1
|
Hutchison A, Sibanda C, Hulme M, Anwar S, Gur B, Thomas R, Lowery LA. Re-examining the evidence that ivermectin induces a melanoma-like state in Xenopus embryos. Bioessays 2024; 46:e2300143. [PMID: 37985957 PMCID: PMC10841629 DOI: 10.1002/bies.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Modeling metastasis in animal systems has been an important focus for developing cancer therapeutics. Xenopus laevis is a well-established model, known for its use in identifying genetic mechanisms underlying diseases and disorders in humans. Prior literature has suggested that the drug, ivermectin, can be used in Xenopus to induce melanocytes to convert into a metastatic melanoma-like state, and thus could be ideal for testing possible melanoma therapies in vivo. However, there are notable inconsistencies between ivermectin studies in Xenopus and the application of ivermectin in mammalian systems, that are relevant to cancer and melanoma research. In this review, we examine the ivermectin-induced phenotypes in Xenopus, and we explore the current uses of ivermectin in human research. We conclude that while ivermectin may be a useful drug for many biomedical purposes, it is not ideal to induce a metastatic melanocyte phenotype in Xenopus for testing the effects of potential melanoma therapeutics.
Collapse
Affiliation(s)
- Ainsley Hutchison
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Chiedza Sibanda
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mackenzie Hulme
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Anwar
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Bengisu Gur
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Rachael Thomas
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Silva A, Barcessat AR, Gonçalves R, Landre C, Brandão L, Nunes L, Feitosa H, Costa L, Silva R, de Lima E, Monteiro ES, Rinaldi A, Fontani V, Rinaldi S. REAC Neurobiological Modulation as a Precision Medicine Treatment for Fibromyalgia. J Pers Med 2023; 13:902. [PMID: 37373891 DOI: 10.3390/jpm13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Fibromyalgia syndrome (FS) is a disorder characterized by widespread musculoskeletal pain and psychopathological symptoms, often associated with central pain modulation failure and dysfunctional adaptive responses to environmental stress. The Radio Electric Asymmetric Conveyer (REAC) technology is a neuromodulation technology. The aim of this study was to evaluate the effects of some REAC treatments on psychomotor responses and quality of life in 37 patients with FS. Tests were conducted before and after a single session of Neuro Postural Optimization and after a cycle of 18 sessions of Neuro Psycho Physical Optimization (NPPO), using evaluation of the functional dysmetria (FD) phenomenon, Sitting and Standing (SS), Time Up and Go (TUG) tests for motor evaluation, Fibromyalgia Impact Questionnaire (FIQ) for quality of life. The data were statistically analyzed, and the results showed a statistically significant improvement in motor response and quality of life parameters, including pain, as well as reduced FD measures in all participants. The study concludes that the neurobiological balance established by the REAC therapeutic protocols NPO and NPPO improved the dysfunctional adaptive state caused by environmental and exposomal stress in FS patients, leading to an improvement in psychomotor responses and quality of life. The findings suggest that REAC treatments could be an effective approach for FS patients, reducing the excessive use of analgesic drugs and improving daily activities.
Collapse
Affiliation(s)
- Analízia Silva
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Ana Rita Barcessat
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Rebeca Gonçalves
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Cleuton Landre
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Lethícia Brandão
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Lucas Nunes
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Hyan Feitosa
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Leonardo Costa
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Raquel Silva
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Emanuel de Lima
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Ester Suane Monteiro
- Department of Biological and Health Sciences, Federal University of Amapá-UNIFAP, Macapá 68903-419, Brazil
| | - Arianna Rinaldi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
| | - Vania Fontani
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Salvatore Rinaldi
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| |
Collapse
|
3
|
Rinaldi A, Marins Martins MC, De Almeida Martins Oliveira AC, Rinaldi S, Fontani V. Improving Functional Abilities in Children and Adolescents with Autism Spectrum Disorder Using Non-Invasive REAC Neuro Psycho Physical Optimization Treatments: A PEDI-CAT Study. J Pers Med 2023; 13:jpm13050792. [PMID: 37240963 DOI: 10.3390/jpm13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects communication, social interaction, and behavior. Non-invasive neuromodulation techniques, such as radioelectric asymmetric conveyer (REAC) technology, have gained attention for their potential to improve the endogenous bioelectric activity (EBA) and neurobiological processes underlying ASD. Neuro Postural Optimization (NPO) and Neuro Psycho Physical Optimization (NPPO) treatments are non-invasive and painless neuromodulation treatments that utilize REAC technology and have shown promising results in improving the symptoms of ASD. This study aimed to evaluate the effects of NPO and NPPO treatments on functional abilities in children and adolescents with ASD using the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT). The study consisted of 27 children and adolescents with ASD who underwent a single session of NPO followed by 18 sessions of NPPO treatment over a period of one week. The results showed significant improvements in the children's and adolescents' functional abilities across all domains of the PEDI-CAT. These findings suggest that NPO and NPPO may be effective treatments for improving functional abilities in children and adolescents with ASD.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Márcia C Marins Martins
- International Scientific Society of Neuro Psycho Physical Optimization with REAC Technology, Brazilian Branch, Sao Paulo 01000-000, Brazil
| | - Ana C De Almeida Martins Oliveira
- International Scientific Society of Neuro Psycho Physical Optimization with REAC Technology, Brazilian Branch, Sao Paulo 01000-000, Brazil
| | - Salvatore Rinaldi
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Vania Fontani
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| |
Collapse
|
4
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Sun G, Li J, Zhou W, Hoyle RG, Zhao Y. Electromagnetic interactions in regulations of cell behaviors and morphogenesis. Front Cell Dev Biol 2022; 10:1014030. [DOI: 10.3389/fcell.2022.1014030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that the cellular electromagnetic field regulates the fundamental physics of cell biology. The electromagnetic oscillations and synchronization of biomolecules triggered by the internal and external pulses serve as the physical basis of the cellular electromagnetic field. Recent studies have indicated that centrosomes, a small organelle in eukaryotic cells that organize spindle microtubules during mitosis, also function as a nano-electronic generator in cells. Additionally, cellular electromagnetic fields are defined by cell types and correlated to the epigenetic status of the cell. These interactions between tissue-specific electromagnetic fields and chromatin fibers of progenitor cells regulate cell differentiation and organ sizes. The same mechanism is implicated in the regulation of tissue homeostasis and morphological adaptation in evolution. Intercellular electromagnetic interactions also regulate the migratory behaviors of cells and the morphogenesis programs of neural circuits. The process is closely linked with centrosome function and intercellular communication of the electromagnetic fields of microtubule filaments. Clearly, more and more evidence has shown the importance of cellular electromagnetic fields in regulatory processes. Furthermore, a detailed understanding of the physical nature of the inter- and intracellular electromagnetic interactions will better our understanding of fundamental biological questions and a wide range of biological processes.
