1
|
Praditi C, Beverley-Stone E, Reid M, Burgess ER, Crake RL, Vissers MC, Royds JA, Slatter TL, Dachs GU, Phillips E. Iron content of glioblastoma tumours and role of ferrous iron in the hypoxic response in vitro. Front Oncol 2025; 15:1536549. [PMID: 40123902 PMCID: PMC11925887 DOI: 10.3389/fonc.2025.1536549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Glioblastomas are an aggressive primary brain cancer, characterised by hypoxia and poor patient survival. Iron is the most abundant transition metal in the brain, yet data on the iron content of brain cancers is sparse. Ferrous iron is an essential cofactor for a super-family of enzymes, the iron- and 2-oxoglutarate-dependent dioxygenase enzymes (2-OGDD). These enzymes control the response to hypoxia via hydroxylation of the hypoxia-inducible factor-1α (HIF-1α), and DNA demethylation via hydroxylation of 5-methyl cytosines (5hmC). Methods This study used clinical glioblastoma samples from 40 patients to determine the relationship between 2-OGDD activity and iron. Elemental iron was measured using inductively coupled plasma mass spectrometry (ICP-MS) and ferrous iron was measured using the colorimetric ferrozine assay. Iron measurements were compared against patient survival and clinicopathological data, and 2-OGDD-dependent activity of HIF-1 activation and 5hmC. Results and discussion Elemental and ferrous iron levels were weakly related. Higher ferrous iron content of clinical glioblastoma tissue was associated with longer overall survival compared to lower ferrous iron content, but elemental iron showed no such relationship. Neither form of iron was related to clinicopathological data or markers of 2-OGDD activity. The impact of iron supplementation on the hypoxic response was assessed in three glioblastoma cell lines in vitro, similarly showing only a limited influence of iron on these 2-OGDD enzymes. Our data, together with prior studies in anaemic patients, highlight the importance of healthy iron levels in patients with glioblastoma, but further mechanistic studies are needed to elucidate the molecular pathways involved.
Collapse
Affiliation(s)
- Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eira Beverley-Stone
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Malcolm Reid
- Centre for Trace Element Analysis, Department of Geology, University of Otago, Dunedin, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Department of Immunobiochemistry, Medical Faculty, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
| | - Rebekah L. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Margreet C.M. Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Liu R, Zhang Q, Yan X, Lv Y. A critical review on the relevance, essentiality, and analytical techniques of trace elements in human cancer. Metallomics 2025; 17:mfaf005. [PMID: 39929194 DOI: 10.1093/mtomcs/mfaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Trace elements (TEs) are indispensable nutritional elements, playing a pivotal role in maintaining human health and serving as essential cofactors for numerous enzymes that facilitate crucial biological processes. The dysregulation (excess or deficiency) of TEs can affect the proper functioning of various organs and lead to diseases like cancer. However, the current research findings remain contentious, and the association between TE variations and cancer remains elusive. This article reviews the recent advances in the quantitative detection of TEs in tumor research to fully understand the important role of TEs in disease diagnosis and prognosis. The changes in the levels of various elements (such as Cu, Zn, Fe, Se, Ca, etc.) are analyzed and summarized from five systems of the human body, including the digestive system, urinary system, reproductive system, endocrine system, and respiratory system. By analyzing the relevant findings in diverse biological samples, we systematically investigate the disruption of TEs homeostasis in cancer patients, thereby underscoring the potential of TEs as cancer biomarkers. We also present novel analytical techniques such as isotope ratio determination and bioimaging, along with advanced auxiliary tools like machine learning, for the detection of TEs in disease research. This review aims to provide a comprehensive overview of TEs variations in the main cancer types of different systems, which addresses the knowledge gap in TEs on human health, and provides proposals for future research.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qian Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
Luo S, Wu H, Xiao F, Yang T, Wang W, Du H, Su P. Association Between Heavy Metal Exposure and Central Nervous System Tumors: A Case-Control Study Using Single and Multi-Metal Models. TOXICS 2025; 13:92. [PMID: 39997910 PMCID: PMC11860643 DOI: 10.3390/toxics13020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
(1) Background: Neoplasms of the central nervous system (CNS) encompass a cluster of malignant diseases originating from tissues or structures within the CNS. Environmental factors, including heavy metals, may contribute to their development. Therefore, this research was to investigate the association between heavy metal exposure and CNS tumor susceptibility using single and muti-metal models. (2) Methods: 63 CNS tumor patients and 71 controls were included. Urine samples from the CNS tumor patients and controls were analyzed for 47 metals using inductively coupled plasma-mass spectrometry in this study. Statistical analyses included conditional Wilcoxon rank-sum tests, logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Bayesian Kernel Machine Regression (BKMR). (3) Results: In the single metal model, higher levels of seventeen metals might be associated with a lower incidence of CNS tumor, while higher exposure levels of five metals are associated with a higher incidence of tumor. LASSO regression selected nine metals for further BKMR analysis. The joint effects showed decreased tumor risk with increased metal mixture concentration. The level of the metals Ge, As, Rb, Zr, and Sn may be related to the incidence of meningiomas and gliomas. (4) Conclusions: This study explored the association between various metals and CNS tumors, providing ideas for future prospective cohort studies and laboratory studies, and providing a foundation for new ideas in the prevention and treatment of CNS tumors.
