1
|
Moaddel R, Candia J, Ubaida-Mohien C, Tanaka T, Moore AZ, Zhu M, Fantoni G, Church S, D'Agostino J, Fan J, Shehadeh N, De S, Lehrmann E, Kaileh M, Simonsick E, Sen R, Egan JM, Ferrucci L. Healthy Aging Metabolomic and Proteomic Signatures Across Multiple Physiological Compartments. Aging Cell 2025:e70014. [PMID: 39952253 DOI: 10.1111/acel.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The study of biomarkers in biofluids and tissues expanded our understanding of the biological processes that drive physiological and functional manifestations of aging. However, most of these studies were limited to examining one biological compartment, an approach that fails to recognize that aging pervasively affects the whole body. The simultaneous modeling of hundreds of metabolites and proteins across multiple compartments may provide a more detailed picture of healthy aging and point to differences between chronological and biological aging. Herein, we report proteomic analyses of plasma and urine collected in healthy men and women, age 22-92 years. Using these data, we developed a series of metabolomic and proteomic predictors of chronological age for plasma, urine, and skeletal muscle. We then defined a biological aging score, which measures the departure between an individual's predicted age and the expected predicted age for that individual based on the full cohort. We show that these predictors are significantly and independently related to clinical phenotypes important for aging, such as inflammation, iron deficiency anemia, muscle mass, and renal and hepatic functions. Despite a different set of selected biomarkers in each compartment, the different scores reflect a similar degree of deviation from healthy aging in single individuals, thus allowing identification of subjects with significant accelerated or decelerated biological aging.
Collapse
Affiliation(s)
- R Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Candia
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - C Ubaida-Mohien
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - T Tanaka
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - A Z Moore
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Zhu
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - G Fantoni
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S Church
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J D'Agostino
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Fan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - N Shehadeh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S De
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Lehrmann
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Kaileh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Simonsick
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - R Sen
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J M Egan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - L Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Huang D, Ma Z, Wang J, Li Y, Zhang Y, Lin H, Zhu X, Xiao Y, Zhang X. Recombinant humanized collagen ameliorates ischemic myopathy through limiting natural IgM-mediated lectin complement activation. Biomaterials 2025; 318:123162. [PMID: 39904186 DOI: 10.1016/j.biomaterials.2025.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Despite technological advances in endovascular procedures, therapeutics that provide supportive microenvironments to repair ischemic muscles are limited for the treatment of advanced lower extremity peripheral artery disease (PAD). Here, based on the two major extracellular matrix components in skeletal muscle, the efficacies of recombinant humanized collagen type I and III (rhCol I and rhCol III) in regenerating tibialis anterior muscle after hindlimb ischemia were studied. Repeated intramuscular injections of rhCol I or rhCol III preserved myofiber structure and accelerated myofiber regeneration within one-week after injury. Proteomic signature demonstrated a reduced lectin complement activation in the rhCol I- and III-treated muscles. We identified a competitive binding between rhCol and natural IgM (nIgM), which inhibits nIgM-mediated lectin complement activation, as the underlying mechanism contributing to a protective microenvironment after ischemic injury. Furthermore, the complement-inhibiting rhCol I and rhCol III treatments exhibit long-term protection for ischemic muscle with ameliorated muscle pathology and improved muscle function. Our findings provide a promising biomaterial-based approach for treating ischemic myopathy induced by PAD.
Collapse
Affiliation(s)
- Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zihan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuehong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuting Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Quah AMF, Ng MJM, Zhang L, Chan YM, Neo S, Mak M, Hong Q, Tan G, Pan Y, Yong E. Early experience on injectable micronized putty type human-derived acellular dermal matrix (ADM) in management of diabetic foot wounds in Singapore. Int Wound J 2025; 22:e70127. [PMID: 39800362 PMCID: PMC11725370 DOI: 10.1111/iwj.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/20/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic foot wounds (DFW) are notoriously difficult to treat owing to poor vascularity, delayed healing and higher rates of infection. Human-derived acellular dermal matrices (ADM) have been used in DFW treatment, utilizing a matrix scaffold for new tissue generation. We investigate the efficacy of a micronized injectable human-derived ADM in the treatment of DFW. We retrospectively recruited 13 patients with diabetic foot wounds. Wounds were adequately debrided, and a micronized injectable ADM was applied. Wound sizes were recorded prior to treatment, at 2 and 4 weeks post-treatment. The mean defect of wounds treated was 19.21 cm3. Our results showed a statistically significant reduction in wound size of 45% and 59% at 2 and 4 weeks post-treatment, respectively (p < 0.01). ADM was also effective in infected DFW as 84% of our wounds had positive tissue cultures at the time of application. Micronized injectable ADM has proven to be an effective treatment for DFW. Advantages include a ready-to-use injectable, single-stage treatment, minimal pain, mouldable matrix to fit any wound shape, allows for outpatient treatment and simple wound dressings.
