1
|
Kodde C, Bonsignore M, Köhler J, Schwegmann K, Nachtigall I. Males are at Higher Risk for Colonizations and Infections with Multidrug Resistant Organisms than Females. J Hosp Infect 2024:S0195-6701(24)00327-X. [PMID: 39395464 DOI: 10.1016/j.jhin.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Global rise of multidrug-resistant organisms (MDRO) is alarming and antimicrobial resistance (AMR) poses a significant public health threat globally. Although certain risk factors are known including recent antimicrobial therapy, inappropriate use and hospitalization, the focus on gender-specific aspects in MDRO is scarce. Our aim was to show gender-specific differences in colonization and infections of multiple MDRO and their detection sites. METHODS For this multicentre, retrospective cohort study surveillance data between 2015 and 2020 was collected in 86 hospitals of the Helios group, Germany. The following multidrug-resistant bacteria were analysed according to sample site: MRSA, Enterococcus spp., Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Acinetobacter baumannii. RESULTS Out of the 7,081,708 cases in the database, 187,656 patients were found to be colonized with MDRO (2.65%). A documented infection with MDRO was identified in 33,023 patients (0.466%), with the origin of infection known in 24,231 cases. Male gender was a risk factor for both infection and colonization of any MDRO (p< .001). Males exhibited a higher likelihood of MDRO detection in superficial skin/soft tissue, blood cultures (p < .001), and respiratory samples (p = .002). Additionally, gender-specific differences in MDRO detection site and pathogens were found with slightly higher proportion of MRSA infection in deep skin/soft tissue and respiratory samples for females. CONCLUSIONS Our study reinforces the existing hypothesis that male gender is a risk factor for MDRO, supported by our large dataset. It highlights the need to acknowledge gender-specific MDRO susceptibility in clinical practice.
Collapse
Affiliation(s)
- Cathrin Kodde
- Department of Infectious Diseases and Respiratory Medicine, Charité- Universitaetsmedizin Berlin, Germany; Department of Respiratory Diseases "Heckeshorn", Helios Hospital Emil-von-Behring, Berlin, Germany.
| | - Marzia Bonsignore
- Department of Infectious Diseases and Prevention, Helios Hospitals Duisburg, Duisburg, Germany; Center for Clinical and Translational Research. Helios Universitätsklinikum Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Juliane Köhler
- Institute Of Public Health, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Irit Nachtigall
- Division of Infectious Diseases and Infection prevention. Helios Hospital Emil-von-Behring, Berlin, Germany; Medical School Berlin, Berlin, Germany
| |
Collapse
|
2
|
Grajczyk A, Sobczyk K, Dżaman K. Evaluation of Changes in the Patency of the Nasal Cavity and Eustachian Tube Depending on the Phase of the Menstrual Cycle: A Pilot Study. Diagnostics (Basel) 2024; 14:2044. [PMID: 39335723 PMCID: PMC11430933 DOI: 10.3390/diagnostics14182044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Estrogen and progesterone, hormones specific to females, undergo fluctuations during the menstrual cycle. The aim of this study was to assess subjective and objective changes in nasal cavity and Eustachian tube patency depending on the phase of the menstrual cycle in two groups of women: those in a follicular phase group and those in a luteal phase group. (2) Materials and Methods: The study group consisted of 25 healthy non-pregnant women aged 24 to 32. Based on the phase of the cycle confirmed in sonography, they were divided into follicular phase (FP) and luteal phase (LP) groups. The Eustachian tube and nasal cavity patency examination was carried out using a SNOT-22 Questionnaire, a rhinomanometer, and a tympanometer. (3) Results: We observed that the incidence of nasal obstruction in SNOT-22 was significantly dependent on the cycle phase (p = 0.012) and was lower in the FP compared to the LP. Similar relationships were noticed between the cycle phase and the rhinomanometry outcome, where the LP was associated with a lower flow. We also revealed that the incidence of ear blockage significantly depended on the cycle phase (p = 0.001) and was lower in the FP compared to the LP. Women whose nasal patency deteriorated during the LP also had more negative pressure values in tympanometry. We observed that patients with negative PEAK L and R levels had a lower flow in rhinomanometry. (4) Conclusions: The results highlight the menstrual cycle's substantial impact on both subjective and objective nasal and Eustachian tube patency measurements. The novel finding in this study is that women whose nasal patency deteriorated during the luteal phase also had more negative pressure values in tympanometry. These results suggest that the deterioration of hearing during the menstrual cycle could be a result of swelling of the nasal mucosa and tubes.