Collapse
Affiliation(s)
- Sen Luo
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China;
| | - Haixia Wu
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| | - Fang Xiao
- Department of Orthopedics, Sichuan Provincial People’s Hospital, Chengdu 610072, China;
| | - Tianwen Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; (T.Y.); (W.W.)
| | - Wei Wang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; (T.Y.); (W.W.)
| | - Hang Du
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; (T.Y.); (W.W.)
| | - Peng Su
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
4
|
Speltri G, Porto F, Boschi A, Uccelli L, Martini P. Recent Advances in Preclinical Studies of the Theranostic Agent [ 64Cu]CuCl 2. Molecules 2024; 29:4085. [PMID: 39274933 PMCID: PMC11397388 DOI: 10.3390/molecules29174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous β- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.
Collapse
Affiliation(s)
- Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Pinto CIG, Branco ADM, Bucar S, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Evaluation of the theranostic potential of [ 64Cu]CuCl 2 in glioblastoma spheroids. EJNMMI Res 2024; 14:26. [PMID: 38453813 PMCID: PMC10920519 DOI: 10.1186/s13550-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
Collapse
Affiliation(s)
- Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André D M Branco
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa and Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
6
|
Zeng HL, Jia B, Yang Q, Zeng F, Li H, Li CX, Cheng L. Assessment of 13 essential and toxic trace elements in tumor and peritumoral brain tissues from human glioblastoma. J Biol Inorg Chem 2023; 28:699-709. [PMID: 37741885 DOI: 10.1007/s00775-023-02021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Trace elements within the brain are important for proper neurological function, but their imbalance has been rarely investigated in glioblastoma. This study enrolled a total of 14 patients with glioblastoma, and the tumor and peritumoral brain tissues were collected while undergoing surgery. The concentrations of Mg, Ca, Cr, Mn, Fe, Co, Cu, Zn, Se, As, Cd, Tl and Pb were determined using a well-evaluated ICP-MS method. The Cu- and Cd-binding proteomes were further analyzed using the anatomic transcriptional atlas from Ivy GAP. Histological evaluation was based on rubeanic acid staining and immunohistochemistry, respectively. The 13 trace element concentrations were obtained, and the highest were Ca, Mn, Fe, Zn and Cu, ranging from a few to dozens of ug/g. Correlation analysis suggested the existence of two intra-correlated clusters: essential metals (Cu-Ca-Zn-Mg) and heavy metals (Pb-As-Cd-Tl-Co-Cr-Mn). Compared to the tumor samples, significantly higher levels of Cu and Cd were observed in the peritumoral region. Further analysis of the Cu- and Cd-binding proteins from the anatomic view suggested that DBH and NOS1 were obviously increased in the leading edge than the central tumor region. Consistent with the above findings, histological evaluation of Cu and DBH further confirmed more copper and DBH expressions in the peritumoral area compared to the tumor core. Trace elements differ in tumor and peritumoral brain zone in glioblastoma, which may associate with tumor angiogenesis.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Fengbo Zeng
- BioCSi Tech Laboratory Co., Ltd, Wuhan, China
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao-Xi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Mohammadimatin P, Parvin P, Jafargholi A, Jahanbakhshi A, Ahmadinouri F, Tabibkhooei A, Heidari O, Salarinejad S. Signal enhancement in spark-assisted laser-induced breakdown spectroscopy for discrimination of glioblastoma and oligodendroglioma lesions. BIOMEDICAL OPTICS EXPRESS 2023; 14:5795-5816. [PMID: 38021132 PMCID: PMC10659799 DOI: 10.1364/boe.497234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023]