Collapse
Affiliation(s)
- Alison Mei Fern Quah
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Marcus Jia Ming Ng
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Li Zhang
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Yam Meng Chan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Shufen Neo
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Malcolm Mak
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Qiantai Hong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Glenn Tan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Ying Pan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Enming Yong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| |
Collapse
|
4
|
Chen X, Guo H, Li X, Liu Y, Li X, Cui Z, Ma H, He J, Zeng Z, Zhang H. Elevated Serum Extracellular Vesicle-Packaged SPARC in Hypertension: A Cross-Sectional Study in a Middle-Aged and Elderly Population. J Clin Hypertens (Greenwich) 2025; 27:e14954. [PMID: 39632586 PMCID: PMC11773675 DOI: 10.1111/jch.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Elevated blood pressure has previously been associated with increased levels of circulating extracellular vesicles (EVs). However, studies on the relevance of EV cargos to hypertension are limited. Secreted protein acidic and rich in cysteine (SPARC) is involved in many metabolic diseases and endothelial dysfunction pathological processes. This study aimed to explore the association of serum EV-derived SPARC with hypertension incidence. We conducted a cross-sectional study on 125 Chinese, including 76 hypertension patients and 49 normotensive patients. Serum EVs were prepared via ultracentrifugation. The concentrations of serum EV-derived SPARC and serum SPARC were measured by Luminex Assay. The correlations between serum EV-derived SPARC and clinical variables were analyzed. Multivariate logistic regression analysis determined the association of serum EV-derived SPARC levels with hypertension. Interaction subgroup analysis was used to evaluate the interaction of the relevant baselines on the association between serum EV-derived SPARC levels and hypertension. Our findings revealed that the levels of SPARC derived from serum EVs were markedly elevated in individuals with hypertension, averaging 20.60 ng/mL (p < 0.01), when contrasted with the levels observed in normotensive subjects, which were 14.25 ng/mL (p < 0.01) in average. Multivariate logistic regression analysis revealed that serum EV-derived SPARC levels were positively associated with hypertension (odds ratio [OR] 1.095; 95% confidence interval [CI] = 1.031-1.163; p value, 0.003), after adjusting for confounding factors. Interaction subgroup analysis demonstrated that no significant interaction with hypertension was observed for any particular covariate. The present study reveals that the elevated levels of serum EV-derived SPARC were independently associated with hypertension.
Collapse
Affiliation(s)
- Xueying Chen
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Han Guo
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Xinwei Li
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Yang Liu
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Xinxin Li
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Zhengshuo Cui
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Huijuan Ma
- Department of HypertensionBeijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Jianxun He
- Beijing Anzhen Hospital Laboratory DepartmentBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Zhechun Zeng
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Huina Zhang
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| |
Collapse
|
5
|
Duan Y, Wang Q, Chen X, Deng G, Huang K, Sun F, Zhu J, Jiang K. Empagliflozin reduces renal calcium oxalate deposition in hyperoxaluria rats induced with ethylene glycol-ammonium chloride. Biochem Biophys Res Commun 2024; 737:150912. [PMID: 39489113 DOI: 10.1016/j.bbrc.2024.150912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
A retrospective study reported that empagliflozin reduced the risk of urinary stone events in patients with diabetes mellitus. To further investigate empagliflozin's potential, we conducted an animal experiment to determine whether empagliflozin can prevent renal stone formation in hyperoxaluria rats. Hyperoxaluria rat models were constructed by administrating 0.75 % ethylene glycol and 1 % ammonium chloride in water. The empagliflozin-treated rats were gauged with empagliflozin at different concentrations, and their body weight and blood sugar data were recorded. After 30 days of treatment, we obtained 24-h urine, kidney, and blood samples. The urine samples were subjected to component detection. Blood samples were prepared for component detection and cytokines detection. Renal samples were subjected to von Kossa staining, transmission electron microscopy, immunohistochemistry, and transcriptome sequencing analysis. Results showed that in empagliflozin-treated hyperoxaluria rats, renal crystal deposition and mitochondria injury, urinary concentration, and excretion of oxalate were significantly decreased. Additionally, plasma levels of VEGF, IL-2, IL-1β, and MCP-1 were decreased. Immunohistochemistry showed that renal expression of KIM-1, MCP-1 was significantly decreased in empagliflozin-treated hyperoxaluria rats. Transcriptome sequencing of renal tissue represented that 25 genes were down-regulated while 12 were up-regulated in empagliflozin-treated hyperoxaluria rats. These regulated genes were mainly enriched in fatty acid metabolism, insulin resistance, muscle contraction, bile secretion, and parathyroid metabolism. Our animal experiments found that empagliflozin could reduce urinary concentration and excretion of oxalate and inhibit renal inflammation, then abating renal calcium oxalate deposition in hyperoxaluria rats in a non-diabetic state.
