that LAMP1-positive substance was distributed within the Sertoli cells of the testis. Further examination by transmission electron microscopy (TEM), many degraded spermatozoa being enwrapped within large entotic vacuoles in Sertoli cells. The nucleus and the flagellum of the spermatozoa were shown to be decomposed and digested inside entotic vacuoles within Sertoli cells. More than two spermatozoa heads were always observed in each internalized vacuoles. Deserving note is that, a number of different autophagosomes, including initial autophagic vesicles and degradative autophagic vesicles were found inside the entotic vacuoles of the Sertoli cells during hibernation. At the end of hibernation, entotic vacuoles and their autophagosomes disappeared, and numerous large lipid droplets (LDs) appeared within the Sertoli cells. Adherens junctions were apparent between Sertoli cells and developing germ cells, which is the ultrastructural basis of entosis. Taken together, the results presented here show that in the turtle: (1) entosis with internal autophagosomes can take place within normal body cells during hibernation; (2) spermatozoa, as a highly differentiated cell can be internalized and degraded within Sertoli cell by entosis in vivo, which is in favor of the next reproductive cycle in the turtle.
Collapse
Affiliation(s)
- Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS)Uthal, Pakistan
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS)Uthal, Pakistan
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
22
|
Yang P, Ahmed N, Wang L, Chen H, Waqas Y, Liu T, Haseeb A, Bangulzai N, Huang Y, Chen Q. In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis. Oncotarget 2017; 8:56791-56801. [PMID: 28915631 PMCID: PMC5593602 DOI: 10.18632/oncotarget.18221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a unique catabolic pathway that is linked to several physiological processes. However, its role in the process of spermiogenesis is largely unknown. The aim of the current study was to determine the in vivo role of autophagy and the origin of autophagosome membrane biogenesis within male haploid cells. Our immunohistochemistry results demonstrated that LC3 and ATG7 localization were increased dramatically in round to elongated spermatids (haploid cells) towards the lumen of seminiferous tubules, however, poorly expressed in the early stages of germ cells near the basal membrane. Moreover, transmission electron microscopy revealed that the numbers of lysosomes and autophagosomes increased in the elongated spermatids as spermiogenesis progressed. However, no evidence was found for the presence of autophagosomes in the Sertoli cells, spermatogonia or early primary spermatocytes (diploid cells). Furthermore, TEM showed that many endoplasmic reticula were transformed into a “chrysanthemum flower center,” from which a double-layered isolation membrane appeared to develop into an autophagosome. This study provides novel evidence about the formation of autophagosomes through the chrysanthemum flower center from the endoplasmic reticulum, and suggests that autophagy may have an important role in the removal of extra cytoplasm within male haploid cells during spermiogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,The Postdoctoral Research Station in Animal Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nasrullah Bangulzai
- Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Liu T, Wang L, Chen H, Huang Y, Yang P, Ahmed N, Wang T, Liu Y, Chen Q. Molecular and Cellular Mechanisms of Apoptosis during Dissociated Spermatogenesis. Front Physiol 2017; 8:188. [PMID: 28424629 PMCID: PMC5372796 DOI: 10.3389/fphys.2017.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a tightly controlled process by which tissues eliminate unwanted cells. Spontaneous germ cell apoptosis in testis has been broadly investigated in mammals that have an associated spermatogenesis pattern. However, the mechanism of germ cell apoptosis in seasonally breeding reptiles following a dissociated spermatogenesis has remained enigmatic. In the present study, morphological evidence has clearly confirmed the dissociated spermatogenesis pattern in Pelodiscus sinensis. TUNEL and TEM analyses presented dynamic changes and ultrastructural characteristics of apoptotic germ cells during seasonal spermatogenesis, implying that apoptosis might be one of the key mechanisms to clear degraded germ cells. Furthermore, using RNA-Seq and digital gene expression (DGE) profiling, a large number of apoptosis-related differentially expressed genes (DEGs) at different