Abstract
Here, the discrimination of two types of lethal brain cancers, i.e., glioblastoma multiforme (GBM) and oligodendroglioma (OG) are investigated under the laser-induced breakdown spectroscopy (LIBS) and the electrical spark-assisted laser-induced breakdown spectroscopy (SA-LIBS) in order to discriminate the human brain glioma lesions against the infiltrated tissues. It is shown there are notable differences between the plasma emissions over the brain gliomas against those of infiltrated tissues. In fact, a notable enhancement appears in the characteristic emissions in favor of SA-LIBS against those of conventional LIB spectra. Moreover, the plasma properties such as temperature, electron density, and degree of ionization are probed through the data processing of the plasma emissions. The corresponding parameters, taken from SA-LIBS data, attest to be lucidly larger than those of LIBS up to one order of magnitude. In addition, the ionic species such as Mg II characteristic line at 279 nm and caII emission at 393 nm are notably enhanced in favor of SA-LIBS. In general, the experimental evidence verifies that SA-LIBS is beneficial in the discrimination and grading of GBM/OG neoplasia against healthy (infiltrate) tissues in the early stages.
Collapse
Affiliation(s)
- Parisa Mohammadimatin
- Department of Physics and Energy
Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Department of Physics and Energy
Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Amir Jafargholi
- Department of Electronic and Electrical
Engineering, University College London
(UCL), United
Kingdom
| | - Amin Jahanbakhshi
- Stem Cell and Regenerative Medicine
Research Center, Iran University of Medical
Sciences, P.O. Box, 1997667665, Tehran, Iran
| | - Fatemeh Ahmadinouri
- Department of Physics and Energy
Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Alireza Tabibkhooei
- Skull Base Research Center, Department of
Neurosurgery, Iran University of Medical
Sciences, P.O. Box, 1997667665, Tehran, Iran
| | - Omid Heidari
- Department of Physics and Energy
Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Sareh Salarinejad
- Shohada-e-Tajrish Hospital, Department of
Pathology, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, P.O. box 1985717443,
Tehran, Iran
| |
Collapse
|
8
|
Caruso G, Nanni A, Curcio A, Lombardi G, Somma T, Minutoli L, Caffo M. Impact of Heavy Metals on Glioma Tumorigenesis. Int J Mol Sci 2023; 24:15432. [PMID: 37895109 PMCID: PMC10607278 DOI: 10.3390/ijms242015432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, an increase in the incidence of brain tumors has been observed in the most industrialized countries. This event triggered considerable interest in the study of heavy metals and their presence in the environment (air, water, soil, and food). It is probable that their accumulation in the body could lead to a high risk of the onset of numerous pathologies, including brain tumors, in humans. Heavy metals are capable of generating reactive oxygen, which plays a key role in various pathological mechanisms. Alteration of the homeostasis of heavy metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and the alteration of proteins. A large number of studies have shown that iron, cadmium, lead, nickel, chromium, and mercury levels were significantly elevated in patients affected by gliomas. In this study, we try to highlight a possible correlation between the most frequently encountered heavy metals, their presence in the environment, their sources, and glioma tumorigenesis. We also report on the review of the relevant literature.