Collapse
|
6
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
7
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
8
|
Sofía M, Sebastián R, Emanuel C, Branham MT, Marzese DM, Matthew S, De Blas G, Rodolfo A, Michael L, María R. When left does not seem right: epigenetic and bioelectric differences between left- and right-sided breast cancer. Mol Med 2022; 28:15. [PMID: 35123413 PMCID: PMC8817536 DOI: 10.1186/s10020-022-00440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background During embryogenesis lateral symmetry is broken, giving rise to Left/Right (L/R) breast tissues with distinct identity. L/R-sided breast tumors exhibit consistently-biased incidence, gene expression, and DNA methylation. We postulate that a differential L/R tumor-microenvironment crosstalk generates different tumorigenesis mechanisms. Methods We performed in-silico analyses on breast tumors of public datasets, developed xenografted tumors, and conditioned MDA-MB-231 cells with L/R mammary extracts. Results We found L/R differential DNA methylation involved in embryogenic and neuron-like functions. Focusing on ion-channels, we discovered significant L/R epigenetic and bioelectric differences. Specifically, L-sided cells presented increased methylation of hyperpolarizing ion channel genes and increased Ca2+ concentration and depolarized membrane potential, compared to R-ones. Functional consequences were associated with increased proliferation in left tumors, assessed by KI67 expression and mitotic count. Conclusions Our findings reveal considerable L/R asymmetry in cancer processes, and suggest specific L/R epigenetic and bioelectric differences as future targets for cancer therapeutic approaches in the breast and many other paired organs. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00440-5.
Collapse
|
9
|
Morphogenic fields: A coming of age. Explore (NY) 2021; 18:187-194. [PMID: 33903061 DOI: 10.1016/j.explore.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Morphogenesis, the coming-into-being of living organisms, was first described in the 4th century BC by Aristotle, progenitor of biology and embryology. Over the centuries it has been the subject of innumerable commentaries by philosophers, theologians and scientists but no consensus has ever been reached as to its causes. In the late 19th century, along with the emergence of cellular and molecular biology, embryology underwent a renaissance and became a topic of great interest and research. Early on the discipline divided into two opposing factions, those who attempted to explain fetal development on the basis of cellular and molecular mechanisms, and those who invoked the presence of organizing fields. The morphogenic field was first articulated in the early decades of the 20th century by multiple researchers independently of each other. The field became an extremely useful conceptual tool by which to explain a wide range of developmental phenomena. While embryology and genetics originally formed a unified discipline, during the 1930s 40 s geneticists became progressively skeptical of the field notion. The discovery of the DNA structure by Watson and Crick in the early 1950s decisively settled matters and thereafter the two disciplines pursued different lines of inquiry. After World War II embryology and the field concept went into a decades-long decline. By the 1980s an increasing number of scientists began to critically reexamine the morphogenic field concept and it underwent a second renaissance. In this paper I examine the development and evolution of the field concept, both experimentally and conceptually, and highlight the failure of genetic mechanisms to explain morphogenesis. I provide three instances from the medical literature of developmental phenomena which are only explainable on the basis of morphogenic field dynamics and argue that the field concept must be readmitted into mainstream scientific discourse.