phases of spermatogenesis were identified and characterized in the testis. DGE and RT-qPCR analysis revealed that the critical anti-apoptosis genes, such as Bcl-2, BAG1, and BAG5, showed up-regulated patterns during intermediate and late spermatogenesis. Moreover, the increases in mitochondrial transmembrane potential in July and October were detected by JC-1 staining. Notably, the low protein levels of pro-apoptotic cleaved caspase-3 and CytC in cytoplasm were detected by immunohistochemistry and western blot analyses, indicating that the CytC-Caspase model might be responsible for the effects of germ cell apoptosis on seasonal spermatogenesis. These results facilitate understanding the regulatory mechanisms of apoptosis during spermatogenesis and uncovering the biological process of the dissociated spermatogenesis system in reptiles.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
24
|
Waqas MY, Zhang Q, Ahmed N, Yang P, Xing G, Akhtar M, Basit A, Liu T, Hong C, Arshad M, Rahman HMSU, Chen Q. Cellular Evidence of Exosomes in the Reproductive Tract of Chinese Soft-Shelled Turtle Pelodiscus sinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:18-27. [PMID: 28217961 DOI: 10.1002/jez.2065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/25/2023]
Abstract
The oviduct is a location of egg production, fertilization, and sperm storage. While its secretions have broadly attributes toward different physiological functions. We examined the ultrastructure of oviduct epithelium and glands in relation to the secretions, particularly with exosomes origin in Chinese soft-shelled turtle Pelodiscus sinensis using immunohistochemistry and transmission electron microscopy. The ciliated epithelial and gland cells were involved in the release of exosomes and secretions into lumen throughout the year. The exosomes were either released directly from epithelium or in relation with multivesicular body (MVB). The average size of the particles varies between 50 and 130 nm. These exosomes were also widely distributed in the epithelial ciliated cells and pericytoplasm of glands lumen. Intracellular MVB was characterized by membrane-bounded exosomes of different sizes. Exosomes were also found in close contact with the cilia and sperm membrane in the lumen, which is suggestive of their fusogenic properties. Immunohistochemistry results showed strong to moderate positive expression of exosomes, in ciliated and gland cells, during January, September, and December, as it is the time of sperm storage in this turtle, whereas they showed moderate to weak level of expression during breeding season (May). This is first study about identification of the exosomes in female turtles. Epithelial and glandular exosomes, intracellular MVB, secretions, and secretory vesicles give this turtle specie a unique secretory morphology and a potential model for investigating the secretory nature of the oviduct.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China.,Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Qian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Nisar Ahmed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ping Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Guipei Xing
- College of Life Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Masood Akhtar
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Basit
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Tengfei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Chen Hong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Muhammad Arshad
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Qiusheng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
25
|
Li W, Zhang P, Wu X, Zhu X, Xu H. A Novel Dynamic Expression of vasa in Male Germ Cells during Spermatogenesis in the Chinese Soft-Shell Turtle (Pelidiscus sinensis
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:230-239. [DOI: 10.1002/jez.b.22728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- Pearl River Fisheries Research Institute; Chinese Academic of Fisheries Sciences; Guangzhou People's Republic of China
| | - Piaoyi Zhang
- Pearl River Fisheries Research Institute; Chinese Academic of Fisheries Sciences; Guangzhou People's Republic of China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai People's Republic of China
| | - Xuling Wu
- Pearl River Fisheries Research Institute; Chinese Academic of Fisheries Sciences; Guangzhou People's Republic of China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai People's Republic of China
| | - Xinping Zhu
