1
|
Kissane RWP, Bates KT, Fagan MJ, Wang L, Watson PJ, Askew GN. The functional role of the rabbit digastric muscle during mastication. J Exp Biol 2024; 227:jeb249238. [PMID: 39297179 PMCID: PMC11449450 DOI: 10.1242/jeb.249238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Muscle spindle abundance is highly variable in vertebrates, but the functional determinants of this variation are unclear. Recent work has shown that human leg muscles with the lowest abundance of muscle spindles primarily function to lengthen and absorb energy, while muscles with a greater spindle abundance perform active-stretch-shorten cycles with no net work, suggesting that muscle spindle abundance may be underpinned by muscle function. Compared with other mammalian muscles, the digastric muscle contains the lowest abundance of muscle spindles and, therefore, might be expected to generate substantial negative work. However, it is widely hypothesised that as a jaw-opener (anatomically) the digastric muscle would primarily function to depress the jaw, and consequently do positive work. Through a combination of X-ray reconstruction of moving morphology (XROMM), electromyography and fluoromicrometry, we characterised the 3D kinematics of the jaw and digastric muscle during feeding in rabbits. Subsequently, the work loop technique was used to simulate in vivo muscle behaviour in situ, enabling muscle force to be quantified in relation to muscle strain and hence determine the muscle's function during mastication. When functioning on either the working or balancing side, the digastric muscle generates a large amount of positive work during jaw opening, and a large amount of negative work during jaw closing, on average producing a relatively small amount of net negative work. Our data therefore further support the hypothesis that muscle spindle abundance is linked to muscle function; specifically, muscles that absorb a relatively large amount of negative work have a low spindle abundance.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
| | | | - Linjie Wang
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Peter J Watson
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Gignac PM, Valdez D, Morhardt AC, Lynch LM. Buffered Lugol's Iodine Preserves DNA Fragment Lengths. Integr Org Biol 2024; 6:obae017. [PMID: 38887427 PMCID: PMC11182668 DOI: 10.1093/iob/obae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol's iodine (I2KI) may be low enough to damage deoxyribonucleic acid (DNA). The extent of this risk is unknown due to a lack of rigorous evaluation of DNA quality between control and experimental samples. Here, we used formalin-fixed mice to document DNA concentrations and fragment lengths in nonstained, ethanol-preserved controls and 3 iodine-based staining preparations: (1) 1.25% weight-by-volume (wt/vol.) alcoholic iodine (I2E); (2) 3.75% wt/vol. I2KI; and (3) 3.75% wt/vol. buffered I2KI. We tested a null hypothesis of no significant difference in DNA concentrations and fragment lengths between control and treatment samples. We found that DNA concentration decreases because of staining-potentially an effect of measuring intact double-stranded DNA only. Fragment lengths, however, were significantly higher for buffered I2KI and control samples, which were not, themselves, significantly different. Our results implicate buffered I2KI as the appropriate choice for contrast-enhanced CT imaging of museum wet collections to safely maximize their potential for understanding genetic and phenotypic diversity.
Collapse
Affiliation(s)
- P M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - D Valdez
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - A C Morhardt
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - L M Lynch
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
3
|
Lagorio AD, McGechie FR, Fields MG, Fortner J, Mackereth E, Perez C, Wilken AT, Leal M, Ward CV, Middleton KM, Holliday CM. Computational Approaches and Observer Variation in the 3D Musculoskeletal Modeling of the Heads of Anolis. Integr Org Biol 2024; 6:obae009. [PMID: 38699511 PMCID: PMC11065355 DOI: 10.1093/iob/obae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
High-resolution imaging, 3D modeling, and quantitative analyses are equipping evolutionary biologists with new approaches to understanding the variation and evolution of the musculoskeletal system. However, challenges with interpreting DiceCT data and higher order use of modeled muscles have not yet been fully explored, and the error in and accuracy of some digital methods remain unclear. West Indian Anolis lizards are a model clade for exploring patterns in functional adaptation, ecomorphology, and sexual size dimorphism in vertebrates. These lizards possess numerous jaw muscles with potentially different anatomies that sculpt the adductor chamber of the skull. Here we test approaches to quantifying the musculoskeletal shape of the heads of two species of Anolis: A. pulchellus and A. sagrei. We employ comparative approaches such as DiceCT segmentation of jaw muscles, 3D surface attachment mapping, and 3D landmarking with the aim of exploring muscle volumes, 3D muscle fiber architecture, and sexual dimorphism of the skull. We then compare sources of measurement error in these 3D analyses while also presenting new 3D musculoskeletal data from the Anolis feeding apparatus. These findings demonstrate the accessibility and repeatability of these emerging techniques as well as provide details regarding the musculoskeletal anatomy of the heads of A. pulchellus and A. sagrei which show potential for further research of comparative biomechanics and evolution in the clade.
Collapse
Affiliation(s)
- A D Lagorio
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - F R McGechie
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - M G Fields
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - J Fortner
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - E Mackereth
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - C Perez
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - A T Wilken
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - M Leal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - C V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - K M Middleton
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - C M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Ross CF, Laurence-Chasen JD, Li P, Orsbon C, Hatsopoulos NG. Biomechanical and Cortical Control of Tongue Movements During Chewing and Swallowing. Dysphagia 2024; 39:1-32. [PMID: 37326668 PMCID: PMC10781858 DOI: 10.1007/s00455-023-10596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Tongue function is vital for chewing and swallowing and lingual dysfunction is often associated with dysphagia. Better treatment of dysphagia depends on a better understanding of hyolingual morphology, biomechanics, and neural control in humans and animal models. Recent research has revealed significant variation among animal models in morphology of the hyoid chain and suprahyoid muscles which may be associated with variation in swallowing mechanisms. The recent deployment of XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3D hyolingual kinematics has revealed new details on flexion and roll of the tongue during chewing in animal models, movements similar to those used by humans. XROMM-based studies of swallowing in macaques have falsified traditional hypotheses of mechanisms of tongue base retraction during swallowing, and literature review suggests that other animal models may employ a diversity of mechanisms of tongue base retraction. There is variation among animal models in distribution of hyolingual proprioceptors but how that might be related to lingual mechanics is unknown. In macaque monkeys, tongue kinematics-shape and movement-are strongly encoded in neural activity in orofacial primary motor cortex, giving optimism for development of brain-machine interfaces for assisting recovery of lingual function after stroke. However, more research on hyolingual biomechanics and control is needed for technologies interfacing the nervous system with the hyolingual apparatus to become a reality.