Collapse
Affiliation(s)
- Yu Duan
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Guanyun Deng
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kunyuan Huang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Fa Sun
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kehua Jiang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
8
|
Liu F, Cao Y, Wang X, Zhang K, Li N, Su Y, Zhang Y, Meng Q. Islr regulates satellite cells asymmetric division through the SPARC/p-ERK1/2 signaling pathway. FASEB J 2024; 38:e23534. [PMID: 38597911 DOI: 10.1096/fj.202302614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kuo Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Morisseau L, Tokito F, Lucas M, Poulain S, Kim SH, Plaisance V, Pawlowski V, Legallais C, Jellali R, Sakai Y, Abderrahmani A, Leclerc E. Transcriptomic profiling analysis of the effect of palmitic acid on 3D spheroids of β-like cells derived from induced pluripotent stem cells. Gene 2024; 917:148441. [PMID: 38608795 DOI: 10.1016/j.gene.2024.148441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic β-cell function and mass. In β-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in β-cell dysfunction and mass. However, there is a lack of human relevant in vitro model to identify the underlying mechanism through which palmitate induces β-cell failure. In this frame, we have previously developed a cutting-edge 3D spheroid model of β-like cells derived from human induced pluripotent stem cells. In the present work, we investigated the signaling pathways modified by palmitate in β-like cells derived spheroids. When compared to the 2D monolayer cultures, the transcriptome analysis (FDR set at 0.1) revealed that the 3D spheroids upregulated the pancreatic markers (such as GCG, IAPP genes), lipids metabolism and transporters (CD36, HMGSC2 genes), glucose transporter (SLC2A6). Then, the 3D spheroids are exposed to PA 0.5 mM for 72 h. The differential analysis demonstrated that 32 transcription factors and 135 target genes were mainly modulated (FDR set at 0.1) including the upregulation of lipid and carbohydrates metabolism (HMGSC2, LDHA, GLUT3), fibrin metabolism (FGG, FGB), apoptosis (CASP7). The pathway analysis using the 135 selected targets extracted the fibrin related biological process and wound healing in 3D PA treated conditions. An overall pathway gene set enrichment analysis, performed on the overall gene set (with pathway significance cutoff at 0.2), highlighted that PA perturbs the citrate cycle, FOXO signaling and Hippo signaling as observed in human islets studies. Additional RT-PCR confirmed induction of inflammatory (IGFBP1, IGFBP3) and cell growth (CCND1, Ki67) pathways by PA. All these changes were associated with unaffected glucose-stimulated insulin secretion (GSIS), suggesting that they precede the defect of insulin secretion and death induced by PA. Overall, we believe that our data demonstrate the potential of our spheroid 3D islet-like cells to investigate the pancreatic-like response to diabetogenic environment.