- Pearl River Fisheries Research Institute; Chinese Academic of Fisheries Sciences; Guangzhou People's Republic of China
| | - Hongyan Xu
- Pearl River Fisheries Research Institute; Chinese Academic of Fisheries Sciences; Guangzhou People's Republic of China
| |
Collapse
|
26
|
Huang Y, Yang P, Liu T, Chen H, Chu X, Ahmad N, Zhang Q, Li Q, Hu L, Liu Y, Chen Q. Subcellular Evidence for Biogenesis of Autophagosomal Membrane during Spermiogenesis In vivo. Front Physiol 2016; 7:470. [PMID: 27803675 PMCID: PMC5067523 DOI: 10.3389/fphys.2016.00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022] Open
Abstract
Although autophagosome formation has attracted substantial attention, the origin and the source of the autophagosomal membrane remains unresolved. The present study was designed to investigate in vivo subcellular evidence for the biogenesis of autophagosomal membrane during spermiogenesis using transmission-electron microscopy (TEM), Western blots and immunohistochemistry in samples from the Chinese soft-shelled turtle. The testis expressed LC3-II protein, which was located within spermatids at different stages of differentiation and indicated active autophagy. TEM showed that numerous autophagosomes were developed inside spermatids. Many endoplasmic reticulum (ER) were transferred into a special “Chrysanthemum flower center” (CFC) in which several double-layer isolation membranes (IM) were formed and extended. The elongated IM always engulfed some cytoplasm and various structures. Narrow tubules connected the ends of multiple ER and the CFC. The CFC was more developed in spermatids with compact nuclei than in spermatids with granular nuclei. An IM could also be transformed from a single ER. Sometimes an IM extended from a trans-Golgi network and wrapped different structures. The plasma membrane of the spermatid invaginated to form vesicles that were distributed among various endosomes around the CFC during spermiogenesis. All this cellular evidence suggests that, in vivo, IM was developed mainly by CFC produced from ER within differentiating spermatids during spermiogenesis. Vesicles from Golgi complexes, plasma membranes and endosomes might also be the sources of the autophagosome membrane.
Collapse
Affiliation(s)
- Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xiaoya Chu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Nisar Ahmad
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Quanfu Li
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lisi Hu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
27
|
Hu L, Li Q, Yang P, Gandahi JA, Arain TS, Le Y, Zhang Q, Liu T, Y Waqas M, Ahmad N, Liu Y, Chen Q. Expression of TLR2/4 on Epididymal Spermatozoa of the Chinese Soft-Shelled Turtle Pelodiscus sinensis During the Hibernation Season. Anat Rec (Hoboken) 2016; 299:1578-1584. [PMID: 27532861 DOI: 10.1002/ar.23463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/07/2016] [Accepted: 06/09/2016] [Indexed: 12/23/2022]
Abstract
Spermatozoa are known to be stored in the epididymis of the Chinese soft-shelled turtle Pelodiscus sinensis for long periods during hibernation, but the mechanism that underlies the sperm storage is poorly understood. This study was carried out to confirm the presence of TLR2/4 (Toll-like receptor 2/4) in epididymal spermatozoa during the hibernation season and to analyze whether TLRs play a role in sperm storage. The structure and ultrastructure of a spermatozoon during the hibernation stage were investigated using light- and transmission electron-microscopy. RT-PCR was used to analyze mRNA expression, while protein expression was determined via Western blot. TLR2/4 mRNA and proteins were detected in spermatozoa. Immunofluorescence staining was used to confirm TLR2/4 localization in the spermatozoon, and TLR2/4 were localized in the midpiece and the posterior segment of the head of the spermatozoon, which corresponded to the cytoplasmic droplets (CDs) of the turtle spermatozoon. As TLRs play critical roles in detecting and responding to invading pathogens, this study provided molecular evidence that TLR2/4 might contribute to sperm storage in the epididymides. Anat Rec, 299:1578-1584, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisi Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Quanfu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ping Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jameel A Gandahi
- Department of Anatomy and Histology, Sindh Agriculture University, Tandojam, Pakistan
| | - Tamseel S Arain
- Department of Anatomy and Histology, Sindh Agriculture University, Tandojam, Pakistan