Collapse
|
10
|
Pai VP, Cervera J, Mafe S, Willocq V, Lederer EK, Levin M. HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Front Cell Neurosci 2020; 14:136. [PMID: 32528251 PMCID: PMC7264377 DOI: 10.3389/fncel.2020.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic exposure to the teratogen nicotine results in brain defects, by disrupting endogenous spatial pre patterns necessary for normal brain size and patterning. Extending prior work in Xenopus laevis that showed that misexpression of ion channels can rescue morphogenesis, we demonstrate and characterize a novel aspect of developmental bioelectricity: channel-dependent repair signals propagate long-range across the embryo. We show that distal HCN2 channel misexpression and distal transplants of HCN2-expressing tissue, non-cell-autonomously reverse profound defects, rescuing brain anatomy, gene expression, and learning. Moreover, such rescue can be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. We present a simple, versatile computational model of bioelectrical signaling upstream of key patterning genes such as OTX2 and XBF1, which predicts long-range repair induced by ion channel activity, and experimentally validate the predictions of this model. Our results and quantitative model identify a powerful morphogenetic control mechanism that could be targeted by future regenerative medicine exploiting ion channel modulating drugs approved for human use.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Javier Cervera
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Salvador Mafe
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Emma K Lederer
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
11
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
12
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
13
|
Kakebeen AD, Wills AE. More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration. Front Physiol 2019; 10:81. [PMID: 30800076 PMCID: PMC6376490 DOI: 10.3389/fphys.2019.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/19/2023] Open
Abstract
The remarkable regenerative capabilities of amphibians have captured the attention of biologists for centuries. The frogs Xenopus laevis and Xenopus tropicalis undergo temporally restricted regenerative healing of appendage amputations and spinal cord truncations, injuries that are both devastating and relatively common in human patients. Rapidly expanding technological innovations have led to a resurgence of interest in defining the factors that enable regenerative healing, and in coupling these factors to human therapeutic interventions. It is well-established that early embryonic signaling pathways are critical for growth and patterning of new tissue during regeneration. A growing body of research now indicates that early physiological injury responses are also required to initiate a regenerative program, and that these differ in regenerative and non-regenerative contexts. Here we review recent insights into the biophysical, biochemical, and epigenetic processes that underlie regenerative healing in amphibians, focusing particularly on tail and limb regeneration in Xenopus. We also discuss the more elusive potential mechanisms that link wounding to tissue growth and patterning.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
14
|
Al Haj Baddar NW, Chithrala A, Voss SR. Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn 2018; 248:189-196. [PMID: 30569660 DOI: 10.1002/dvdy.5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/27/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Among vertebrates, salamanders are unparalleled in their ability to regenerate appendages throughput life. However, little is known about early signals that initiate regeneration in salamanders. RESULTS Ambystoma mexicanum embryos were administered tail amputations to investigate the timing of reactive oxygen species (ROS) production and the requirement of ROS for regeneration. ROS detected by dihydroethidium increased within minutes of axolotl tail amputation and levels remained high for 24 hr. Pharmacological inhibition of ROS producing enzymes with diphenyleneiodonium chloride (DPI) and VAS2870 reduced ROS levels. Furthermore, DPI treatment reduced cellular proliferation and inhibited tail outgrowth. CONCLUSIONS The results show that ROS levels increase in response to injury and are required for tail regeneration. These findings suggest that ROS provide instructive, if not initiating cues, for salamander tail regeneration. Developmental Dynamics 248:189-196, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nour W Al Haj Baddar
- Department of Biology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | | | - S Randal Voss
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky.,Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Morioka S, Mohanty-Hejmadi P, Yaoita Y, Tazawa I. Homeotic transformation of tails into limbs in anurans. Dev Growth Differ 2018; 60:365-376. [PMID: 30133711 DOI: 10.1111/dgd.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Anuran tadpoles can regenerate their tails after amputation. However, they occasionally form ectopic limbs instead of the lost tail part after vitamin A treatment. This is regarded as an example of a homeotic transformation. In this phenomenon, the developmental fate of the tail blastema is apparently altered from that of a tail to that of limbs, indicating a realignment of positional information in the blastema. Morphological observations and analyses of the development of skeletal elements during the process suggest that positional information in the blastema is rewritten from tail to trunk specification under the influence of vitamin A, resulting in limb formation. Despite the extensive information gained from morphological observations, a comprehensive understanding of this phenomenon also requires molecular data. We review previous studies related to anuran homeotic transformation. The findings of these studies provide a basis for evaluating major hypotheses and identifying molecular data that should be prioritized in future studies. Finally, we argue that positional information for the tail blastema changes to that for a part of the trunk, leading to homeotic transformations. To suggest this hypothesis, we present published data that favor the rewriting of positional information.
Collapse
Affiliation(s)
- Sho Morioka
- Amphibian Research Center, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | | | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
16
|
Birkholz TR, Van Huizen AV, Beane WS. Staying in shape: Planarians as a model for understanding regenerative morphology. Semin Cell Dev Biol 2018; 87:105-115. [PMID: 29738883 DOI: 10.1016/j.semcdb.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
A key requirement of tissue/organ regeneration is the ability to induce appropriate shape in situ. Regenerated structures need to be integrated with pre-existing ones, through the combined regulation of new tissue growth and the scaling of surrounding tissues. This requires a tightly coordinated control of individual cell functions such as proliferation and stem cell differentiation. While great strides have been made in elucidating cell growth and differentiation mechanisms, how overall shape is generated during regeneration remains unknown. This is because a significant gap remains in our understanding of how cell behaviors are coordinated at the level of tissues and organs. The highly regenerative planarian flatworm has emerged as an important model for defining and understanding regenerative shape mechanisms. This review provides an overview of the main processes known to regulate tissue and animal shape during planarian regeneration: adult stem cell regulation, the reestablishment of body axes, tissue remodeling in pre-existing structures, organ scaling and the maintenance of body proportion, and the bioelectrical regulation of animal morphology. In order for the field to move forward, it will be necessary to identify shape mutants as a means to uncover the molecular mechanisms that synchronize all these separate processes to produce the worm's final regenerative shape. This knowledge will also aid efforts to define the mechanisms that control the termination of regenerative processes.
Collapse
Affiliation(s)
- Taylor R Birkholz
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Alanna V Van Huizen
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Wendy S Beane
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
17
|
Silver BB, Nelson CM. The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Front Cell Dev Biol 2018; 6:21. [PMID: 29560350 PMCID: PMC5845671 DOI: 10.3389/fcell.2018.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex, heterogeneous group of diseases that can develop through many routes. Broad treatments such as chemotherapy destroy healthy cells in addition to cancerous ones, but more refined strategies that target specific pathways are usually only effective for a limited number of cancer types. This is largely due to the multitude of physiological variables that differ between cells and their surroundings. It is therefore important to understand how nature coordinates these variables into concerted regulation of growth at the tissue scale. The cellular microenvironment might then be manipulated to drive cells toward a desired outcome at the tissue level. One unexpected parameter, cellular membrane voltage (Vm), has been documented to exert control over cellular behavior both in culture and in vivo. Manipulating this fundamental cellular property influences a remarkable array of organism-wide patterning events, producing striking outcomes in both tumorigenesis as well as regeneration. These studies suggest that Vm is not only a key intrinsic cellular property, but also an integral part of the microenvironment that acts in both space and time to guide cellular behavior. As a result, there is considerable interest in manipulating Vm both to treat cancer as well as to regenerate organs damaged or deteriorated during aging. However, such manipulations have produced conflicting outcomes experimentally, which poses a substantial barrier to understanding the fundamentals of bioelectrical reprogramming. Here, we summarize these inconsistencies and discuss how the mechanical microenvironment may impact bioelectric regulation.