Collapse
Affiliation(s)
- Alicja Grajczyk
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Krystyna Sobczyk
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
3
|
Luo J, Hendryx M, Rohan TE, Saquib N, Shadyab AH, Su L, Hosgood D, Schnatz PF, Qi L, Anderson GL. Hysterectomy, oophorectomy and risk of non-Hodgkin's lymphoma. Int J Cancer 2024; 154:1433-1442. [PMID: 38112671 PMCID: PMC10922604 DOI: 10.1002/ijc.34820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Hysterectomy is associated with an increased risk for adverse health outcomes. However, its connection to the risk of non-Hodgkin's lymphoma (NHL) remains unclear. The aims of our study were to investigate the associations between hysterectomy, oophorectomy and risk of NHL and its major subtypes (eg, diffuse large B-cell lymphoma [DLBCL]), and whether these associations were modified by exogenous hormone use. Postmenopausal women (n = 141,621) aged 50-79 years at enrollment (1993-1998) from the Women's Health Initiative were followed for an average of 17.2 years. Hysterectomy and oophorectomy were self-reported at baseline. Incident NHL cases were confirmed by central review of medical records and pathology reports. During the follow-up period, a total of 1719 women were diagnosed with NHL. Hysterectomy, regardless of oophorectomy status, was associated with an increased risk of NHL (hazard ratio [HR] = 1.23, 95% confidence interval [CI]: 1.05-1.44). Oophorectomy was not independently associated with NHL risk after adjusting for hysterectomy. When stratified by hormone use, the association between hysterectomy and NHL risk was confined to women who had never used hormone therapy (HR = 1.35, 95% CI: 1.06-1.71), especially for DLBCL subtype (P for interaction = .01), and to those who had undergone hysterectomy before the age of 55. Our large prospective study showed that hysterectomy was a risk factor of NHL. Findings varied by hormone use. Future studies incorporating detailed information on the types and indications of hysterectomy may deepen our understanding of the mechanisms underlying DLBCL development and its potential interactions with hormone use.
Collapse
Affiliation(s)
- Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Michael Hendryx
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN
| | - Thomas E Rohan
- Epidemiology & Population Health, Albert Einstein College of Medicine. Bronx, NY
| | - Nazmus Saquib
- College of Medicine, Sulaiman AlRajhi University, Al Bukairiyah, Kingdom of Saudi Arabia
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Le Su
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Dean Hosgood
- Epidemiology & Population Health, Albert Einstein College of Medicine. Bronx, NY
| | - Peter F. Schnatz
- Department of Obstetrics & Gynecology and Internal Medicine, Drexel University, West Reading, PA
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA
| |
Collapse
|
4
|
Abramenko N, Vellieux F, Veselá K, Kejík Z, Hajduch J, Masařík M, Babula P, Hoskovec D, Pacák K, Martásek P, Smetana K, Jakubek M. Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules. Sci Rep 2024; 14:3043. [PMID: 38321096 PMCID: PMC10847107 DOI: 10.1038/s41598-024-51804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Karel Pacák
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic.
| |
Collapse
|
5
|
Todorović-Raković N, Whitfield JR. Therapeutic implications of the interplay between interferons and ER in breast cancer. Cytokine Growth Factor Rev 2024; 75:119-125. [PMID: 38296759 DOI: 10.1016/j.cytogfr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
The involvement of interferons (IFNs) in various diseases, including breast cancer, has sparked controversy due to their diverse roles in immunity and significant impact on pathological mechanisms. In the context of breast cancer, the heightened expression of endogenous IFNs has been linked to anti-tumor activity and a favorable prognosis for patients. Within the tumor tissue and microenvironment, IFNs initiate a cascade of molecular events involving numerous factors, which can lead to either cooperative or repressive interactions. The specific functions of IFNs in breast cancer vary depending on the two major disease phenotypes: hormone dependent (or responsive) and hormone independent (or unresponsive) breast cancer. Hormone dependence is determined by the presence of estrogen receptors (ERs). The interplay between the IFN and ER signaling pathways, and the involvement of intermediate factors such as NFκB, are areas that have been somewhat under-researched, but that hold potential importance for the understanding and treatment of breast cancer. This review aims to provide a comprehensive overview of the actions of IFNs in breast cancer, particularly in relation to the different breast cancer phenotypes and the significance of comprehending the underlying mechanisms. Furthermore, the use of IFN-based therapies in cancer treatment remains a topic of debate and has not yet gained widespread acceptance. However, emerging discoveries may redirect focus towards the potential of IFN-based therapies.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Carrer Natzaret 115, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain.