| | - Yuan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tengfei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Muhammad Y Waqas
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Nisar Ahmad
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiusheng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
28
|
Lebelo SL, Horst GVD. Ultrastructural Changes Occurring During Spermiogenesis of the Vervet Monkey, Chlorocebus aethiops. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajas.2016.247.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Waqas MY, Liu T, Yang P, Ahmed N, Zhang Q, Hu L, Hong C, Chen Q. Morphological and ultrastructural study of the efferent ductules in the Chinese soft-shelled turtle Pelodiscus sinensis. ACTA ACUST UNITED AC 2015; 325:122-31. [PMID: 26700193 DOI: 10.1002/jez.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/07/2022]
Abstract
Comparative study of the turtle excurrent duct system increases our understanding the evolution of sperm motility and fertility maintenance in higher vertebrates. Therefore, in this study we observed the histology and ultrastructure organization of efferent ductules in the Pelodiscus sinensis using light and transmission electron microscopy. The efferent ductules are extra- testicular and 22-28 in number originate from rete testis. The epithelium is entirely composed of two types of cells, the predominant non-ciliated and ciliated cells. The ciliated cells have long cilia that protrude into the lumen to form a meshwork. These cells associated with clusters of mitochondria in the supranuclear cytoplasm and possess coated vesicles, vacuole, intracellular spaces, and junction complexes. Ciliated cells in the proximal portion of the ductules contain an endocytic apparatus with coated pits and tubules in the apical cytoplasm. Interdigitations and lipid droplets are predominantly present around the nuclei of these cells. The non-ciliated cells have clusters of mitochondria present in both the supranuclear and perinuclear cytoplasm whereas, the nuclei of these cells are lightly stained. Moreover, the contour of the epithelium towards lumen is irregular as it has a deep indentation. The apical cytoplasm goes deep into the lumen to form cytoplasmic processes. This is the first study to describe the detailed features of efferent ductules in Pelodiscus sinensis with, special focus on the morphology of ciliated cells, as these cells are involved in the mixing of luminal fluid and transport of spermatozoa towards the distal region.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Tengfei Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Nisar Ahmed
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lisi Hu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Chen Hong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qiusheng Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
30
|
Zhang L, Yang P, Bian X, Zhang Q, Ullah S, Waqas Y, Chen X, Liu Y, Chen W, Le Y, Chen B, Wang S, Chen Q. Modification of sperm morphology during long-term sperm storage in the reproductive tract of the Chinese soft-shelled turtle, Pelodiscus sinensis. Sci Rep 2015; 5:16096. [PMID: 26537569 PMCID: PMC4633597 DOI: 10.1038/srep16096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/09/2015] [Indexed: 12/28/2022] Open
Abstract
Sperm storage in vivo extends the time window for fertilisation in several animal species, from a few days to several years. The underlying storage mechanisms, however, are largely unknown. In this study, spermatozoa from the epididymis and oviduct of Chinese soft-shelled turtles were investigated to identify potentially relevant morphological features and transformations at different stages of sperm storage. Large cytoplasmic droplets (CDs) containing lipid droplets (LDs) were attached to the midpiece of most spermatozoa in the epididymis, without migrating down the sperm tail. However, they were absent from the oviductal spermatozoa, suggesting that CDs with LDs may be a source of endogenous energy for epididymal spermatozoa. The onion-like mitochondria recovered their double-membrane morphology, with typical cristae, within the oviduct at a later stage of storage, thus implying that mitochondrial metabolism undergoes alterations during storage. Furthermore, a well developed fibrous sheath on the long principal piece was the integrating ultrastructure for glycolytic enzymes and substrates. These novel morphological characteristics may allow turtle spermatozoa to use diverse energy metabolism pathways at different stages of storage.