Collapse
Affiliation(s)
- Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA.
| | - J D Laurence-Chasen
- National Renewable Energy Laboratory, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Peishu Li
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Stilson KT, Luo ZX, Li P, Olson S, Ross CF. Three-dimensional mandibular kinematics of mastication in the marsupial Didelphis virginiana. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220548. [PMID: 37839456 PMCID: PMC10577026 DOI: 10.1098/rstb.2022.0548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/26/2023] [Indexed: 10/17/2023] Open
Abstract
Didelphis virginiana (the Virginia opossum) is often used as an extant model for understanding feeding behaviour in Mesozoic mammaliaforms, primarily due to their morphological similarities, including an unfused mandibular symphysis and tribosphenic molars. However, the three-dimensional jaw kinematics of opossum chewing have not yet been fully quantified. We used biplanar videofluoroscopy and the X-Ray Reconstruction of Moving Morphology workflow to quantify mandibular kinematics in four wild-caught opossums feeding on hard (almonds) and soft (cheese cubes) foods. These data were used to test hypotheses regarding the importance of roll versus yaw in chewing by early mammals, and the impact of food material properties (FMPs) on jaw kinematics. The magnitude of roll exceeds that of yaw, but both are necessary for tooth-tooth or tooth-food-tooth contact between complex occlusal surfaces. We confirmed the utility of the four vertical kinematic gape cycle phases identified in tetrapods but we further defined two more in order to capture non-vertical kinematics. Statistical tests support the separation of chew cycle phases into two functional groups: occlusal and non-occlusal phases. The separation of slow close into two (occlusal) phases gives quantitative kinematic support for the long-hypothesized multifunctionality of the tribosphenic molar. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Kelsey T. Stilson
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Zhe-Xi Luo
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Peishu Li
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Selby Olson
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Callum F. Ross
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Steer KE, Johnson ML, Adjerid K, Bond LE, Howe SP, Khalif A, Nkachukwu KC, Edmonds CE, German RZ, Mayerl CJ. The Function of the Mammal Extrinsic Tongue Musculature in the Transition from Suckling to Drinking. Integr Comp Biol 2023; 63:641-652. [PMID: 37160353 PMCID: PMC10503468 DOI: 10.1093/icb/icad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
The transition from suckling to drinking is a developmental pathway that all mammals take. In both behaviors, the tongue is the primary structure involved in acquiring, transporting, and swallowing the liquid. However, the two processes are fundamentally different: during suckling, the tongue must function as a pump to generate suction to move milk, whereas during drinking, the tongue moves backwards and forwards through the mouth to acquire and move water. Despite these fundamental differences, we have little understanding of how tongues role varies between these behaviors. We used an infant pig model to investigate the relationships between anatomy, physiology, and function of the tongue to examine how lingual function is modulated in the transition from infancy to adulthood. We found that while some muscles were proportionally largest at birth, others were proportionally larger at the time of weaning. Furthermore, we found variation in tongue movements between suckling and drinking along both the mediolateral and anteroposterior axes, resulting in differences in tongue deformation between the two behaviors. The extrinsic tongue muscles also changed in function differently between drinking and suckling. Genioglossus increased its activity and turned on and off earlier in the cycle during drinking, whereas hyoglossus fired at lower amplitudes during drinking, and turned on and off later in the cycle. Together, the data highlight the significant need for high neuroplasticity in the control of the tongue at a young age in mammals and suggest that the ability to do so is key in the ontogeny and evolution of feeding in these animals.
Collapse
Affiliation(s)
- K E Steer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - M L Johnson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - K Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- Department of Biomedical Engineering, Tulane University, New Orleans, Lousiana, 70118, USA
| | - L E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - S P Howe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - A Khalif
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - K C Nkachukwu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - C J Mayerl
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
7
|
Laurence-Chasen JD, Ross CF, Arce-McShane FI, Hatsopoulos NG. Robust cortical encoding of 3D tongue shape during feeding in macaques. Nat Commun 2023; 14:2991. [PMID: 37225708 PMCID: PMC10209084 DOI: 10.1038/s41467-023-38586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Dexterous tongue deformation underlies eating, drinking, and speaking. The orofacial sensorimotor cortex has been implicated in the control of coordinated tongue kinematics, but little is known about how the brain encodes-and ultimately drives-the tongue's 3D, soft-body deformation. Here we combine a biplanar x-ray video technology, multi-electrode cortical recordings, and machine-learning-based decoding to explore the cortical representation of lingual deformation. We trained long short-term memory (LSTM) neural networks to decode various aspects of intraoral tongue deformation from cortical activity during feeding in male Rhesus monkeys. We show that both lingual movements and complex lingual shapes across a range of feeding behaviors could be decoded with high accuracy, and that the distribution of deformation-related information across cortical regions was consistent with previous studies of the arm and hand.
Collapse
Affiliation(s)
- Jeffrey D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA.