Collapse
Affiliation(s)
- Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fumiya Tokito
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mathilde Lucas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Yasuyuki Sakai
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Eric Leclerc
- CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
10
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Fang S, Li Z, Pang S, Gan Y, Ding X, Peng H. Identification of postnatal development dependent genes and proteins in porcine epididymis. BMC Genomics 2023; 24:729. [PMID: 38049726 PMCID: PMC10694963 DOI: 10.1186/s12864-023-09827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The epididymis is a highly regionalized tubular organ possesses vectorial functions of sperm concentration, maturation, transport, and storage. The epididymis-expressed genes and proteins are characterized by regional and developmental dependent pattern. However, a systematic and comprehensive insight into the postnatal development dependent changes in gene and protein expressions of porcine epididymis is still lacking. Here, the RNA and protein of epididymis of Duroc pigs at different postnatal development stages were extracted by using commercial RNeasy Midi kit and extraction buffer (7 M Urea, 2 M thiourea, 3% CHAPS, and 1 mM PMSF) combined with sonication, respectively, which were further subjected to transcriptomic and proteomic profiling. RESULTS Transcriptome analysis indicated that 198 and 163 differentially expressed genes (DEGs) were continuously up-regulated and down-regulated along with postnatal development stage changes, respectively. Most of the up-regulated DEGs linked to functions of endoplasmic reticulum and lysosome, while the down-regulated DEGs mainly related to molecular process of extracellular matrix. Moreover, the following key genes INSIG1, PGRMC1, NPC2, GBA, MMP2, MMP14, SFRP1, ELN, WNT-2, COL3A1, and SPARC were highlighted. A total of 49 differentially expressed proteins (DEPs) corresponding to postnatal development stages changes were uncovered by the proteome analysis. Several key proteins ACSL3 and ACADM, VDAC1 and VDAC2, and KNG1, SERPINB1, C3, and TF implicated in fatty acid metabolism, voltage-gated ion channel assembly, and apoptotic and immune processes were emphasized. In the integrative network, the key genes and proteins formed different clusters and showed strong interactions. Additionally, NPC2, COL3A1, C3, and VDAC1 are located at the hub position in each cluster. CONCLUSIONS The identified postnatal development dependent genes and proteins in the present study will pave the way for shedding light on the molecular basis of porcine epididymis functions and are useful for further studies on the specific regulation mechanisms responsible for epididymal sperm maturation.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zhechen Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Shuo Pang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yating Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaoning Ding
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Tang R, Lin W, Shen C, Hu X, Yu L, Meng T, Zhang L, Eggenhuizen PJ, Ooi JD, Jin P, Ding X, Xiao X, Zhong Y. Single-cell transcriptomics uncover hub genes and cell-cell crosstalk in patients with hypertensive nephropathy. Int Immunopharmacol 2023; 125:111104. [PMID: 37897949 DOI: 10.1016/j.intimp.2023.111104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Hypertensive nephropathy (HTN) is one of the leading causes of end-stage renal disease, yet the molecular mechanisms are still unknown. To explore novel mechanisms and gene targets for HTN, the gene expression profiles of renal biopsy samples obtained from 2 healthy living donor controls and 5 HTN patients were determined by single-cell RNA sequencing. Key hub genes expression were validated by the Nephroseq v5 platform. The HTN endothelium upregulated cellular adhesion genes (ICAM2 and CEACAM1), inflammatory genes (ETS2 and IFI6) and apoptosis related genes (CNN3). Proximal tubules in HTN highly expressed hub genes including BBOX1, TPM1, TMSB10, SDC4, and NUP58, which might be potential novel targets for proximal tubular injury. The upregulated genes in tubules of HTN were mainly participating in inflammatory signatures including IFN-γ signature, NF-κB signaling, IL-12 signaling and Wnt signaling pathway. Receptor-ligand interaction analysis indicated potential cell-cell crosstalk between endothelial cells or mesangial cells with other renal resident cells in HTN. Together, our data identify a distinct cell-specific gene expression profile, pathogenic inflammatory signaling and potential cell-cell communications between endothelial cells or mesangial cells with other renal resident cells in HTN. These findings may provide a promising novel landscape for mechanisms and treatment of human HTN.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lin
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Xueling Hu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leilin Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Nephrology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Joshua D Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Ghanemi A, Mac-Way F. Obesity and Bone Mineral Density Protection Paradox in Chronic Kidney Disease: Secreted Protein Acidic and Rich in Cysteine as a Piece of the Puzzle? Life (Basel) 2023; 13:2172. [PMID: 38004312 PMCID: PMC10672555 DOI: 10.3390/life13112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity is a health condition that represents a risk factor for numerous diseases and complications. However, obesity might also have-to some extent-some "benefits" in certain situations. This includes potential bone protection in patients suffering from chronic kidney disease. In an attempt to explain such a paradox, we highlight secreted protein acidic and rich in cysteine (SPARC) as a hypothetical mediator of this protection. Indeed, SPARC properties provide a logical rationale to describe such bone protection via its overexpression combined with its calcium-binding and collagen-binding properties. We believe that exploring such hypotheses could open new doors to elucidate unknown pathways towards developing a new generation of molecular therapies.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Endocrinology and Nephrology Axis, L’Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Quebec, QC G1R 2J6, Canada;
- Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Fabrice Mac-Way
- Endocrinology and Nephrology Axis, L’Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Quebec, QC G1R 2J6, Canada;
- Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Atorrasagasti C, Onorato AM, Mazzolini G. The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease. J Physiol Biochem 2023; 79:815-831. [PMID: 36018492 DOI: 10.1007/s13105-022-00913-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.