Collapse
Affiliation(s)
- Brian B. Silver
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
18
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
19
|
Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 2017; 7:19575-88. [PMID: 26988909 PMCID: PMC4991402 DOI: 10.18632/oncotarget.8036] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023] Open
Abstract
It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations.
Collapse
|
20
|
Pezzulo G, Levin M. Top-down models in biology: explanation and control of complex living systems above the molecular level. J R Soc Interface 2017; 13:rsif.2016.0555. [PMID: 27807271 DOI: 10.1098/rsif.2016.0555] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Michael Levin
- Biology Department, Allen Discovery Center at Tufts, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
21
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Pietak A, Levin M. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 2017; 14:20170425. [PMID: 28954851 PMCID: PMC5636277 DOI: 10.1098/rsif.2017.0425] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks (GRNs) describe interactions between gene products and transcription factors that control gene expression. In combination with reaction-diffusion models, GRNs have enhanced comprehension of biological pattern formation. However, although it is well known that biological systems exploit an interplay of genetic and physical mechanisms, instructive factors such as transmembrane potential (Vmem) have not been integrated into full GRN models. Here we extend regulatory networks to include bioelectric signalling, developing a novel synthesis: the bioelectricity-integrated gene and reaction (BIGR) network. Using in silico simulations, we highlight the capacity for Vmem to alter steady-state concentrations of key signalling molecules inside and out of cells. We characterize fundamental feedbacks where Vmem both controls, and is in turn regulated by, biochemical signals and thereby demonstrate Vmem homeostatic control, Vmem memory and Vmem controlled state switching. BIGR networks demonstrating hysteresis are identified as a mechanisms through which more complex patterns of stable Vmem spots and stripes, along with correlated concentration patterns, can spontaneously emerge. As further proof of principle, we present and analyse a BIGR network model that mechanistically explains key aspects of the remarkable regenerative powers of creatures such as planarian flatworms. The functional properties of BIGR networks generate the first testable, quantitative hypotheses for biophysical mechanisms underlying the stability and adaptive regulation of anatomical bioelectric pattern.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
23
|
Jayaram DT, Luo Q, Thourson SB, Finlay AH, Payne CK. Controlling the Resting Membrane Potential of Cells with Conducting Polymer Microwires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700789. [PMID: 28556571 PMCID: PMC5560653 DOI: 10.1002/smll.201700789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/11/2017] [Indexed: 05/11/2023]
Abstract
All cells have a resting membrane potential resulting from an ion gradient across the plasma membrane. The resting membrane potential of cells is tightly coupled to regeneration and differentiation. The ability to control this parameter provides the opportunity for both biomedical advances and the probing of fundamental bioelectric pathways. The use of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) conducting polymer microwires to depolarize cells is tested using E. coli cells loaded with a fluorescent dye that is pumped out of the cells in response to depolarization; a more positive membrane potential. Fluorescence imaging of the cells in response to a conducting-polymer-microwire applied voltage confirms depolarization and shows that the rate of depolarization is a function of the applied voltage and frequency. Microwire activity does not damage the cells, demonstrated with a propidium iodide assay of membrane integrity. The conducting polymer microwires do not penetrate the cell, or even come into contact with the cell; they only need to generate a minimum electric field, controlled by the placement of the wires. It is expected that these microwires will provide a new, noninvasive, cellular-scale tool for the control of resting membrane potential with high spatial precision.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qingjie Luo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott B Thourson
- Interdisciplinary Program in BioEngineering and George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Adam H Finlay
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christine K Payne
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Paré JF, Martyniuk CJ, Levin M. Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis. NPJ Regen Med 2017; 2:15. [PMID: 29302351 PMCID: PMC5677984 DOI: 10.1038/s41536-017-0019-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Two key inputs that regulate regeneration are the function of the immune system, and spatial gradients of transmembrane potential (Vmem). Endogenous bioelectric signaling in somatic tissues during regenerative patterning is beginning to be understood, but its role in the context of immune response has never been investigated. Here, we show that Vmem levels modulate innate immunity activity in Xenopus laevis embryos. We developed an assay in which X. laevis embryos are infected with a uropathogenic microorganism, in the presence or absence of reagents that modify Vmem, prior to the ontogenesis of the adaptive immune system. General depolarization of the organism's Vmem by pharmacological or molecular genetic (ion channel misexpression) methods increased resistance to infection, while hyperpolarization made the embryos more susceptible to death by infection. Hyperpolarized specimens harbored a higher load of infectious microorganisms when compared to controls. We identified two mechanisms by which Vmem mediates immune function: serotonergic signaling involving melanocytes and an increase in the number of primitive myeloid cells. Bioinformatics analysis of genes whose transcription is altered by depolarization revealed a number of immune system targets consistent with mammalian data. Remarkably, amputation of the tail bud potentiates systemic resistance to infection by increasing the number of peripheral myeloid cells, revealing an interplay of regenerative response, innate immunity, and bioelectric regulation. Our study identifies bioelectricity as a new mechanism by which innate immune response can be regulated in the context of infection or regeneration. Vmem modulation using drugs already approved for human use could be exploited to improve resistance to infections in clinical settings.