Collapse
Affiliation(s)
- Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Aristide Nanni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Università degli Studi di Messina, 98125 Messina, Italy;
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| |
Collapse
|
9
|
Zeng HL, Li H, Yang Q, Li CX. Transcriptomic Characterization of Copper-Binding Proteins for Predicting Prognosis in Glioma. Brain Sci 2023; 13:1460. [PMID: 37891828 PMCID: PMC10605646 DOI: 10.3390/brainsci13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Copper and copper-binding proteins are key components of tumor progression as they play important roles in tumor invasion and migration, but their associations in gliomas remain unclear. METHODS Transcriptomic datasets of glioblastoma, low-grade glioma, and normal brain cortex were derived from the TCGA and GTEX databases. Differentially expressed genes (DEGs) of copper-binding proteins were screened and used to construct a prognostic model based on COX and LASSO regression, which was further validated by the CGGA datasets. The expressions of risk-model genes were selectively confirmed via anatomic feature-based expression analysis and immunohistochemistry. The risk score was stratified by age, gender, WHO grade, IDH1 mutation, MGMT promoter methylation, and 1p/19q codeletion status, and a nomogram was constructed and validated. RESULTS A total of 21 DEGs of copper-binding proteins were identified and a six-gene risk-score model was constructed, consisting of ANG, F5, IL1A, LOXL1, LOXL2, and STEAP3, which accurately predicted 1-, 3-, and 5-year overall survival rates, with the AUC values of 0.87, 0.88, and 0.82, respectively. The high-risk group had a significantly shorter OS (p < 0.0001) and was associated with old age, wild-type IDH1, a high WHO grade, an unmethylated MGMT promoter, and 1p/19q non-codeletion and had higher levels of immune cell infiltration, cancer-immunity suppressor, and immune checkpoint gene expression as well as a higher TMB. CONCLUSIONS The model based on the genes of copper-binding proteins could contribute to prognosis prediction and provide potential targets against gliomas.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Chao-Xi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
10
|
Mousavi Khaneghah A, Kamalabadi M, Heshmati A, Hadian Z. The concentration of potentially toxic elements (PTEs) in Iranian rice: a dietary health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90757-90771. [PMID: 37462870 DOI: 10.1007/s11356-023-28442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
In the present study, six potentially toxic elements (PTEs), including chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), copper (Cu), and nickel (Ni), were determined in 41 domestic rice samples collected from Tehran using ICP-OES (inductively coupled plasma-optical emission spectrometry). The mean concentration of Cd, As, Cu, Pb, Cr, and Ni was found as 0.014 ± 0.01, 0.018 ± 0.005, 2.15 ± 1.84, 0.42 ± 0.31, 0.1 ± 0.16, and 0.48 ± 0.36 mg kg-1, respectively. Possible risks due to ingestion of PTEs via rice consumption for children and adults were assessed by Monte Carlo simulation. The 50th percentile of estimated Cr intake for children through domestic rice consumption exceeded the maximum tolerable daily intake. There was only a potential non-carcinogenic risk for single Cr exposure for children. The 95th percentile of the estimated hazard index (HI) for children and adults was 4.34 and 1.05, indicating a potential non-carcinogenic risk related to multiple PTE exposure. The lifetime cancer risk (ILCR) values derived from Cr, Ni, As, and Cd exposure exceeded the threshold value, indicating a carcinogenic risk due to PTEs' exposure. The deterministic assessment demonstrates that the Tehran population may be at risk through domestic rice consumption. This study indicates that risk related to the exposure to multiple PTEs through the consumption of rice in adults and children in Tehran is recognized as an important issue, thus supporting the importance of cumulative analysis of the risk of exposure to PTEs through food. Finally, national strategic environmental assessment and technological solutions for monitoring and protecting freshwater, soil, waste management, and chemicals as a global concern policy are needed for public health.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang J, Huang P, Lang C, Luo Y, He Z, Chen Y. The progress in the relationship between trace elements and acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1145563. [PMID: 36968204 PMCID: PMC10033596 DOI: 10.3389/fcell.2023.1145563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Trace elements are very important substances with low content in the human body. If the content of some trace elements changes, they are also related to diseases. Acute lymphoblastic leukemia (ALL) is a malignant blood tumor, and its relationship with trace elements has also been a concern by scholars. Not only have the trace element levels in ALL patients changed, but the efficacy of different treatment methods has also been linked to the corresponding trace element changes. The characteristics of ALL may be related to the dysregulation of differentiation and proliferation of lymphoid precursor cells. Cell proliferation and differentiation are often affected by changes in DNA levels. However, trace elements are involved in DNA damage and repair mechanisms. In recent years, as an increasing number of studies believe that ALL is related to the abnormal metabolism of trace elements in the body, this paper intends to discuss the research progress on the relationship between trace elements and ALL to provide more information on trace elements for the diagnosis, treatment, and prevention of ALL.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixu He, ; Yan Chen,