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Fritzie I Arce-McShane
- Department of Oral Health Sciences, School of Dentistry, University of Washington, 1959 NE Pacific Street, Box #357475, Seattle, WA, 98195-7475, USA
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195-7475, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA
- Program in Computational Neuroscience, The University of Chicago, 5812 South Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
Dickinson E, Hartstone-Rose A. Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function. Anat Rec (Hoboken) 2023. [PMID: 36880440 DOI: 10.1002/ar.25187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Muscle is a complex tissue that has been studied on numerous hierarchical levels: from gross descriptions of muscle organization to cellular analyses of fiber profiles. In the middle of this space between organismal and cellular biology lies muscle architecture, the level at which functional correlations between a muscle's internal fiber organization and contractile abilities are explored. In this review, we summarize this relationship, detail recent advances in our understanding of this form-function paradigm, and highlight the role played by The Anatomical Record in advancing our understanding of functional morphology within muscle over the past two decades. In so doing, we honor the legacy of Editor-in-Chief Kurt Albertine, whose stewardship of the journal from 2006 through 2020 oversaw the flourishing of myological research, including numerous special issues dedicated to exploring the behavioral correlates of myology across diverse taxa. This legacy has seen the The Anatomical Record establish itself as a preeminent source of myological research, and a true leader within the field of comparative anatomy and functional morphology.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Mayerl CJ, Adjerid KA, Edmonds CE, Gould FDH, Johnson ML, Steer KE, Bond LE, German RZ. Regional Variation in Contractile Patterns and Muscle Activity in Infant Pig Feeding. Integr Org Biol 2022; 4:obac046. [PMID: 36531210 PMCID: PMC9756950 DOI: 10.1093/iob/obac046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
At the level of the whole muscle, contractile patterns during activity are a critical and necessary source of variation in function. Understanding if a muscle is actively lengthening, shorting, or remaining isometric has implications for how it is working to power a given behavior. When feeding, the muscles associated with the tongue, jaws, pharynx, and hyoid act together to transport food through the oral cavity and into the esophagus. These muscles have highly coordinated firing patterns, yet also exhibit high levels of regional heterogeneity in both their timing of activity and their contractile characteristics when active. These high levels of variation make investigations into function challenging, especially in systems where muscles power multiple behaviors. We used infant pigs as a model system to systematically evaluate variation in muscle firing patterns in two muscles (mylohyoid and genioglossus) during two activities (sucking and swallowing). We also evaluated the contractile characteristics of mylohyoid during activity in the anterior and posterior regions of the muscle. We found that the posterior regions of both muscles had different patterns of activity during sucking versus swallowing, whereas the anterior regions of the muscles did not. Furthermore, the anterior portion of mylohyoid exhibited concentric contractions when active during sucking, whereas the posterior portion was isometric during sucking and swallowing. This difference suggests that the anterior portion of mylohyoid in infant pigs is functioning in concert with the tongue and jaws to generate suction, whereas the posterior portion is likely acting as a hyoid stabilizer during sucking and swallowing. Our results demonstrate the need to evaluate both the contractile characteristics and activity patterns of a muscle in order to understand its function, especially in cases where there is potential for variation in either factor within a single muscle.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - K A Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - F D H Gould
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - M L Johnson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - K E Steer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - L E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| |
Collapse
|
10
|
Laurence-Chasen JD, Arce-McShane FI, Hatsopoulos NG, Ross CF. Loss of oral sensation impairs feeding performance and consistency of tongue-jaw coordination. J Oral Rehabil 2022; 49:806-816. [PMID: 35514258 PMCID: PMC9540871 DOI: 10.1111/joor.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Background Individuals with impaired oral sensation report difficulty chewing, but little is known about the underlying changes to tongue and jaw kinematics. Methodological challenges impede the measurement of 3D tongue movement and its relationship to the gape cycle. Objective The aim of this study was to quantify the impact of loss of oral somatosensation on feeding performance, 3D tongue kinematics and tongue‐jaw coordination. Methodology XROMM (X‐ray Reconstruction of Moving Morphology) was used to quantify 3D tongue and jaw kinematics during feeding in three rhesus macaques (Macaca mulatta) before and after an oral tactile nerve block. Feeding performance was measured using feeding sequence duration, number of manipulation cycles and swallow frequency. Coordination was measured using event‐ and correlation‐based metrics of jaw pitch, anterior tongue length, width and roll. Results In the absence of tactile sensation to the tongue and other oral structures, feeding performance decreased, and the fast open phase of the gape cycle became significantly longer, relative to the other phases (p < .05). The tongue made similar shapes in both the control and nerve block conditions, but the pattern of tongue‐jaw coordination became significantly more variable after the block (p < .05). Conclusion Disruption of oral somatosensation impacts feeding performance by introducing variability into the typically tight pattern of tongue‐jaw coordination.
Collapse
Affiliation(s)
- J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Wiseman ALA, Demuth OE, Hutchinson JR. A Guide to Inverse Kinematic Marker-Guided Rotoscoping using IK Solvers. Integr Org Biol 2022; 4:obac002. [PMID: 35261964 PMCID: PMC8896983 DOI: 10.1093/iob/obac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray Reconstruction of Moving Morphology (XROMM) permits researchers to see beneath the skin, usually to see musculoskeletal movements. These movements can be tracked and later used to provide information regarding the mechanics of movement. Here, we discuss “IK marker-guided rotoscoping”—a method that combines inverse kinematic solvers with that of traditional scientific rotoscoping methods to quickly and efficiently overlay 3D bone geometries with the X-ray shadows from XROMM data. We use a case study of three Nile crocodiles’ (Crocodylus niloticus) forelimbs and hindlimbs to evaluate this method. Within these limbs, different marker configurations were used: some configurations had six markers, others had five markers, and all forelimb data only had three markers. To evaluate IK marker-guided rotoscoping, we systematically remove markers in the six-marker configuration and then test the magnitudes of deviation in translations and rotations of the rigged setup with fewer markers versus those of the six-marker configuration. We establish that IK marker-guided rotoscoping is a suitable method for “salvaging” data that may have too few markers.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
12
|
Feilich KL, Laurence-Chasen JD, Orsbon C, Gidmark NJ, Ross CF. Twist and chew: three-dimensional tongue kinematics during chewing in macaque primates. Biol Lett 2021; 17:20210431. [PMID: 34905722 PMCID: PMC8670948 DOI: 10.1098/rsbl.2021.0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional (3D) tongue movements are central to performance of feeding functions by mammals and other tetrapods, but 3D tongue kinematics during feeding are poorly understood. Tongue kinematics were recorded during grape chewing by macaque primates using biplanar videoradiography. Complex shape changes in the tongue during chewing are dominated by a combination of flexion in the tongue's sagittal planes and roll about its long axis. As hypothesized for humans, in macaques during tongue retraction, the middle (molar region) of the tongue rolls to the chewing (working) side simultaneous with sagittal flexion, while the tongue tip flexes to the other (balancing) side. Twisting and flexion reach their maxima early in the fast close phase of chewing cycles, positioning the food bolus between the approaching teeth prior to the power stroke. Although 3D tongue kinematics undoubtedly vary with food type, the mechanical role of this movement-placing the food bolus on the post-canine teeth for breakdown-is likely to be a powerful constraint on tongue kinematics during this phase of the chewing cycle. The muscular drivers of these movements are likely to include a combination of intrinsic and extrinsic tongue muscles.