Collapse
Affiliation(s)
- Jean-François Paré
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL USA
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| |
Collapse
|
25
|
Durant F, Morokuma J, Fields C, Williams K, Adams DS, Levin M. Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophys J 2017; 112:2231-2243. [PMID: 28538159 PMCID: PMC5443973 DOI: 10.1016/j.bpj.2017.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
We show that regenerating planarians' normal anterior-posterior pattern can be permanently rewritten by a brief perturbation of endogenous bioelectrical networks. Temporary modulation of regenerative bioelectric dynamics in amputated trunk fragments of planaria stochastically results in a constant ratio of regenerates with two heads to regenerates with normal morphology. Remarkably, this is shown to be due not to partial penetrance of treatment, but a profound yet hidden alteration to the animals' patterning circuitry. Subsequent amputations of the morphologically normal regenerates in water result in the same ratio of double-headed to normal morphology, revealing a cryptic phenotype that is not apparent unless the animals are cut. These animals do not differ from wild-type worms in histology, expression of key polarity genes, or neoblast distribution. Instead, the altered regenerative bodyplan is stored in seemingly normal planaria via global patterns of cellular resting potential. This gradient is functionally instructive, and represents a multistable, epigenetic anatomical switch: experimental reversals of bioelectric state reset subsequent regenerative morphology back to wild-type. Hence, bioelectric properties can stably override genome-default target morphology, and provide a tractable control point for investigating cryptic phenotypes and the stochasticity of large-scale epigenetic controls.
Collapse
Affiliation(s)
- Fallon Durant
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | | | - Katherine Williams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts.
| |
Collapse
|
26
|
Pitcairn E, Harris H, Epiney J, Pai VP, Lemire JM, Ye B, Shi NQ, Levin M, McLaughlin KA. Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. Commun Integr Biol 2017; 10:e1309488. [PMID: 28702127 PMCID: PMC5501196 DOI: 10.1080/19420889.2017.1309488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide gated channel (HCN) proteins are important regulators of both neuronal and cardiac excitability. Among the 4 HCN isoforms, HCN4 is known as a pacemaker channel, because it helps control the periodicity of contractions in vertebrate hearts. Although the physiological role of HCN4 channel has been studied in adult mammalian hearts, an earlier role during embryogenesis has not been clearly established. Here, we probe the embryonic roles of HCN4 channels, providing the first characterization of the expression profile of any of the HCN isoforms during Xenopus laevis development and investigate the consequences of altering HCN4 function on embryonic pattern formation. We demonstrate that both overexpression of HCN4 and injection of dominant-negative HCN4 mRNA during early embryogenesis results in improper expression of key patterning genes and severely malformed hearts. Our results suggest that HCN4 serves to coordinate morphogenetic control factors that provide positional information during heart morphogenesis in Xenopus.
Collapse
Affiliation(s)
- Emily Pitcairn
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah Harris
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Justine Epiney
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Vaibhav P Pai
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Joan M Lemire
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Bin Ye
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nian-Qing Shi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelly A McLaughlin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
27
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
28
|
Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. ACTA ACUST UNITED AC 2015; 3:3-25. [PMID: 27499876 PMCID: PMC4857752 DOI: 10.1002/reg2.48] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Endogenous bioelectric signaling via changes in cellular resting potential (Vmem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of Vmem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to Vmem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to Vmem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of Vmem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that Vmem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences UF Genetics Institute, University of Florida Gainesville Florida 32611 USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development University of Minnesota Minneapolis Minnesota 55455 USA
| | - Sarah Sundelacruz
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
29
|
Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. Int J Mol Sci 2015; 16:27865-96. [PMID: 26610482 PMCID: PMC4661923 DOI: 10.3390/ijms161126065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Fallon Durant
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Jennifer Hammelman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Nicholas Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia;
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France;
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Kaylinnette Pinet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | | | - Daniel Lobo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
- Correspondence: ; Tel.: +1-617-627-6161; Fax: +1-617-627-6121
| |
Collapse
|
30
|
Pezzulo G, Levin M. Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integr Biol (Camb) 2015; 7:1487-517. [PMID: 26571046 DOI: 10.1039/c5ib00221d] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A major goal of regenerative medicine and bioengineering is the regeneration of complex organs, such as limbs, and the capability to create artificial constructs (so-called biobots) with defined morphologies and robust self-repair capabilities. Developmental biology presents remarkable examples of systems that self-assemble and regenerate complex structures toward their correct shape despite significant perturbations. A fundamental challenge is to translate progress in molecular genetics into control of large-scale organismal anatomy, and the field is still searching for an appropriate theoretical paradigm for facilitating control of pattern homeostasis. However, computational neuroscience provides many examples in which cell networks - brains - store memories (e.g., of geometric configurations, rules, and patterns) and coordinate their activity towards proximal and distant goals. In this Perspective, we propose that programming large-scale morphogenesis requires exploiting the information processing by which cellular structures work toward specific shapes. In non-neural cells, as in the brain, bioelectric signaling implements information processing, decision-making, and memory in regulating pattern and its remodeling. Thus, approaches used in computational neuroscience to understand goal-seeking neural systems offer a toolbox of techniques to model and control regenerative pattern formation. Here, we review recent data on developmental bioelectricity as a regulator of patterning, and propose that target morphology could be encoded within tissues as a kind of memory, using the same molecular mechanisms and algorithms so successfully exploited by the brain. We highlight the next steps of an unconventional research program, which may allow top-down control of growth and form for numerous applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- G Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | | |
Collapse
|
31
|
Hammerschlag R, Levin M, McCraty R, Bat N, Ives JA, Lutgendorf SK, Oschman JL. Biofield Physiology: A Framework for an Emerging Discipline. Glob Adv Health Med 2015; 4:35-41. [PMID: 26665040 PMCID: PMC4654783 DOI: 10.7453/gahmj.2015.015.suppl] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Collapse
Affiliation(s)
- Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Consciousness and Healing Initiative, San Diego, California; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts (Dr Levin)
| | - Rollin McCraty
- Institute of HeartMath, Boulder Creek, California (Dr McCraty)
| | - Namuun Bat
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Ms Bat)
| | - John A Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Dr Ives)
| | - Susan K Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City (Dr Lutgendorf)
| | - James L Oschman
- Nature's Own Research Association, Dover, New Hampshire (Dr Oschman)
| |
Collapse
|
32
|
Sabin K, Santos-Ferreira T, Essig J, Rudasill S, Echeverri K. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl. Dev Biol 2015; 408:14-25. [PMID: 26477559 DOI: 10.1016/j.ydbio.2015.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Abstract
Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl.