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixu He, ; Yan Chen,
| |
Collapse
|
12
|
Pagano C, Navarra G, Coppola L, Savarese B, Avilia G, Giarra A, Pagano G, Marano A, Trifuoggi M, Bifulco M, Laezza C. Impacts of Environmental Pollution on Brain Tumorigenesis. Int J Mol Sci 2023; 24:5045. [PMID: 36902485 PMCID: PMC10002587 DOI: 10.3390/ijms24055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
13
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Menchikov LG, Shestov AA, Popov AV. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2023; 88:S1-S20. [PMID: 37069111 DOI: 10.1134/s0006297923140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Collapse
Affiliation(s)
- Leonid G Menchikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Shestov
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Mohammadi Ziarani G, Khademi M, Mohajer F, Badiei A, Varma RS. The Synthesis of 2,2-BIS(1-INDOL-3-YL)Acenaphthylene-1(2)-Ones Using Nanocatalysis: Fluorescent Sensing for Cu 2+ Ions. ECOLOGICAL CHEMISTRY AND ENGINEERING S 2022; 29:463-475. [DOI: 10.2478/eces-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Abstract
2,2-bis(1H-indol-3-yl)acenaphthylene-1(2H)-ones were synthesised by the reaction of acenaphthenequinone and 2 equivalents of indole using Fe3O4@SiO2@Si-Pr-NH-CH2CH2NH2 as the basic magnetic nanocatalyst, assembled under greener and sustainable conditions in high purity and yields. Furthermore, the photoluminescence properties of 2,2-bis(2-methyl-1H-indol-3-yl)acenaphthylene-1(2H)-one were exploited for the sensing of copper ions in the mixed solvent systems comprising H2O and CH3CN in excitation wavelength at 410 nm with a detection limit of 9.5 ∙ 10–6 M.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Mahdieh Khademi
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Alireza Badiei
- School of Chemistry, College of Science , University of Tehran , Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute , Palacky University , Šlechtitelů 27, 783 71 Olomouc , Czech Republic
| |
Collapse
|
16
|
de Sousa Parreira J, Cabral CDS, Crispim PDTB, Ott AMT, Dórea JG, Bastos WR. Mercury in the brain (tumor tissues) and in markers (hair and blood) of exposure in Western Amazonia patients. J Trace Elem Med Biol 2022; 72:126994. [PMID: 35617853 DOI: 10.1016/j.jtemb.2022.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/09/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Central nervous system tumors (CNSTs) represent the second most frequent form of malignant tumors in childhood and the second leading cause of death associated with neurological diseases, affecting individuals of all age groups. In adults, CNSTs are the sixth most common cause of death in patients with malignant tumors. Additionally, the brain is the most sensitive and studied organ for mercury (Hg) toxicity. METHOD We studied total Hg (THg) in tissue samples (of benign and malignant CNSTs) and explored its associations with THg in exposure markers (hair and blood) from 65 patients (40 females and 25 males) who underwent surgical treatment. RESULTS No statistically significant differences were found in THg concentrations in brain tumors or in blood and hair from these patients (classified as malignant/benign or glioma/non-glioma); also, there were no statistically significant differences between males and females. However, statistically significant correlations were found between THg in CNSTs and in hair (rs = 0.4967; p = 0.0001) and in blood (rs = 0.4702; p = 0.0058); but no significant correlations were found between THg in hair and blood (rs = 0.1229; p = 0.5332). In the Western Amazon, with endemic exposure to fish-methylmercury, these urban patients were low to moderate fish consumers; THg concentrations in blood (median: 0.645 µg.L-1; range: 8.01-21.02 µg.L-1; n = 56) and hair (median: 0.686 µg.g-1; range: 0.01-10.02 µg.g-1; n = 65) were relatively low, whereas THg levels in brain tumors (median: 8.194 ng.g-1; range: <0.10-69.16 ng.g-1; n = 65) were within range of published studies in brain autopsies. Additionally, no statistically significant correlations (p = 0.4828) were observed between frequency of fish consumption and THg in the brain. CONCLUSION Although no significant THg concentrations in the type of brain tumors (benign versus malignant) were found, the significantly positive correlation between markers of THg exposure (hair and blood) and THg in the brain tissues indicates its usefulness as a marker/proxy for brain-THg load. These findings confirm the value of using hair and blood as constructs of THg in the brain of exposed populations.