Collapse
Affiliation(s)
- Kara L. Feilich
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - J. D. Laurence-Chasen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, VT, USA
| | | | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Li P, Ross CF, Luo ZX. Morphological disparity and evolutionary transformations in the primate hyoid apparatus. J Hum Evol 2021; 162:103094. [PMID: 34808474 DOI: 10.1016/j.jhevol.2021.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022]
Abstract
The hyoid apparatus plays an integral role in swallowing, respiration, and vocalization in mammals. Most placental mammals have a rod-shaped basihyal connected to the basicranium via both soft tissues and a mobile bony chain-the anterior cornu-whereas anthropoid primates have broad, shield-like or even cup-shaped basihyals suspended from the basicranium by soft tissues only. How the unique anthropoid hyoid morphology evolved is unknown, and hyoid morphology of nonanthropoid primates is poorly documented. Here we use phylogenetic comparative methods and linear morphometrics to address knowledge gaps in hyoid evolution among primates and their euarchontan outgroups. We find that dermopterans have variable reduction of cornu elements. Cynocephalus volans are sexually dimorphic in hyoid morphology. Tupaia and all lemuroids except Daubentonia have a fully ossified anterior cornu connecting a rod-shaped basihyal to the basicranium; this is the ancestral mammalian pattern that is also characteristic of the last common ancestor of Primates. Haplorhines exhibit a reduced anterior cornu, and anthropoids underwent further increase in basihyal aspect ratio values and in relative basihyal volume. Convergent with haplorhines, lorisoid strepsirrhines independently evolved a broad basihyal and reduced anterior cornua. While a reduced anterior cornu is hypothesized to facilitate vocal tract lengthening and lower formant frequencies in some mammals, our results suggest vocalization adaptations alone are unlikely to drive the iterative reduction of anterior cornua within Primates. Our new data on euarchontan hyoid evolution provide an anatomical basis for further exploring the form-function relationships of the hyoid across different behaviors, including vocalization, chewing, and swallowing.
Collapse
Affiliation(s)
- Peishu Li
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Smith TD, Corbin HM, King SEE, Bhatnagar KP, DeLeon VB. A comparison of diceCT and histology for determination of nasal epithelial type. PeerJ 2021; 9:e12261. [PMID: 34760352 PMCID: PMC8571959 DOI: 10.7717/peerj.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat (Cynopterus sphinx) and a late fetal vampire bat (Desmodus rotundus) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman’s glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman’s glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Hayley M Corbin
- Department of Biology, Slippery Rock University, Slippery Rock University, Slippery Rock, PA, United States
| | - Scot E E King
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
15
|
Mayerl CJ, Steer KE, Chava AM, Bond LE, Edmonds CE, Gould FDH, Hieronymous TL, Vinyard CJ, German RZ. Anatomical and physiological variation of the hyoid musculature during swallowing in infant pigs. J Exp Biol 2021; 224:jeb243075. [PMID: 34734633 PMCID: PMC10659033 DOI: 10.1242/jeb.243075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
The function of a muscle is impacted by its line of action, activity timing and contractile characteristics when active, all of which have the potential to vary within a behavior. One function of the hyoid musculature is to move the hyoid bone during swallowing, yet we have little insight into how their lines of action and contractile characteristics might change during a swallow. We used an infant pig model to quantify the contractile characteristics of four hyoid muscles during a swallow using synchronized electromyography, fluoromicrometry and high-speed biplanar videofluoroscopy. We also estimated muscle line of action during a swallow using contrast-enhanced CT-scanned muscles animated to move with the hyoid bone and found that as the hyoid elevated, the line of action of the muscles attached to it became greater in depression. We also found that muscles acted eccentrically and concentrically, which was correlated with hyoid movement. This work contributes to our understanding of how the musculature powering feeding functions during swallowing.
Collapse
Affiliation(s)
- Christopher J. Mayerl
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Kendall E. Steer
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Almasi M. Chava
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Laura E. Bond
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Chloe E. Edmonds
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Francois D. H. Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Tobin L. Hieronymous
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Christopher J. Vinyard
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Rebecca Z. German
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| |
Collapse
|
16
|
Mehari Abraha H, Iriarte‐Diaz J, Reid RR, Ross CF, Panagiotopoulou O. Fracture Fixation Technique and Chewing Side Impact Jaw Mechanics in Mandible Fracture Repair. JBMR Plus 2021; 6:e10559. [PMID: 35079674 PMCID: PMC8770999 DOI: 10.1002/jbm4.10559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/04/2022] Open
Abstract
Lower jaw (mandible) fractures significantly impact patient health and well‐being due to pain and difficulty eating, but the best technique for repairing the most common subtype—angle fractures—and rehabilitating mastication is unknown. Our study is the first to use realistic in silico simulation of chewing to quantify the effects of Champy and biplanar techniques of angle fracture fixation. We show that more rigid, biplanar fixation results in lower strain magnitudes in the miniplates, the bone around the screws, and in the fracture zone, and that the mandibular strain regime approximates the unfractured condition. Importantly, the strain regime in the fracture zone is affected by chewing laterality, suggesting that both fixation type and the patient's post‐fixation masticatory pattern—ipsi‐ or contralateral to the fracture— impact the bone healing environment. Our study calls for further investigation of the impact of fixation technique on chewing behavior. Research that combines in vivo and in silico approaches can link jaw mechanics to bone healing and yield more definitive recommendations for fixation, hardware, and postoperative rehabilitation to improve outcomes. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology Monash University Melbourne Australia
| | | | - Russell R Reid
- Department of Surgery, Section of Plastic Surgery The University of Chicago Medical Centre Chicago IL USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy University of Chicago Chicago IL USA
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology Monash University Melbourne Australia
| |
Collapse
|
17
|
Smith TD, DeLeon VB, Eiting TP, Corbin HM, Bhatnagar KP, Santana SE. Venous networks in the upper airways of bats: A histological and diceCT study. Anat Rec (Hoboken) 2021; 305:1871-1891. [PMID: 34545690 DOI: 10.1002/ar.24762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