Collapse
Affiliation(s)
- Catalina Atorrasagasti
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| | - Agostina M Onorato
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
- Liver Unit, Hospital Universitario Austral, Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Elchaninov A, Vishnyakova P, Kuznetsova M, Gantsova E, Kiseleva V, Lokhonina A, Antonova M, Mamedov A, Soboleva A, Trofimov D, Fatkhudinov T, Sukhikh G. The spleen as a possible source of serine protease inhibitors and migrating monocytes required for liver regeneration after 70% resection in mice. Front Cell Dev Biol 2023; 11:1241819. [PMID: 37745290 PMCID: PMC10512715 DOI: 10.3389/fcell.2023.1241819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: The role of the immune system in liver repair is fundamentally complex and most likely involves the spleen. The close connection between the two organs via the portal vein enables delivery of splenic cytokines and living cells to the liver. This study evaluates expression of inflammation-related genes and assesses the dynamics of monocyte-macrophage and lymphocyte populations of the spleen during the recovery from 70% hepatectomy in mice. Methods: The study used the established mouse model of 70% liver volume resection. The animals were sacrificed 24 h, 72 h or 7 days post-intervention and splenic tissues were collected for analysis: Clariom™ S transcriptomic assay, immunohistochemistry for proliferation marker Ki-67 and macrophage markers, and flow cytometry for lymphocyte and macrophage markers. Results: The loss and regeneration of 70% liver volume affected the cytological architecture and gene expression profiles of the spleen. The tests revealed significant reduction in cell counts for Ki-67+ cells and CD115+ macrophages on day 1, Ly6C + cells on days 1, 3 and 7, and CD3+CD8+ cytotoxic lymphocytes on day 7. The transcriptomic analysis revealed significant activation of protease inhibitor genes Serpina3n, Stfa2 and Stfa2l1 and decreased expression of cell cycle regulatory genes on day 1, mirrored by inverse dynamics observed on day 7. Discussion and conclusion: Splenic homeostasis is significantly affected by massive loss in liver volume. High levels of protease inhibitors indicated by increased expression of corresponding genes on day 1 may play an anti-inflammatory role upon reaching the regenerating liver via the portal vein. Leukocyte populations of the spleen react by a slow-down in proliferation. A transient decrease in the local CD115+ and Ly6C+ cell counts may indicate migration of splenic monocytes-macrophages to the liver.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Maria Kuznetsova
- Laboratory of Molecular Research Methods, Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Gantsova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Viktoria Kiseleva
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasiya Lokhonina
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Maria Antonova
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aiaz Mamedov
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna Soboleva
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dmitry Trofimov
- Laboratory of Molecular Research Methods, Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Ajoolabady A, Pratico D, Vinciguerra M, Lip GYH, Franceschi C, Ren J. Inflammaging: mechanisms and role in the cardiac and vasculature. Trends Endocrinol Metab 2023; 34:373-387. [PMID: 37076375 DOI: 10.1016/j.tem.2023.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Aging triggers a wide range of cellular and molecular aberrations in the body, giving rise to inflammation and associated diseases. In particular, aging is associated with persistent low-grade inflammation even in absence of inflammatory stimuli, a phenomenon commonly referred to as 'inflammaging'. Accumulating evidence has revealed that inflammaging in vascular and cardiac tissues is associated with the emergence of pathological states such as atherosclerosis and hypertension. In this review we survey molecular and pathological mechanisms of inflammaging in vascular and cardiac aging to identify potential targets, natural therapeutic compounds, and other strategies to suppress inflammaging in the heart and vasculature, as well as in associated diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Manlio Vinciguerra