Collapse
Affiliation(s)
- Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaowu Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
31
|
Waqas MY, Lisi H, Yang P, Ullah S, Zhang L, Zhang Q, Li Q, Ahmad N, Chen W, Zeshan B, Chen Q. Novel cellular evidence of oviduct secretions in the Chinese soft-shelled turtle Pelodiscus sinensis. ACTA ACUST UNITED AC 2015; 323:655-65. [PMID: 26350585 DOI: 10.1002/jez.1957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023]
Abstract
The oviduct is the location of fertilization and sperm storage. We examined the ultrastructure of the oviduct epithelium and its glandular secretions in the isthmus, uterus and vagina of Chinese soft-shelled turtle Pelodiscus sinensis using light and transmission electron microscopy. The epithelium in these segments is lined with ciliated, secretory and other cells; the first two cell types span the entire epithelium, with secretory cells being predominant. The ciliated cells are characterized by the presence of a secretory vacuole that releases apocrine secretions into the lumen, whereas the secretory cells contain typical biphasic granules with both dark and light aspects. The third type of cells observed have wider proximal portion, abundant mitochondria, vacuoles, and narrow nuclei. The storage of spermatozoa is restricted to the isthmus, uterus, and vagina. In addition, the gland cells show prominent features, including the presence of granules of different shapes, sizes, and electron densities. The synthesis of these granules is described for the first time in this study. Mitochondria appear to play an important role in the formation of dense granules, the rough endoplasmic reticulum and microfilaments may also play a role in the maturation of these dense granules. After completing the maturation process, these granules are released into the lumen of the gland cells.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Hu Lisi
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shakeeb Ullah
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Linli Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Quanfu Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Nisar Ahmad
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Wei Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Basit Zeshan
- Molecular Biology Laboratory, Faculty of Veterinary Medicine, University Malaysia Kelantan, Malaysia
| | - Qiusheng Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
32
|
Chen S, Zhang L, Le Y, Waqas Y, Chen W, Zhang Q, Ullah S, Liu T, Hu L, Li Q, Yang P. Sperm storage and spermatozoa interaction with epithelial cells in oviduct of Chinese soft-shelled turtle, Pelodiscus sinensis. Ecol Evol 2015; 5:3023-30. [PMID: 26357535 PMCID: PMC4559046 DOI: 10.1002/ece3.1575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/20/2023] Open
Abstract
Spermatozoa are known to be stored within the female genital tract after mating in various species to optimize timing of reproductive events such as copulation, fertilization, and ovulation. The mechanism supporting long-term sperm storage is still unclear in turtles. The aim of this study was to investigate the interaction between the spermatozoa and oviduct in Chinese soft-shelled turtle by light and electron microscopy to reveal the potential cytological mechanism of long-term sperm storage. Spermatozoa were stored in isthmus, uterine, and vagina of the oviduct throughout the year, indicating long-term sperm storage in vivo. Sperm heads were always embedded among the cilia and even intercalated into the apical hollowness of the ciliated cells in the oviduct mucosal epithelium. The stored spermatozoa could also gather in the gland conduit. There was no lysosome distribution around the hollowness of the ciliated cell, suggesting that the ciliated cells of the oviduct can support the spermatozoa instead of phagocytosing them in the oviduct. Immune cells were sparse in the epithelium and lamina propria of oviduct, although few were found inside the blood vessel of mucosa, which may be an indication of immune tolerance during sperm storage in the oviduct of the soft-shelled turtle. These characteristics developed in the turtle benefited spermatozoa survival for a long time as extraneous cells in the oviduct of this species. These findings would help to improve the understanding of reproductive regularity and develop strategies of species conservation in the turtle. The Chinese soft-shelled turtle may be a potential model for uncovering the mechanism behind the sperm storage phenomenon.