Collapse
Affiliation(s)
- Johnathan de Sousa Parreira
- Department of Medicine, Federal University of Rondônia, Brazil; Postgraduate Program in Regional Development and Environment, Federal University of Rondônia, Brazil
| | - Cássio da S Cabral
- Environmental Biogeochemistry Laboratory WCP, Federal University of Rondônia, Brazil
| | | | - Ari Miguel T Ott
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia, Brazil; Department of Social Sciences, Federal University of Rondônia, Brazil
| | - José G Dórea
- Faculty of Health Sciences, University of Brasília,Brazil
| | - Wanderley R Bastos
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia, Brazil; Environmental Biogeochemistry Laboratory WCP, Federal University of Rondônia, Brazil.
| |
Collapse
|
17
|
ICP-MS Multi-Elemental Analysis of the Human Meninges Collected from Sudden Death Victims in South-Eastern Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061911. [PMID: 35335273 PMCID: PMC8949131 DOI: 10.3390/molecules27061911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Metals perform many important physiological functions in the human body. The distribution of elements in different tissues is not uniform. Moreover, some structures can be the site of an accumulation of essential or toxic metals, leading to multi-directional intracellular damage. In the nervous system, these disorders are especially dangerous. Metals dyshomeostasis has been linked to a variety of neurological disorders which end up leading to permanent injuries. The multi-elemental composition of the human brain is still the subject of numerous investigations and debates. In this study, for the first time, the meninges, i.e., the dura mater and the arachnoid, were examined for their elemental composition by means of inductively coupled plasma mass spectrometry (ICP-MS). Tissue samples were collected post mortem from those who died suddenly as a result of suicide (n = 20) or as a result of injuries after an accident (n = 20). The interactions between 51 elements in both groups showed mainly weak positive correlations, which dominated the arachnoid mater compared to the dura mater. The study showed differences in the distribution of some elements within the meninges in the studied groups. The significant differences concerned mainly metals from the lanthanide family (Ln), macroelements (Na, K, Ca, Mg), a few micronutrients (Co), and toxic cadmium (Cd). The performed evaluation of the elemental distribution in the human meninges sheds new light on the trace metals metabolism in the central nervous system, although we do not yet fully understand the role of the human meninges.
Collapse
|
18
|
Halcrow PW, Lynch ML, Geiger JD, Ohm JE. Role of endolysosome function in iron metabolism and brain carcinogenesis. Semin Cancer Biol 2021; 76:74-85. [PMID: 34139350 PMCID: PMC8627927 DOI: 10.1016/j.semcancer.2021.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Iron, the most abundant metal in human brain, is an essential microelement that regulates numerous cellular mechanisms. Some key physiological roles of iron include oxidative phosphorylation and ATP production, embryonic neuronal development, formation of iron-sulfur clusters, and the regulation of enzymes involved in DNA synthesis and repair. Because of its physiological and pathological importance, iron homeostasis must be tightly regulated by balancing its uptake, transport, and storage. Endosomes and lysosomes (endolysosomes) are acidic organelles known to contain readily releasable stores of various cations including iron and other metals. Increased levels of ferrous (Fe2+) iron can generate reactive oxygen species (ROS) via Fenton chemistry reactions and these increases can damage mitochondria and genomic DNA as well as promote carcinogenesis. Accumulation of iron in the brain has been linked with aging, diet, disease, and cerebral hemorrhage. Further, deregulation of brain iron metabolism has been implicated in carcinogenesis and may be a contributing factor to the increased incidence of brain tumors around the world. Here, we provide insight into mechanisms by which iron accumulation in endolysosomes is altered by pH and lysosome membrane permeabilization. Such events generate excess ROS resulting in mitochondrial DNA damage, fission, and dysfunction, as well as DNA oxidative damage in the nucleus; all of which promote carcinogenesis. A better understanding of the roles that endolysosome iron plays in carcinogenesis may help better inform the development of strategic therapeutic options for cancer treatment and prevention.