- Liverpool Centre for Cardiovascular Science, Liverpool Johns Moore University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Claudio Franceschi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Nakajima H, Kawakita F, Oinaka H, Suzuki Y, Nampei M, Kitano Y, Nishikawa H, Fujimoto M, Miura Y, Yasuda R, Toma N, Suzuki H. Plasma SPARC Elevation in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2023; 20:779-788. [PMID: 36781745 PMCID: PMC10275842 DOI: 10.1007/s13311-023-01351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Matricellular proteins have been implicated in pathologies after subarachnoid hemorrhage (SAH). To find a new therapeutic molecular target, the present study aimed to clarify the relationships between serially measured plasma levels of a matricellular protein, secreted protein acidic and rich in cysteine (SPARC), and delayed cerebral ischemia (DCI) in 117 consecutive aneurysmal SAH patients with admission World Federation of Neurological Surgeons (WFNS) grades I-III. DCI developed in 25 patients with higher incidences of past history of hypertension and dyslipidemia, preoperative WFNS grade III, modified Fisher grade 4, spinal drainage, and angiographic vasospasm. Plasma SPARC levels were increased after SAH, and significantly higher in patients with than without DCI at days 7-9, and in patients with VASOGRADE-Yellow compared with VASOGRADE-Green at days 1-3 and 7-9. However, there were no relationships between plasma SPARC levels and angiographic vasospasm. Receiver-operating characteristic curves differentiating DCI from no DCI determined the cut-off value of plasma SPARC ≥ 82.1 ng/ml at days 7 - 9 (sensitivity, 0.800; specificity, 0.533; and area under the curve, 0.708), which was found to be an independent determinant of DCI development in multivariate analyses. This is the first study to show that SPARC is upregulated in peripheral blood after SAH, and that SPARC may be involved in the development of DCI without angiographic vasospasm in a clinical setting.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
18
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
19
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Liang QQ, Yao M, Cui XJ, Li ZY, Zhou AF, Li G, Zhou LY, Pu PM, Zhu K, Zheng Z, Wang YJ. Chronic spinal cord compression associated with intervertebral disc degeneration in SPARC-null mice. Neural Regen Res 2023; 18:634-642. [DOI: 10.4103/1673-5374.350210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
22
|
Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2022; 188:114413. [PMID: 35777666 DOI: 10.1016/j.addr.2022.114413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Various modifications have been performed on biomaterials to improve their applications in tissue engineering and regenerative medicine. However, the challenges of immunogenicity and biocompatibility existed since the application of biomaterials. As a method to solve this problem, the decellularization process removes most living cells from biomaterials to minimize their immunogenicity; and preserves the native structures and compositions that favour cell growth and the subsequent construction of functional tissue. On the other hand, genetic modification of biomaterials aims to achieve specific functions (low immunogenicity, osteogenesis, etc.) or analyse the genetic mechanisms underlying some diseases (cardiac dysfunction, liver fibrosis, etc.). The combination of decellularization and gene modification is highly superior to biomaterials; thus, we must obtain a deeper understanding of these novel biomaterials. In this review, we summarize the fabrication approaches and current applications of genetically modified decellularized biomaterials and then discuss their disadvantages and corresponding future perspectives.