Collapse
Affiliation(s)
- Shaofan Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Lisi Hu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Quanfu Li
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, Jiangsu, 210095, China
| |
Collapse
|
33
|
Zhang L, Yang P, Liu Y, Bian X, Ullah S, Zhang Q, Chen W, Le Y, Chen B, Lin J, Gao C, Hu J, Chen Q. Pre-spermiogenic initiation of flagellar growth and correlative ultrastructural observations on nuage, nuclear and mitochondrial developmental morphology in the zebrafish Danio rerio. Micron 2014; 66:1-8. [PMID: 25080270 DOI: 10.1016/j.micron.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
The microstructural and ultrastructural changes of germ cells during spermatogenesis of zebrafish (Danio rerio) were examined using light microscopy (LM) and transmission electron microscopy (TEM). Generally the process of spermatogenesis in zebrafish is similar to that of other teleosts, however, here we describe some peculiar features of zebrafish spermatogenic cells which have a limited report in this species. (1) The basic events of spermiogenesis are asynchronous, location of flagellum finished in initial stage, while chromatin condensation sharply occurred in intermediate stage and elimination of excess cytoplasm mainly taken place in final stages. (2) Surprisingly, the cilia or initial flagellae are created in spermatocytes, approach toward the nucleus of early stage spermatids, and then the centrioles depress into nuclear fossa and change their orientation to each other from right angle to obtuse angle about 125°. (3) During spermatogenesis, the chromatin compaction performs in a distinctive pattern, condensed heterogeneously from granular into chromatin clumps with central electron-lucent areas, round or long, which diminished to small nuclear vacuoles in spermatozoa. This finding demonstrates the origin of nuclear vacuoles in zebrafish spermatozoa for the first time. (4) Nuages are observed in both spermatogonia and spermatocytes. They are connected with the mitochondria and nuclear membrane, and are even located in the perinuclear spaces of spermatogonia nuclei. (5) Mitochondrial morphology and distribution shows diversity in different germ cells. The condensed mitochondria appear in pachytene spermatocytes, and mitochondria including membrane conglomerate exist in both spermatocytes and spermatids. This study was undertaken in order to disclose specific spermatogenic cells features in zebrafish that could be helpful for understanding the correlative function in this model species.
Collapse
Affiliation(s)
- Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jinxing Lin
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Cheng Gao
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Jianhua Hu
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
34
|
Al-Dokhi O, Ahmed M, Al-Dosary A, Al-Sadoon MK. Ultrastructural study of spermiogenesis in a rare desert amphisbaenian Diplometopon zarudnyi. C R Biol 2013; 336:473-8. [PMID: 24246888 DOI: 10.1016/j.crvi.2013.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Spermiogenesis, in particular the head differentiation of Diplometopon zarudnyi, was studied at the ultrastructural level by Transmission Electron Microscope (TEM). The process includes acrosomal vesicle development, nuclear elongation, chromatin condensation and exclusion of excess cytoplasm. In stage I, the proacrosomal vesicle occurs next to a shallow fossa of the nucleus, and a dense acrosomal granule forms beneath it. This step commences with an acrosome vesicle forming from Golgi transport vesicles; simultaneously, the nucleus begins to move eccentrically. In stage II, the round proacrosomal vesicle is flattened by projection of the nuclear fossa, and the dense acrosomal granule diffuses into the vesicle as the fibrous layer forms the subacrosomal cone. Circular manchettes surrounded by mitochondria develop around the nucleus, and the chromatin coagulates into small granules. The movement of the nucleus causes rearrangement of the cytoplasm. The nucleus has uniform diffuse chromatin with small indices of heterochromatin. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. In stage III, the front of the elongating nucleus protrudes out of the spermatid and is covered by the flat acrosome; coarse granules replace the small ones within the nucleus. One endonuclear canal is present where the perforatorium resides. In stage IV, the chromatin concentrates to dense homogeneous phase. The circular manchette is reorganized longitudinally. The Sertoli process covers the acrosome and the residues of the cytoplasmic lobes are removed. In stage V, the sperm head matures.