Our knowledge of nasal cavity anatomy has grown considerably with the advent of micro-computed tomography (CT). More recently, a technique called diffusible iodine-based contrast-enhanced CT (diceCT) has rendered it possible to study nasal soft tissues. Using diceCT and histology, we aim to (a) explore the utility of these techniques for inferring the presence of venous sinuses that typify respiratory mucosa and (b) inquire whether distribution of vascular mucosa may relate to specialization for derived functions of the nasal cavity (i.e., nasal-emission of echolocation sounds) in bats. Matching histology and diceCT data indicate that diceCT can detect venous sinuses as either darkened, "empty" spaces, or radio-opaque islands when blood cells are present. Thus, we show that diceCT provides reliable information on vascular distribution in the mucosa of the nasal airways. Among the bats studied, a nonecholocating pteropodid (Cynopterus sphinx) and an oral-emitter of echolocation sounds (Eptesicus fuscus) possess venous sinus networks that drain into the sphenopalatine vein rostral to the nasopharynx. In contrast, nasopharyngeal passageways of nasal-emitting hipposiderids are notably packed with venous sinuses. The mucosae of the nasopharyngeal passageways are far less vascular in nasal-emitting phyllostomids, in which vascular mucosae are more widely distributed in the nasal cavity, and in some nectar-feeding species, a particularly large venous sinus is adjacent to the vomeronasal organ. Therefore, we do not find a common pattern of venous sinus distribution associated with nasal emission of sounds in phyllostomids and hipposiderids. Instead, vascular mucosa is more likely critical for air-conditioning and sometimes vomeronasal function in all bats.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | | | - Thomas P Eiting
- Department of Neurobiology and Anatomy, Brain Institute, University of Utah, Utah, USA
| | - Hayley M Corbin
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Dickinson E, Pastor F, Santana SE, Hartstone-Rose A. Functional and ecological correlates of the primate jaw abductors. Anat Rec (Hoboken) 2021; 305:1245-1263. [PMID: 34505739 DOI: 10.1002/ar.24772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
While the adductor musculature of the primate jaw has been extensively analyzed within the context of dietary and social ecology, little is known about the corresponding muscles of jaw abduction. Nonetheless, these muscles significantly contribute to a species' maximum gape potential, and thus might constrain dietary niche diversity and impact social display behaviors. In this study, we quantify the architectural properties of the digastric (a jaw abductor) and lateral pterygoid (a jaw abductor and anterior translator) across a broad sample of male and female anthropoid primates. We test the hypothesis that the abductor musculature reflects specialization to dietary and behavioral ecology. Our sample comprises 14 catarrhine and 13 platyrrhine species spanning a wide range of dietary and social categories. All specimens were sharp dissected and muscles subsequently chemically digested using a standardized protocol. Our findings demonstrate that relative fascicle lengths within the lateral pterygoid (but not the digastric) are significantly greater within species that habitually consume larger food items. Meanwhile, canine length is more strongly associated with fascicle lengths in the digastric than in the lateral pterygoid, particularly within males. Neither dietary mechanical resistance nor the intensity of social competition relates to the size or architectural properties of the jaw abductors. These findings suggest that dietary-and to a lesser extent, socioecological-aspects of a primate's life history may be reflected in the architecture of these muscles, albeit to varying degrees. This underlines the importance of considering the complete masticatory apparatus when interpreting the evolution of the primate jaw.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Francisco Pastor
- Departamento de Anatomia y Radiologia, Universidad de Valladolid, Valladolid, Spain
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Mayerl CJ, Steer KE, Chava AM, Bond LE, Edmonds CE, Gould FDH, Stricklen BM, Hieronymous TL, German RZ. The contractile patterns, anatomy and physiology of the hyoid musculature change longitudinally through infancy. Proc Biol Sci 2021; 288:20210052. [PMID: 33715426 DOI: 10.1098/rspb.2021.0052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
All mammalian infants suckle, a fundamentally different process than drinking in adults. Infant mammal oropharyngeal anatomy is also anteroposteriorly compressed and becomes more elongate postnatally. While suckling and drinking require different patterns of muscle use and kinematics, little insight exists into how the neuromotor and anatomical systems change through the time that infants suckle. We measured the orientation, activity and contractile patterns of five muscles active during infant feeding from early infancy until weaning using a pig model. Muscles not aligned with the long axis of the body became less mediolaterally orientated with age. However, the timing of activation and the contractile patterns of those muscles exhibited little change, although variation was larger in younger infants than older infants. At both ages, there were differences in contractile patterns within muscles active during both sucking and swallowing, as well as variation among muscles during swallowing. The changes in anatomy, coupled with less variation closer to weaning and little change in muscle firing and shortening patterns suggest that the neuromotor system may be optimized to transition to solid foods. The lesser consequences of aspiration during feeding on an all-liquid diet may not necessitate the evolution of variation in neuromotor function through infancy.
Collapse
Affiliation(s)
- C J Mayerl
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - K E Steer
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - A M Chava
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - L E Bond
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - C E Edmonds
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - F D H Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| | - B M Stricklen
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - T L Hieronymous
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| | - R Z German
- NEOMED Department of Anatomy and Neurobiology, 4209 State Route 44, PO Box 95, Rootstown OH 44272, USA
| |
Collapse
|
20
|
Werner HM, Miller CA, Tillman KK, Wang Y, Vorperian HK. Growth and sexual dimorphism of the hyoid bone and its relationship to the mandible from birth to 19 years: A three-dimensional computed tomography study. Anat Rec (Hoboken) 2021; 304:1901-1917. [PMID: 33580633 DOI: 10.1002/ar.24594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
The hyoid bone and the hyomandibular complex subserve the functions of respiration, deglutition, and speech. This study quantified the growth of the hyoid bone and the hyomandibular relationships in males and females from birth to 19 years. Using 97 computed tomography (CT) scans, from a previous study (Kelly et al., 2017) on mandibular growth from 49 individuals (16 with longitudinal scans), landmarks were placed on 3D CT models and used to calculate four distance, and three angular measurements. A general increase in growth trend was observed in hyoid bone linear measurements-length, width, and depth-as well as relational mandible-to-hyoid distance, throughout the developmental ages examined in both males and females, with most variables having larger measurements for females up to age 10 years. A general decrease in all three angular measurements was observed in both males and females up to approximately age 12 years, at which time male angular measurements gradually increased with significant sexual dimorphism emerging after age 15 years. As expected, postpubertal males had greater hyoid angle than females; they also had greater hyoid angle of inclination than mandible body inclination (with inclination relative to the anterior-posterior nasal plane), likely related to hyo-laryngeal descent. This study contributes to normative data on hyoid bone and hyomandibular relational growth in typically developing individuals and provides a baseline against which structural and functional influences on anatomic growth may be examined by clinical disciplines that address the aerodigestive and speech functions, as well as the fields of anatomy, forensics, and anthropology.