Collapse
Affiliation(s)
- Keith Sabin
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Tiago Santos-Ferreira
- CRTD/DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jaclyn Essig
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Sarah Rudasill
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Karen Echeverri
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, USA.
| |
Collapse
|
33
|
Law R, Levin M. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor Biol Med Model 2015; 12:22. [PMID: 26472354 PMCID: PMC4608135 DOI: 10.1186/s12976-015-0019-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. Method To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. Results We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Conclusion Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts. Electronic supplementary material The online version of this article (doi:10.1186/s12976-015-0019-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Law
- Department of Neuroscience, Brown University, Box G, Providence, RI, 02912, USA.
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
34
|
Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES, Balaban PM, Okabe S, Lukyanov S, Enikolopov G, Zaraisky AG, Belousov VV. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim Biophys Acta Gen Subj 2015; 1850:2318-28. [PMID: 26259819 DOI: 10.1016/j.bbagen.2015.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia A Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Faculty of Biology, Moscow State University, 119991 Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA; NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia.
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
35
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
36
|
Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2015; 592:2295-305. [PMID: 24882814 DOI: 10.1113/jphysiol.2014.271940] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing electrical state information into somatic tissues. Cracking the bioelectric code will have transformative implications for developmental biology, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
37
|
Warren EA, Payne CK. Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 2015; 5:13660-13666. [PMID: 25685328 PMCID: PMC4326017 DOI: 10.1039/c4ra15727c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All cells generate an electrical potential across their plasma membrane driven by a concentration gradient of charged ions. A typical resting membrane potential ranges from -40 to -70 mV, with a net negative charge on the cytosolic side of the membrane. Maintenance of the resting membrane potential depends on the presence of two-pore-domain potassium "leak" channels, which allow for outward diffusion of potassium ions along their concentration gradient. Disruption of the ion gradient causes the membrane potential to become more positive or more negative relative to the resting state, referred to as "depolarization" or "hyperpolarization," respectively. Changes in membrane potential have proven to be pivotal, not only in normal cell cycle progression but also in malignant transformation and tissue regeneration. Using polystyrene nanoparticles as a model system, we use flow cytometry and fluorescence microscopy to measure changes in membrane potential in response to nanoparticle binding to the plasma membrane. We find that nanoparticles with amine-modified surfaces lead to significant depolarization of both CHO and HeLa cells. In comparison, carboxylate-modified nanoparticles do not cause depolarization. Mechanistic studies suggest that this nanoparticle-induced depolarization is the result of a physical blockage of the ion channels. These experiments show that nanoparticles can alter the biological system of interest in subtle, yet important, ways.
Collapse
Affiliation(s)
- Emilie A.K. Warren
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332; Tel: 404-385-3125
| | - Christine K. Payne
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332; Tel: 404-385-3125
| |
Collapse
|
38
|
The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:454-61. [PMID: 25088176 DOI: 10.1016/j.bbagrm.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
Injury is an inescapable phenomenon of life that affects animals at every physiological level. Yet, some animals respond to injury by rebuilding the damaged tissues whereas others are limited to scarring. Elucidating how a tissue insult from wounding leads to a regenerative response at the genetic level is essential to make regenerative advantages translational. It has become clear that animals with regenerative abilities recycle developmental programs after injury, reactivating genes that have lied dormant throughout adulthood. The question that is critical to our understanding of regeneration is how a specific set of developmentally important genes can be reactivated only after an acute tissue insult. Here, we review how injury-induced cellular stresses such as hypoxic, oxidative, and mechanical stress may contribute to the genomic and epigenetic changes that promote regeneration in animals. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
39
|
Anderson AE, Galko MJ. Rapid clearance of epigenetic protein reporters from wound edge cells in Drosophila larvae does not depend on the JNK or PDGFR/VEGFR signaling pathways. ACTA ACUST UNITED AC 2014; 1:11-25. [PMID: 25114797 PMCID: PMC4126263 DOI: 10.1002/reg2.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drastic cellular changes required for epidermal cells to dedifferentiate and become motile during wound closure are accompanied by changes in gene transcription, suggesting corresponding alterations in chromatin. However, the epigenetic changes that underlie wound-induced transcriptional programs remain poorly understood partly because a comprehensive study of epigenetic factor expression during wound healing has not been practical. To determine which chromatin modifying factors might contribute to wound healing, we screened publicly available fluorescently-tagged reporter lines in Drosophila for altered expression at the wound periphery during healing. Thirteen reporters tagging seven different proteins showed strongly diminished expression at the wound edge. Three downregulated proteins, Osa, Kismet, and Spt6, are generally associated with active chromatin, while four others, Sin3A, Sap130, Mi-2, and Mip120, are associated with repressed chromatin. In all cases reporter down regulation was independent of the Jun N-terminal Kinase and Pvr pathways, suggesting that novel signals control reporter clearance. Taken together, our results suggest that clearance of chromatin modifying factors may enable wound edge cells to rapidly and comprehensively change their transcriptional state following tissue damage.