Collapse
Affiliation(s)
- Peter W Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
19
|
Lorio S, Sedlacik J, So PW, Parkes HG, Gunny R, Löbel U, Li YF, Ogunbiyi O, Mistry T, Dixon E, Adler S, Cross JH, Baldeweg T, Jacques TS, Shmueli K, Carmichael DW. Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy. Neuroimage 2021; 238:118102. [PMID: 34058334 PMCID: PMC8350142 DOI: 10.1016/j.neuroimage.2021.118102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.
Collapse
Affiliation(s)
- Sara Lorio
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK; Wellcome EPSRC Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Jan Sedlacik
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Po-Wah So
- Department of Neuroimaging, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Harold G Parkes
- Department of Neuroimaging, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Roxana Gunny
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Yao-Feng Li
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London and Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Pathology Department, Tri-Service General Hospital and National Defence Medical Centre, Taipei, Taiwan, ROC
| | - Olumide Ogunbiyi
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London and Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Talisa Mistry
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London and Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Dixon
- MRI Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Sophie Adler
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Helen Cross
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Torsten Baldeweg
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London and Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karin Shmueli
- MRI Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David W Carmichael
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK; Wellcome EPSRC Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
20
|
Planeta K, Setkowicz Z, Janik-Olchawa N, Matusiak K, Ryszawy D, Drozdz A, Janeczko K, Ostachowicz B, Chwiej J. Comparison of Elemental Anomalies Following Implantation of Different Cell Lines of Glioblastoma Multiforme in the Rat Brain: A Total Reflection X-ray Fluorescence Spectroscopy Study. ACS Chem Neurosci 2020; 11:4447-4459. [PMID: 33205959 PMCID: PMC7747222 DOI: 10.1021/acschemneuro.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.
Collapse
Affiliation(s)
- Karolina Planeta
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Natalia Janik-Olchawa
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Katarzyna Matusiak
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Damian Ryszawy
- Jagiellonian
University, Faculty of Biochemistry,
Biophysics, and Biotechnology, Krakow 31-007, Poland
| | - Agnieszka Drozdz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof Janeczko
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Beata Ostachowicz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Joanna Chwiej
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| |
Collapse
|
21
|
Teng G, Wang Q, Yang H, Qi X, Zhang H, Cui X, Idrees BS, Xiangli W, Wei K, Khan MN. Pathological identification of brain tumors based on the characteristics of molecular fragments generated by laser ablation combined with a spiking neural network. BIOMEDICAL OPTICS EXPRESS 2020; 11:4276-4289. [PMID: 32923042 PMCID: PMC7449739 DOI: 10.1364/boe.397268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 05/31/2023]
Abstract
Quick and accurate diagnosis helps shorten intraoperative waiting time and make a correct plan for the brain tumor resection. The common cryostat section method costs more than 10 minutes and the diagnostic accuracy depends on the sliced and frozen process and the experience of the pathologist. We propose the use of molecular fragment spectra (MFS) in laser-induced breakdown spectroscopy (LIBS) to identify different brain tumors. Formation mechanisms of MFS detected from brain tumors could be generalized into 3 categories, for instance, combination, reorganization and break. Four kinds of brain tumors (glioma, meningioma, hemangiopericytoma, and craniopharyngioma) from different patients were used as investigated samples. The spiking neural network (SNN) classifier was proposed to combine with the MFS (MFS-SNN) for the identification of brain tumors. SNN performed better than conventional machine learning methods for the analysis of similar and limited MFS information. With the ratio data type, the identification accuracy achieved 88.62% in 2 seconds.
Collapse
Affiliation(s)
- Geer Teng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Qianqian Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Haifeng Yang
- Department of Neurosurgery, Kunming Sanbo Brain Hospital, Kunming, 650010, China
| | - Xueling Qi
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Hongwei Zhang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xutai Cui
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bushra Sana Idrees
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenting Xiangli
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Kai Wei
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - M. Nouman Khan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|