Collapse
Affiliation(s)
- Helen M Werner
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biology, Beloit College, Beloit, Wisconsin, USA
| | - Courtney A Miller
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katelyn K Tillman
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Houri K Vorperian
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Gould FDH, Lammers AR, Mayerl C, Ohlemacher J, German RZ. Muscle activity and kinematics show different responses to recurrent laryngeal nerve lesion in mammal swallowing. J Neurophysiol 2020; 124:1743-1753. [PMID: 32966748 DOI: 10.1152/jn.00409.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the interactions between neural and musculoskeletal systems is key to identifying mechanisms of functional failure. Mammalian swallowing is a complex, poorly understood motor process. Lesion of the recurrent laryngeal nerve, a sensory and motor nerve of the upper airway, results in airway protection failure (liquid entry into the airway) during swallowing through an unknown mechanism. We examined how muscle and kinematic changes after recurrent laryngeal nerve lesion relate to airway protection in eight infant pigs. We tested two hypotheses: 1) kinematics and muscle function will both change in response to lesion in swallows with and without airway protection failure, and 2) differences in both kinematics and muscle function will predict whether airway protection failure occurs in lesion and intact pigs. We recorded swallowing with high-speed videofluoroscopy and simultaneous electromyography of oropharyngeal muscles pre- and postrecurrent laryngeal nerve lesion. Lesion changed the relationship between airway protection and timing of tongue and hyoid movements. Changes in onset and duration of hyolaryngeal muscles postlesion were less associated with airway protection outcomes. The tongue and hyoid kinematics all predicted airway protection outcomes differently pre- and postlesion. Onset and duration of activity in only one infrahyoid and one suprahyoid muscle showed a change in predictive relationship pre- and postlesion. Kinematics of the tongue and hyoid more directly reflect changes in airway protections pre- and postlesion than muscle activation patterns. Identifying mechanisms of airway protection failure requires specific functional hypotheses that link neural motor outputs to muscle activation to specific movements.NEW & NOTEWORTHY Kinematic and muscle activity patterns of oropharyngeal structures used in swallowing show different patterns of response to lesion of the recurrent laryngeal nerve. Understanding how muscles act on structures to produce behavior is necessary to understand neural control.
Collapse
Affiliation(s)
- François D H Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, New Jersey
| | | | - Christopher Mayerl
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jocelyn Ohlemacher
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| | - Rebecca Z German
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
23
|
Laurence-Chasen JD, Manafzadeh AR, Hatsopoulos NG, Ross CF, Arce-McShane FI. Integrating XMALab and DeepLabCut for high-throughput XROMM. J Exp Biol 2020; 223:jeb226720. [PMID: 32665442 PMCID: PMC7490514 DOI: 10.1242/jeb.226720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Marker tracking is a major bottleneck in studies involving X-ray reconstruction of moving morphology (XROMM). Here, we tested whether DeepLabCut, a new deep learning package built for markerless tracking, could be applied to videoradiographic data to improve data processing throughput. Our novel workflow integrates XMALab, the existing XROMM marker tracking software, and DeepLabCut while retaining each program's utility. XMALab is used for generating training datasets, error correction and 3D reconstruction, whereas the majority of marker tracking is transferred to DeepLabCut for automatic batch processing. In the two case studies that involved an in vivo behavior, our workflow achieved a 6 to 13-fold increase in data throughput. In the third case study, which involved an acyclic, post-mortem manipulation, DeepLabCut struggled to generalize to the range of novel poses and did not surpass the throughput of XMALab alone. Deployed in the proper context, this new workflow facilitates large scale XROMM studies that were previously precluded by software constraints.
Collapse
Affiliation(s)
- J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA
| | - Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA
| | - Fritzie I Arce-McShane
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Edmonds CE, Catchpole EA, Gould FDH, Bond LE, Stricklen BM, German RZ, Mayerl CJ. Preterm Birth Impacts the Timing and Excursion of Oropharyngeal Structures during Infant Feeding. Integr Org Biol 2020; 2:obaa028. [PMID: 33103058 PMCID: PMC7568519 DOI: 10.1093/iob/obaa028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Swallowing in mammals requires the precise coordination of multiple oropharyngeal structures, including the palatopharyngeal arch. During a typical swallow, the activity of the palatopharyngeus muscle produces pharyngeal shortening to assist in producing pressure required to swallow and may initiate epiglottal flipping to protect the airway. Most research on the role of the palatopharyngeal arch in swallowing has used pharyngeal manometry, which measures the relative pressures in the oropharynx, but does not quantify the movements of the structures involved in swallowing. In this study, we assessed palatopharyngeal arch and soft palate function by comparing their movements in a healthy population to a pathophysiological population longitudinally through infancy (term versus preterm pigs). In doing so, we test the impact of birth status, postnatal maturation, and their interaction on swallowing. We tracked the three-dimensional (3D) movements of radiopaque beads implanted into relevant anatomical structures and recorded feeding via biplanar high-speed videofluoroscopy. We then calculated the total 3D excursion of the arch and soft palate, the orientation of arch movement, and the timing of maximal arch constriction during each swallow. Soft palate excursion was greater in term infants at both 7 and 17 days postnatal, whereas arch excursion was largely unaffected by birth status. Maximal arch constriction occurred much earlier in preterm pigs relative to term pigs, a result that was consistent across age. There was no effect of postnatal age on arch or soft palate excursion. Preterm and term infants differed in their orientation of arch movement, which most likely reflects both differences in anatomy and differences in feeding posture. Our results suggest that the timing and coordination of oropharyngeal movements may be more important to feeding performance than the movements of isolated structures, and that differences in the neural control of swallowing and its maturation in preterm and term infants may explain preterm swallowing deficits.