Collapse
Affiliation(s)
- Aimee E Anderson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael J Galko
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030, USA ; Genes & Development Graduate Program, The University of Texas MD Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
40
|
Edelstein L, Smythies J. The role of telocytes in morphogenetic bioelectrical signaling: once more unto the breach. Front Mol Neurosci 2014; 7:41. [PMID: 24860423 PMCID: PMC4026729 DOI: 10.3389/fnmol.2014.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/22/2014] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - John Smythies
- Department of Psychology, Center for Brain and Cognition, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 2014; 7:601-11. [PMID: 24719025 PMCID: PMC4036468 DOI: 10.1242/dmm.014837] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs) that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum) and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b) is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal’s functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander’s regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.
Collapse
Affiliation(s)
- Juan Felipe Diaz Quiroz
- University of Minnesota, Department of Genetics, Cell Biology and Development, Stem Cell Institute, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Eve Tsai
- Ottawa Hospital Research Institute, Ottowa, ON K1H 8L6, Canada
| | - Matthew Coyle
- Ottawa Hospital Research Institute, Ottowa, ON K1H 8L6, Canada
| | - Tina Sehm
- University of Erlangen-Nürnberg, Department of Neurosurgery, 91054 Erlangen, Germany
| | - Karen Echeverri
- University of Minnesota, Department of Genetics, Cell Biology and Development, Stem Cell Institute, 2001 6th St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
ADAMS DANYSPENCER, LEMIRE JOANM, KRAMER RICHARDH, LEVIN MICHAEL. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:851-61. [PMID: 25896279 PMCID: PMC10468825 DOI: 10.1387/ijdb.140207ml] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Developmental bioelectricity, electrical signaling among non-excitable cells, is now known to regulate proliferation, apoptosis, gene expression, and patterning during development. The extraordinary temporal and spatial resolution offered by optogenetics could revolutionize the study of bioelectricity the same way it has revolutionized neuroscience. There is, however, no guide to adapting optogenetics to patterning systems. To fill this gap, we used optogenetic reagents, both proteins and photochemical switches, to vary steady-state bioelectrical properties of non-spiking embryonic cells in Xenopus laevis. We injected mRNA for various proteins, including Channelrhodopsins and Archaerhodopsin, into 1-8 cell embryos, or soaked embryos in media containing photochemical switches, then examined the effect of light and dark on membrane voltage (Vmem) using both electrodes and fluorescent membrane voltage reporters. We also scored tadpoles for known effects of varying Vmem, including left-right asymmetry disruption, hyperpigmentation, and craniofacial phenotypes. The majority of reagents we tested caused a significant increase in the percentage of light-exposed tadpoles showing relevant phenotypes; however, the majority of reagents also induced phenotypes in controls kept in the dark. Experiments on this "dark phenotype" yielded evidence that the direction of ion flux via common optogenetic reagents may be reversed, or unpredictable in non-neural cells. When used in combination with rigorous controls, optogenetics can be a powerful tool for investigating ion-flux based signaling in non-excitable systems. Nonetheless, it is crucial that new reagents be designed with these non-neural cell types in mind.
Collapse
Affiliation(s)
- DANY SPENCER ADAMS
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - JOAN M. LEMIRE
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - RICHARD H. KRAMER
- Dept of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - MICHAEL LEVIN
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
43
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
44
|
Tseng A, Levin M. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Commun Integr Biol 2013; 6:e22595. [PMID: 23802040 PMCID: PMC3689572 DOI: 10.4161/cib.22595] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patterns of resting potential in non-excitable cells of living tissue are now known to be instructive signals for pattern formation during embryogenesis, regeneration and cancer suppression. The development of molecular-level techniques for tracking ion flows and functionally manipulating the activity of ion channels and pumps has begun to reveal the mechanisms by which voltage gradients regulate cell behaviors and the assembly of complex large-scale structures. A recent paper demonstrated that a specific voltage range is necessary for demarcation of eye fields in the frog embryo. Remarkably, artificially setting other somatic cells to the eye-specific voltage range resulted in formation of eyes in aberrant locations, including tissues that are not in the normal anterior ectoderm lineage: eyes could be formed in the gut, on the tail, or in the lateral plate mesoderm. These data challenge the existing models of eye fate restriction and tissue competence maps, and suggest the presence of a bioelectric code-a mapping of physiological properties to anatomical outcomes. This Addendum summarizes the current state of knowledge in developmental bioelectricity, proposes three possible interpretations of the bioelectric code that functionally maps physiological states to anatomical outcomes, and highlights the biggest open questions in this field. We also suggest a speculative hypothesis at the intersection of cognitive science and developmental biology: that bioelectrical signaling among non-excitable cells coupled by gap junctions simulates neural network-like dynamics, and underlies the information processing functions required by complex pattern formation in vivo. Understanding and learning to control the information stored in physiological networks will have transformative implications for developmental biology, regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Aisun Tseng
- Department of Biology and Tufts Center for Regenerative and Developmental Biology; Medford, MA USA
| | | |
Collapse
|
45
|
Adams DS, Tseng AS, Levin M. Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol Open 2013; 2:306-13. [PMID: 23519324 PMCID: PMC3603412 DOI: 10.1242/bio.20133665] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 12/19/2022] Open
Abstract
Optogenetics, the regulation of proteins by light, has revolutionized the study of excitable cells, and generated strong interest in the therapeutic potential of this technology for regulating action potentials in neural and muscle cells. However, it is currently unknown whether light-activated channels and pumps will allow control of resting potential in embryonic or regenerating cells in vivo. Abnormalities in ion currents of non-excitable cells are known to play key roles in the etiology of birth defects and cancer. Moreover, changes in transmembrane resting potential initiate Xenopus tadpole tail regeneration, including regrowth of a functioning spinal cord, in tails that have been inhibited by natural inactivity of the endogenous H(+)-V-ATPase pump. However, existing pharmacological and genetic methods allow neither non-invasive control of bioelectric parameters in vivo nor the ability to abrogate signaling at defined time points. Here, we show that light activation of a H(+)-pump can prevent developmental defects and induce regeneration by hyperpolarizing transmembrane potentials. Specifically, light-dependent, Archaerhodopsin-based, H(+)-flux hyperpolarized cells in vivo and thus rescued Xenopus embryos from the craniofacial and patterning abnormalities caused by molecular blockade of endogenous H(+)-flux. Furthermore, light stimulation of Arch for only 2 days after amputation restored regenerative capacity to inhibited tails, inducing cell proliferation, tissue innervation, and upregulation of notch1 and msx1, essential genes in two well-known endogenous regenerative pathways. Electroneutral pH change, induced by expression of the sodium proton exchanger, NHE3, did not rescue regeneration, implicating the hyperpolarizing activity of Archaerhodopsin as the causal factor. The data reveal that hyperpolarization is required only during the first 48 hours post-injury, and that expression in the spinal cord is not necessary for the effect to occur. Our study shows that complex, coordinated sets of stable bioelectric events that alter body patterning-prevention of birth defects and induction of regeneration-can be elicited by the temporal modulation of a single ion current. Furthermore, as optogenetic reagents can be used to achieve that manipulation, the potential for this technology to impact clinical approaches for preventive, therapeutic, and regenerative medicine is extraordinary. We expect this first critical step will lead to an unprecedented expansion of optogenetics in biomedical research and in the probing of novel and fundamental biophysical determinants of growth and form.