Collapse
|
23
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as a Molecular Physiological and Pathological Biomarker. Biomolecules 2021; 11:1689. [PMID: 34827687 PMCID: PMC8615851 DOI: 10.3390/biom11111689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is expressed in diverse tissues and plays roles in various biological functions and processes. Increased serum levels of SPARC or its gene overexpression have been reported following numerous physiological and pathological changes including injuries, exercise, regeneration, obesity, cancer, and inflammation. Such expression pattern interrelation between these biological changes and the SPARC expression/secretion points to it as a biomarker. This property could lead to a variety of potential applications ranging from mechanistic studies and animal model validation to the clinical and therapeutic evaluation of both disease prognosis and pharmacological agents.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Fonseca-Camarillo G, Furuzawa-Carballeda J, Razo-López N, Barreto-Zúñiga R, Martínez-Benítez B, Yamamoto-Furusho JK. Intestinal production of secreted protein acidic and rich in cysteine (SPARC) in patients with ulcerative colitis. Immunobiology 2021; 226:152095. [PMID: 34000572 DOI: 10.1016/j.imbio.2021.152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the intestine. The genetics factors play an important role in the pathogenesis of UC. SPARC exacerbates colonic inflammatory symptoms in dextran sodium sulphate-induced murine colitis. The aim of the study was to measure the gene expression and intestinal production of SPARC in patients with UC and controls as well as, to determine its correlation with histological activity. METHODS We included 40 patients with confirmed diagnosis of UC, and 20 controls without endoscopic evidence of any type of colitis or neoplasia. The relative quantification of the gene expression was performed by real time PCR. GAPDH was used as housekeeping gene for normalization purposes and quality controls. Protein expression was determined by immunohistochemistry. RESULTS The gene expression of SPARC was increased in patients with active UC vs in remission UC and vs. controls (P = 0.005). There was no significant difference between patients with remission UC and controls. The overexpression of SPARC in patients with active UC correlated significantly with mild histological activity (P = 0.06, OR = 7.77, IC = 0.77-77.9) moderate (P = 0.06, OR = 8.1, IC 95%=0.79-82.73), and severe (P = 0.03, OR = 6.5, IC 95%=1.09-38.6). Double positive SPARC+/CD16+ cells were localized mainly in submucosa, muscular layer, and adventitia, and in perivascular inflammatory infiltrates in patients with active UC. CONCLUSION The gene and protein expression of SPARC is increased in active UC. SPARC could be a marker of intestinal inflammation and its expression correlates with histological activity.
Collapse
Affiliation(s)
- Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic. Department of Gastroenterology. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. México, CDMX, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico, CDMX, Mexico
| | - Natalia Razo-López
- Inflammatory Bowel Disease Clinic. Department of Gastroenterology. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. México, CDMX, Mexico
| | - Rafael Barreto-Zúñiga
- Department of Endoscopy. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico, CDMX, Mexico
| | - Braulio Martínez-Benítez
- Department of Pathology. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico, CDMX, Mexico
| | - Jesús K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic. Department of Gastroenterology. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. México, CDMX, Mexico.
| |
Collapse
|
26
|
Clift CL, Su YR, Bichell D, Jensen Smith HC, Bethard JR, Norris-Caneda K, Comte-Walters S, Ball LE, Hollingsworth MA, Mehta AS, Drake RR, Angel PM. Collagen fiber regulation in human pediatric aortic valve development and disease. Sci Rep 2021; 11:9751. [PMID: 33963260 PMCID: PMC8105334 DOI: 10.1038/s41598-021-89164-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Congenital aortic valve stenosis (CAVS) affects up to 10% of the world population without medical therapies to treat the disease. New molecular targets are continually being sought that can halt CAVS progression. Collagen deregulation is a hallmark of CAVS yet remains mostly undefined. Here, histological studies were paired with high resolution accurate mass (HRAM) collagen-targeting proteomics to investigate collagen fiber production with collagen regulation associated with human AV development and pediatric end-stage CAVS (pCAVS). Histological studies identified collagen fiber realignment and unique regions of high-density collagen in pCAVS. Proteomic analysis reported specific collagen peptides are modified by hydroxylated prolines (HYP), a post-translational modification critical to stabilizing the collagen triple helix. Quantitative data analysis reported significant regulation of collagen HYP sites across patient categories. Non-collagen type ECM proteins identified (26 of the 44 total proteins) have direct interactions in collagen synthesis, regulation, or modification. Network analysis identified BAMBI (BMP and Activin Membrane Bound Inhibitor) as a potential upstream regulator of the collagen interactome. This is the first study to detail the collagen types and HYP modifications associated with human AV development and pCAVS. We anticipate that this study will inform new therapeutic avenues that inhibit valvular degradation in pCAVS and engineered options for valve replacement.
Collapse
Affiliation(s)
- Cassandra L Clift
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Yan Ru Su
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Bichell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather C Jensen Smith
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | - M A Hollingsworth
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA.
| |
Collapse
|
27
|
Shahneh F, Grill A, Klein M, Frauhammer F, Bopp T, Schäfer K, Raker VK, Becker C. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood 2021; 137:1517-1526. [PMID: 32932520 DOI: 10.1182/blood.2020005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
The cells and mechanisms involved in blood clot resorption are only partially known. We show that regulatory T cells (Tregs) accumulate in venous blood clots and regulate thrombolysis by controlling the recruitment, differentiation and matrix metalloproteinase (MMP) activity of monocytes. We describe a clot Treg population that forms the matricellular acid- and cysteine-rich protein SPARC (secreted protein acidic and rich in cysteine) and show that SPARC enhances monocyte MMP activity and that SPARC+ Tregs are crucial for blood clot resorption. By comparing different treatment times, we define a therapeutic window of Treg expansion that accelerates clot resorption.