Collapse
Affiliation(s)
- C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - E A Catchpole
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - F D H Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, NJ 08854, USA
| | - L E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - B M Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - C J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| |
Collapse
|
25
|
Granatosky MC, Ross CF. Differences in muscle mechanics underlie divergent optimality criteria between feeding and locomotor systems. J Anat 2020; 237:1072-1086. [PMID: 32671858 DOI: 10.1111/joa.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Tetrapod musculoskeletal diversity is usually studied separately in feeding and locomotor systems. However, direct comparisons between these systems promise important insight into how natural selection deploys the same basic musculoskeletal toolkit-connective tissues, bones, nerves, and skeletal muscle-to meet the differing performance criteria of feeding and locomotion. Recent studies using this approach have proposed that the feeding system is optimized for precise application of high forces and the locomotor system is optimized for wide and rapid joint excursions for minimal energetic expenditure. If this hypothesis is correct, then it stands to reason that other anatomical and biomechanical variables within the feeding and locomotor systems should reflect these diverging functions. To test this hypothesis, we compared muscle moment arm lengths, mechanical advantages, and force vector orientations of two jaw elevator muscles (m. temporalis and m. superficial masseter), an elbow flexor (m. brachialis) and extensor (m. triceps- lateral head), and a knee flexor (m. biceps femoris-short head) and extensor (m. vastus lateralis) across 18 species of primates. Our results show that muscles of the feeding system are more orthogonally oriented relative to the resistance arm (mandible) and operate at relatively large moment arms and mechanical advantages. Moreover, these variables show relatively little change across the range of jaw excursion. In contrast, the representative muscles of the locomotor system have much smaller mechanical advantages and, depending on joint position, smaller muscle moment arm lengths and almost parallel orientations relative to the resistance arm. These patterns are consistent regardless of phylogeny, body mass, locomotor mode, and feeding specialization. We argue that these findings reflect fundamental functional dichotomies between tetrapod locomotor and feeding systems. By organizing muscles in a manner such that moment arms and mechanical advantage are relatively small, the locomotor system can produce broad joint excursions and high angular velocities with only small muscular contraction. As such, the anatomical organization of muscles within the limbs allows striding animals to move relatively rapidly and with minimal energetic expenditure. In contrast, the anatomical configuration of muscles in the feeding system, at least m. superficial masseter and m. temporalis, favors their force-producing capacity at the expense of excursion and velocity.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology, Old Westbury, New York, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Orsbon CP, Gidmark NJ, Gao T, Ross CF. XROMM and diceCT reveal a hydraulic mechanism of tongue base retraction in swallowing. Sci Rep 2020; 10:8215. [PMID: 32427836 PMCID: PMC7237434 DOI: 10.1038/s41598-020-64935-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
During primate swallowing, tongue base retraction (TBR) drives the food bolus across the oropharynx towards the esophagus and flips the epiglottis over the laryngeal inlet, protecting against penetration and aspiration of food into the airway. Despite the importance of TBR for swallowing performance, the mechanics of TBR are poorly understood. Using biplanar videoradiography (XROMM) of four macaque monkeys, we tested the extrinsic muscle shortening hypothesis, which posits that shortening of the hyoglossus and styloglossus muscles pulls the tongue base posteriorly, and the muscular hydrostat or intrinsic tongue muscle hypothesis, which suggests that, because the tongue is composed of incompressible fluid, intrinsic muscle shortening increases tongue length and displaces the tongue base posteriorly. Our data falsify these hypotheses. Instead we suggest a novel hydraulic mechanism of TBR: shortening and rotation of suprahyoid muscles compresses the tongue between the hard palate, hyoid and mouth floor, squeezing the midline tongue base and food bolus back into the oropharynx. Our hydraulic mechanism is consistent with available data on human tongue swallowing kinematics. Rehabilitation for poor tongue base retraction might benefit from including suprahyoid muscle exercises during treatment.
Collapse
Affiliation(s)
- Courtney P Orsbon
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas J Gidmark
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Biology Department, Knox College, Galesburg, IL, 61401, USA
| | - Tingran Gao
- Committee on Computational and Applied Mathematics, Department of Statistics, The University of Chicago, Chicago, IL, 60637, USA
| | - Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Brocklehurst R, Porro L, Herrel A, Adriaens D, Rayfield E. A digital dissection of two teleost fishes: comparative functional anatomy of the cranial musculoskeletal system in pike (Esox lucius) and eel (Anguilla anguilla). J Anat 2019; 235:189-204. [PMID: 31148160 DOI: 10.1111/joa.13007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Advances in X-ray computed tomography (CT) have led to a rise in the use of non-destructive imaging methods in comparative anatomy. Among these is contrast-enhanced CT scanning, which employs chemical stains to visualize soft tissues. Specimens may then be 'digitally dissected', producing detailed, three-dimensional digital reconstructions of the soft- and hard-tissue anatomy, allowing examination of anatomical structures in situ and making accurate measurements (lengths, volumes, etc.). Here, we apply this technique to two species of teleost fish, providing one of the first comprehensive three-dimensional (3D) descriptions of teleost cranial soft tissue and quantifying differences in muscle anatomy that may be related to differences in feeding ecology. Two species with different feeding ecologies were stained, scanned and imaged to create digital 3D musculoskeletal reconstructions: Esox lucius (Northern Pike), predominantly a suction feeder; and Anguilla anguilla (European eel), which captures prey predominantly by biting. Muscle cross-sectional areas were calculated and compared between taxa, focusing on muscles that serve important roles in feeding. The adductor mandibulae complex - used in biting - was larger in Esox than Anguilla relative to head size. However, the overall architecture of the adductor mandibulae was also very different between the two species, with that of Anguilla better optimized for delivering forceful bites. Levator arcus palatini and sternohyoideus - which are used in suction feeding - are larger in Esox, whereas the levator operculi is larger in Anguilla. Therefore, differences in the size of functionally important muscles do not necessarily correlate neatly with presumed differences in feeding mode.