Collapse
Affiliation(s)
- Othman Al-Dokhi
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
35
|
Bian X, Zhang L, Yang L, Yang P, Ullah S, Zhang Q, Chen Q. Ultrastructure of epididymal epithelium and its interaction with the sperm in the soft-shelled turtle Pelodiscus sinensis. Micron 2013; 54-55:65-74. [PMID: 24041582 DOI: 10.1016/j.micron.2013.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
The epididymis of the soft-shelled turtle Pelodiscus sinensis was examined under light and transmission electron microscopes to determine the morphological characteristics, as well as their changes at different phases of the seasonal reproductive cycle. Three distinct regions, viz., cranial, middle and caudal were identified in the epididymis based on anatomical characteristics. The epididymal epithelium consists of five different cell types: principal, narrow, apical, clear and basal cells. Principal cells, which are the most abundant, together with basal cells are present along the entire length. Ultrastructural evidence suggests that all of the principal cells in each of the regions function in both absorption and secretion. Narrow cells and apical cells are rare and only confined to the cranial region. The clear cells, for the first time reported in the turtle epididymis, are confined to middle and caudal regions; these cells showed strong PAS-positive granulation in apical position, and secretory activity by a holocrine process, especially in the middle region. There was a significant difference in the epithelium height of all the regions between the reproductive season and the non-reproductive season. Sperm are stored in the epididymis throughout the year. Apart from the mature spermatozoa, immature spermatozoa with normal morphology are also observed. Under TEM, the immature spermatozoa showed a large amount of cytoplasm located eccentrically on the midpiece wrapped by plasma membrane, with some cytoplasm extended to the posterior of the head. Furthermore, the interactions of sperm with the epididymal epithelium were observed. Some sperm are associated with the secretory material in the lumen; other sperm are inserted into the intercellular space between the epithelial cells.
Collapse
Affiliation(s)
- Xunguang Bian
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China; School of Life Science and Technology, Yancheng Teachers University, Yancheng, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Bian X, Gandahi JA, Liu Y, Yang P, Liu Y, Zhang L, Zhang Q, Chen Q. The ultrastructural characteristics of the spermatozoa stored in the cauda epididymidis in Chinese soft-shelled turtle Pelodiscus sinensis during the breeding season. Micron 2012; 44:202-9. [PMID: 22858349 DOI: 10.1016/j.micron.2012.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 12/12/2022]
Abstract
The ultrastructure of spermatozoa in cauda epididymidis of soft-shelled turtle, P. sinensis during breeding season was investigated by light microscopy (LM) and electron microscopy (TEM and SEM). The mature spermatozoa appeared elongated and filiform. In general, the turtle spermatozoon contains a characteristic head, midpiece and tail, similar in morphology to that of birds, amphibians and other reptiles. However, several features are unique. These include (1) three intranuclear tubules containing dense core extend from the subacrosomal cone through the rostral nucleus and deep into the nuclear body; (2) the midpiece is composed of 40 mitochondria which present a staggered rings-and-columns arrangement (8 parallel rings and 5 columns); (3) unusual spherical mitochondria with a dense core are surrounded by 8-10 concentric layers of cristae. Surprisingly, about 21.4±3.6 percent immature spermatozoa with normal morphology are also observed in this season. Different from the mature spermatozoa, a variable amount of cytoplasm droplets are attached to the immature spermatozoa under SEM. Some spermatozoa still show the tail coiled tightly around the cytoplasm. These spermatozoa in transverse sections under TEM, showed a large amount of cytoplasm wrapped by plasma membrane; even some free mitochondria and higher electron density material still seen in the cytoplasm. Among the immature spermatozoa, most of them possess a cytoplasmic droplet which is located eccentrically on the midpiece, and contains a lot of lipid droplets in addition to hollow vesicles. Lipid droplets are closely associated with mitochondrial membranes and may function in the formation or degradation of mitochondria. These immature spermatozoa may be the dormant cells, but whether or not they can fertilize the ovum or not is unknown. Thus, in the present study we hypothesized that the cauda epididymidis might be involved in the sperm maturation in this species.