Collapse
Affiliation(s)
| | - Ai-Sun Tseng
- Present address: School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | | |
Collapse
|
46
|
Chernet BT, Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 2013; 6:595-607. [PMID: 23471912 PMCID: PMC3634644 DOI: 10.1242/dmm.010835] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding mechanisms that orchestrate cell behavior into appropriately patterned tissues and organs within the organism is an essential element of preventing, detecting and treating cancer. Bioelectric signals (resting transmembrane voltage potential gradients in all cells) underlie an important and broadly conserved set of control mechanisms that regulate pattern formation. We tested the role of transmembrane potential in tumorigenesis mediated by canonical oncogenes in Xenopus laevis. Depolarized membrane potential (Vmem) was a characteristic of induced tumor-like structures (ITLSs) generated by overexpression of Gli1, KrasG12D, Xrel3 or p53Trp248. This bioelectric signature was also present in precursor ITLS sites. Vmem is a bioelectric marker that reveals ITLSs before they become histologically and morphologically apparent. Moreover, voltage was functionally important: overexpression of hyperpolarizing ion transporters caused a return to normal Vmem and significantly reduced ITLS formation in vivo. To characterize the molecular mechanism by which Vmem change regulates ITLS phenotypes, we performed a suppression screen. Vmem hyperpolarization was transduced into downstream events via Vmem-regulated activity of SLC5A8, a sodium-butyrate exchanger previously implicated in human cancer. These data indicate that butyrate, a histone deacetylase (HDAC) inhibitor, might be responsible for transcriptional events that mediate suppression of ITLSs by hyperpolarization. Vmem is a convenient cellular parameter by which tumors induced by human oncogenes can be detected in vivo and represents a new diagnostic modality. Moreover, control of resting membrane potential is functionally involved in the process by which oncogene-bearing cells depart from normal morphogenesis programs to form tumors. Modulation of Vmem levels is a novel and promising strategy for tumor normalization.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | |
Collapse
|
47
|
Chernet B, Levin M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. JOURNAL OF CLINICAL & EXPERIMENTAL ONCOLOGY 2013; Suppl 1:S1-002. [PMID: 25525610 PMCID: PMC4267524 DOI: 10.4172/2324-9110.s1-002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates individual cells' activities towards normal anatomy. Recent work identified molecular mechanisms underlying a novel system of developmental control: bioelectric gradients. Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, oncogene expression depolarizes cells that form tumor-like structures, but is unable to form tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic screens and network profiling in rodents and human tissues reveal several ion channel proteins as bona fide oncogene and promising targets for cancer drug development. However, we propose that a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by post-translational gating of ion channels, not only from genetically-specified complements of ion translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may not originate at the single cell level, since gap junctional coupling results in multi-cellular physiological networks with multiple stable attractors in bioelectrical state space. New medical applications await a detailed understanding of the mechanisms by which organ target morphology stored in real-time patterns of ion flows is perceived or mis-perceived by cells. Mastery of somatic voltage gradients will lead to cancer normalization or rebooting strategies, such as those that occur in regenerating and embryonic organs, resulting in transformative advances in basic biology and oncology.
Collapse
Affiliation(s)
| | - Michael Levin
- Corresponding author: Michael Levin, Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA, Tel: (617) 627-6161; Fax:(617) 627- 6121;
| |
Collapse
|
48
|
Lobikin M, Chernet B, Lobo D, Levin M. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 2012. [PMID: 23196890 DOI: 10.1088/1478-3975/9/6/065002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (V(mem)) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by 'instructor' cells-a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting a strategy for cancer suppression that does not require gene therapy. Together, these data extend our understanding of the recently demonstrated role of transmembrane potential in tumor formation and metastatic cell behavior. V(mem) is an important non-genetic biophysical aspect of the microenvironment that regulates the balance between normally patterned growth and carcinogenesis.
Collapse
Affiliation(s)
- Maria Lobikin
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
49
|
Kusumi K, Fisher RE. Studying mechanisms of regeneration in amphibian and reptilian vertebrate models. Anat Rec (Hoboken) 2012; 295:1529-31. [PMID: 22933304 DOI: 10.1002/ar.22541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/07/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | |
Collapse
|