Collapse
Affiliation(s)
- Robert Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Laura Porro
- School of Earth Sciences, University of Bristol, Bristol, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Adriaens
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Emily Rayfield
- School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
28
|
Clubb BL, Clark AJ, Uyeno TA. Powering the hagfish “bite”: The functional morphology of the retractor complex of two hagfish feeding apparatuses. J Morphol 2019; 280:827-840. [DOI: 10.1002/jmor.20986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
|
29
|
Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature 2019; 566:528-532. [DOI: 10.1038/s41586-019-0940-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022]
|
30
|
Sullivan SP, McGechie FR, Middleton KM, Holliday CM. 3D Muscle Architecture of the Pectoral Muscles of European Starling ( Sturnus vulgaris). Integr Org Biol 2019; 1:oby010. [PMID: 33791517 PMCID: PMC7671135 DOI: 10.1093/iob/oby010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Avian flight is achieved through a number of modifications to the body, including the pectoral girdle, yet little is known about the architecture of the pectoral musculature. Muscle architecture is a critical variable in determining the biomechanical function of the vertebrate musculoskeletal system; however, accurate three-dimensional (3D) understanding of muscle architecture has been historically difficult to acquire. Here, we present a musculoskeletal model of a European starling (Sturnus vulgaris) pectoral girdle generated from iodine contrast-enhanced micro-computed-tomography (CT) data and 3D fiber tracking analysis. We used a template-based fiber-tracking algorithm to reconstruct muscle fibers in 3D based on grayscale differences in CT images, which allowed us to estimate fascicle lengths, pennation angles, muscle volumes, and physiological cross-sectional area. Our modeled muscles were qualitatively accurate; however, quantitative muscle architecture data differed between digital and traditional gross-dissection methods reflecting the complex organization of the tissue and differing natures of data collection. We found that model quality is affected by the resolution of CT image data and the fiber-tracking program’s input parameters. Nonetheless, digital fiber tracking offers numerous advantages over gross-dissection methods, most importantly, the ability to visualize and quantify entire muscles in three-dimensions, yielding a much more accurate estimation of whole muscle architecture.
Collapse
Affiliation(s)
- S P Sullivan
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - F R McGechie
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - K M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - C M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
31
|
Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone. Curr Biol 2018; 29:1-12.e7. [PMID: 30581019 DOI: 10.1016/j.cub.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
In large limbs, changing motor neuron activity typically controls within-movement velocity. For example, sequential agonist-antagonist-agonist motor neuron firing typically underlies the slowing often present at the end of human reaches. In physiological movements of large limbs, antagonistic muscle passive torque is generally negligible. In small limbs, alternatively, passive torques can determine limb rest position, generate restoring movements to it, and decrease agonist-generated movement amplitude and velocity maxima. These observations suggest that, in small limbs, passive forces might also control velocity changes within movements. We investigated this issue in stick insect middle leg femur-tibia (FT) joint. During swing, the FT joint extensor muscle actively shortens and the flexor muscle passively lengthens. As in human reaching, after its initial acceleration, FT joint velocity continuously decreases. We measured flexor passive forces during imposed stretches spanning the ranges of FT joint angles, angular velocities, and movement amplitudes present in leg swings. The viscoelastic "transient" passive force that occurs during and soon after stretch depended on all three variables and could be tens of times larger than the "steady-state" passive force commonly measured long after stretch end. We combined these data, the flexor and extensor moment arms, and an existing extensor model to simulate FT joint swing. To measure only passive (flexor) muscle-dependent effects, we used constant extensor activations in these simulations. In simulations using data from ten flexor muscles, flexor passive torque could always produce swings with, after swing initiation, continuously decreasing velocities. Antagonist muscle passive torques alone can thus control within-movement velocity.
Collapse
|
32
|
Fischer MS, Lehmann SV, Andrada E. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci Rep 2018; 8:16982. [PMID: 30451855 PMCID: PMC6242825 DOI: 10.1038/s41598-018-34310-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023] Open
Abstract
The first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur. French bulldogs translate extensive femoral long axis rotation (>30°) into a strong lateral displacement and rotations about the craniocaudal (roll) and the distal-proximal (yaw) axes of the pelvis in order to compensate for a highly abducted hindlimb position from the beginning of stance. We assume that breeds which exhibit unusual kinematics, especially high femoral abduction, might be susceptible to a higher long-term loading of the cruciate ligaments.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany.
| | - Silvia V Lehmann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Emanuel Andrada
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| |
Collapse
|
33
|
Hartstone-Rose A, Santana SE. Behavioral Correlates of Cranial Muscle Functional Morphology. Anat Rec (Hoboken) 2018; 301:197-201. [PMID: 29330957 DOI: 10.1002/ar.23757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023]
Abstract
This issue of the Anatomical Record is the first of a two-volume set that focuses on new investigations into behavioral correlates of muscle functional morphology. Much of the research on functional morphology and adaptation to specific functional niches focuses on the shapes of hard-tissues-bones and teeth. Investigations into soft-tissue anatomy tend to be predominantly descriptive with only brief allusion to ontogenetic or evolutionary origins of structures. When muscles are included in analyses of functional systems, their function tends to be oversimplified-usually considered a simple force vector connecting two osteological points, with the force treated as a constant derived from some simple calculation of muscle size. The goal of these special issues is to present a series of studies that take a more elaborate look at how muscles can be viewed from a functional perspective in studies searching for morphological correlates of behavior. This first volume focuses on the behavioral correlates of cranial muscles-starting with a paper about the mimetic musculature of primates and ending with a series of papers on the masticatory muscles of many lineages of vertebrates. The next issue of the Anatomical Record (March 2018) includes our papers on the behavioral correlates of postcranial muscles. Taken together, we hope you agree that this series presents valuable insights into these form/function relationships using both traditional approaches+ and cutting-edge techniques. Anat Rec, 301:197-201, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam Hartstone-Rose
- College of Sciences, North Carolina State University, Raleigh, North Carolina
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Kincaid Hall, Seattle, Washington
| |
Collapse
|
34
|
Perry JMG, Prufrock KA. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of “Paleomyology”. Anat Rec (Hoboken) 2018; 301:538-555. [DOI: 10.1002/ar.23772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Kristen A. Prufrock
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|