Collapse
Affiliation(s)
- Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Beguelini MR, Puga CC, Taboga SR, Morielle-Versute E. Ultrastructure of spermatogenesis in the white-lined broad-nosed bat, Platyrrhinus lineatus (Chiroptera: Phyllostomidae). Micron 2011; 42:586-99. [DOI: 10.1016/j.micron.2011.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 11/17/2022]
|
38
|
Gribbins KM. Reptilian spermatogenesis: A histological and ultrastructural perspective. SPERMATOGENESIS 2011; 1:250-269. [PMID: 22319673 PMCID: PMC3271667 DOI: 10.4161/spmg.1.3.18092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 12/14/2022]
Abstract
Until recently, the histology and ultrastructural events of spermatogenesis in reptiles were relatively unknown. Most of the available morphological information focuses on specific stages of spermatogenesis, spermiogenesis, and/or of the mature spermatozoa. No study to date has provided complete ultrastructural information on the early events of spermatogenesis, proliferation and meiosis in class Reptilia. Furthermore, no comprehensive data set exists that describes the ultrastructure of the entire ontogenic progression of germ cells through the phases of reptilian spermatogenesis (mitosis, meiosis and spermiogenesis). The purpose of this review is to provide an ultrastructural and histological atlas of spermatogenesis in reptiles. The morphological details provided here are the first of their kind and can hopefully provide histological information on spermatogenesis that can be compared to that already known for anamniotes (fish and amphibians), birds and mammals. The data supplied in this review will provide a basic model that can be utilized for the study of sperm development in other reptiles. The use of such an atlas will hopefully stimulate more interest in collecting histological and ultrastructural data sets on spermatogenesis that may play important roles in future nontraditional phylogenetic analyses and histopathological studies in reptiles.
Collapse
Affiliation(s)
- Kevin M Gribbins
- Department of Biology; Wittenberg University; Springfield, OH USA
| |
Collapse
|
39
|
Gribbins KM, Siegel DS, Anzalone ML, Jackson DP, Venable KJ, Rheubert JL, Elsey RM. Ultrastructure of spermiogenesis in the American alligator, Alligator mississippiensis (Reptilia, Crocodylia, Alligatoridae). J Morphol 2010; 271:1260-71. [DOI: 10.1002/jmor.10872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Zhang L, Han XK, Qi YY, Liu Y, Chen QS. Seasonal effects on apoptosis and proliferation of germ cells in the testes of the Chinese soft-shelled turtle, Pelodiscus sinensis. Theriogenology 2008; 69:1148-58. [PMID: 18377973 DOI: 10.1016/j.theriogenology.2008.01.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 01/07/2008] [Accepted: 01/27/2008] [Indexed: 11/18/2022]
Abstract
To elucidate the processes involved in the spatial and temporal maturation of spermatogenic cells in the testes of the soft-shelled turtle, Pelodiscus sinensis, we used a histological morphology method, TdT-mediated dUTP nick end-labeling (TUNEL) assay, the proliferating-cell nuclear antigen (PCNA), and electron microscopy. Seminiferous tubules from 100 turtles, normal for size of testes and semen quality, were collected during 10 months of a complete annual cycle (10 turtles/month). The seminiferous epithelium was spermatogenically active through the summer and fall, but quiescent throughout the rest of the year; germ cells progressed through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. The TUNEL method detected few apoptotic cells in spermatogenic testis, with much larger numbers during the spermatogenically quiescent phase. Spermatocytes were the most common germ cell types labeled by the TUNEL assay (a few spermatogonia were also labeled). Apoptotic spermatocytes had membrane blebbing and chromatin condensation during the resting phase, but not during active spermatogenesis. We inferred that accelerated apoptosis of spermatogonia and spermatocytes partly accounted for germ cell loss during the nonspermatogenic phase. The PCNA was expressed in nuclei of spermatogonia and primary spermatocytes during the spermatogenically active phase. During the regressive phase, PCNA-positive cells also included spermatogonia and spermatocytes, but the number of positive spermatocytes was less than that during the spermatogenically active phase. We concluded that seasonal variations in spermatogenesis in the soft-shelled turtle were both stage- and process-specific.
Collapse
Affiliation(s)
- L Zhang
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 PR China
| | | | | | | | | |
Collapse
|