Collapse
Affiliation(s)
- Fatemeh Shahneh
- Department of Dermatology
- Center for Thrombosis and Hemostasis, and
| | | | - Matthias Klein
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; and
| | - Felix Frauhammer
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; and
| | | | - Verena K Raker
- Department of Dermatology
- Center for Thrombosis and Hemostasis, and
| | - Christian Becker
- Department of Dermatology
- Center for Thrombosis and Hemostasis, and
| |
Collapse
|
28
|
McGovern KE, Nance JP, David CN, Harrison RES, Noor S, Worth D, Landrith TA, Obenaus A, Carson MJ, Morikis D, Wilson EH. SPARC coordinates extracellular matrix remodeling and efficient recruitment to and migration of antigen-specific T cells in the brain following infection. Sci Rep 2021; 11:4549. [PMID: 33633185 PMCID: PMC7907143 DOI: 10.1038/s41598-021-83952-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023] Open
Abstract
Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- BIO5 Institute, Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - J Philip Nance
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Clément N David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Nanostring Technologies, Inc, 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Reed E S Harrison
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
- UCSD Bioengineering and the Institute for Engineering in Medicine, San Diego, CA, 92093, USA
| | - Shahani Noor
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- School of Medicine, MSC08, University of New Mexico, Albequerque, NM, 87131, USA
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Ambrey Genetics, Aliso Viejo, CA, 92656, USA
| | - Andre Obenaus
- School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
29
|
Intracellular and Extracellular Markers of Lethality in Osteogenesis Imperfecta: A Quantitative Proteomic Approach. Int J Mol Sci 2021; 22:ijms22010429. [PMID: 33406681 PMCID: PMC7795927 DOI: 10.3390/ijms22010429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.
Collapse
|
30
|
Yang J, Zhang J, Fan R, Zhao W, Han T, Duan K, Li X, Zeng P, Deng J, Zhang J, Yang X. Identifying Potential Candidate Hub Genes and Functionally Enriched Pathways in the Immune Responses to Quadrivalent Inactivated Influenza Vaccines in the Elderly Through Co-Expression Network Analysis. Front Immunol 2020; 11:603337. [PMID: 33343577 PMCID: PMC7746648 DOI: 10.3389/fimmu.2020.603337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Insights into the potential candidate hub genes may facilitate the generation of safe and effective immunity against seasonal influenza as well as the development of personalized influenza vaccines for the elderly at high risk of influenza virus infection. This study aimed to identify the potential hub genes related to the immune induction process of the 2018/19 seasonal quadrivalent inactivated influenza vaccines (QIVs) in the elderly ≥60 years by using weighted gene co-expression network analysis (WGCNA). From 63 whole blood samples from16 elderly individuals, a total of 13,345 genes were obtained and divided into eight co-expression modules, with two modules being significantly correlated with vaccine-induced immune responses. After functional enrichment analysis, genes under GO terms of vaccine-associated immunity were used to construct the sub-network for identification and functional validation of hub genes. MCEMP1 and SPARC were confirmed as the hub genes with an obvious effect on QIVs-induced immunity. The MCEMP1 expression was shown to be negatively correlated with the QIVs-associated reactogenicity within 7 days after vaccination, which could be suppressed by the CXCL 8/IL-8 and exacerbated by the Granzyme-B cytotoxic mediator. Meanwhile, the SPARC expression was found to increase the immune responses to the QIVs and contribute to the persistence of protective humoral antibody titers. These two genes can be used to predict QIVs-induced adverse reaction, the intensity of immune responses, and the persistence of humoral antibody against influenza. This work has shed light on further research on the development of personalized QIVs with appropriate immune responses and long-lasting immunity against the forthcoming seasonal influenza.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Renfeng Fan
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Wei Zhao
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Kai Duan
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Xinguo Li
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Peiyu Zeng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jinglong Deng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jikai Zhang
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,China Biotechnology Co., Ltd., Peking, China
| |
Collapse
|