| |
Collapse
|
6
|
Guo S, Chen M, Li W, Wan Q, Xu M. Analysis of Alternative Splicing and Long Noncoding RNAs After the Edwardsiella anguillarum Infected the Immunized European Eels (Anguilla anguilla) Revealed the Role of Outer Membrane Protein A in OmpA Subunit Vaccine. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10210-x. [PMID: 37171708 DOI: 10.1007/s10126-023-10210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Edwardsiella anguillarum is a bacterium that commonly infects cultivated eels. Outer membrane protein A (OmpA) emulsified with Freund's adjuvant has been shown to be an effective fishery vaccine against this pathogen. However, the specific roles of OmpA in the vaccine have not been fully explored. In this study, we performed RNA-seq in the liver of a European eel (Anguilla anguilla) after challenge with E. anguillarum in eels previously immunized with an OmpA subunit vaccine. Our aim was to elucidate the differentially alternative splicing (DAS) and differentially expressed long noncoding RNAs (DE-lncRNAs) using a genome-wide transcriptome. The results showed after that at 28 days post-immunization, eels challenged with E. anguillarum (Con_inf) exhibited severe pathological changes in the liver. In contrast, the OmpA infused eels (OmpA_inf group) showed infiltrated lymphocytes, while Freund's adjuvant-inoculated eels (FCIA_inf group) showed edema of hepatocytes and blood coagulation. The relative percent survival (RPS) was 77.7% and 44.4% for OmpA_inf and FCIA_inf compared to the Con_inf group. We identified 37 DE-lncRNAs and 293 DAS genes between OmpA_inf and FCIA_inf. Interactions between DAS gene-expressed proteins indicated that 66 expressed proteins formed 20 networks. Additionally, 33 DE-lncRNAs interacted with 194 target genes formed 246 and 41 networks in co-expression and co-location. Taken together, our findings demonstrate that the OmpA subunit vaccine elicits a higher RPS and provides novel insights into the role of OmpA through DAS genes and DE-lncRNAs perspective. These results are significant for the development of fishery subunit vaccines.
Collapse
Affiliation(s)
- Songlin Guo
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China.
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian, China.
| | - Minxia Chen
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Qijuan Wan
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| |
Collapse
|
7
|
Reddy KD, Oliver BGG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 2023; 13:47. [PMID: 36882807 PMCID: PMC9993607 DOI: 10.1186/s13578-023-00998-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chromosomes as potential factors contributing to sexual dimorphism in disease.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Brian Gregory George Oliver
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Zalpoor H, Liaghat M, Bakhtiyari M, Shapourian H, Akbari A, Shahveh S, Nabi-Afjadi M, Minaei Beirami S, Tarhriz V. Kaempferol's potential effects against SARS-CoV-2 and COVID-19-associated cancer progression and chemo-resistance. Phytother Res 2023; 37:1731-1739. [PMID: 36706035 DOI: 10.1002/ptr.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Minaei Beirami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Infectious Diseases and Tropical Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Infectious Diseases and Tropical Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Costa AJ, Lemes RMR, Bartolomeo CS, Nunes TA, Pereira GC, Oliveira RB, Gomes AL, Smaili SS, Maciel RMDB, Newson L, Ramirez AL, Okuda LH, Prado CM, Stilhano RS, Ureshino RP. Overexpression of estrogen receptor GPER1 and G1 treatment reduces SARS-CoV-2 infection in BEAS-2B bronchial cells. Mol Cell Endocrinol 2022; 558:111775. [PMID: 36096380 PMCID: PMC9458763 DOI: 10.1016/j.mce.2022.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
Gender-bias in COVID-19 severity has been suggested by clinical data. Experimental data in cell and animal models have demonstrated the role of sex hormones, particularly estrogens, in viral infections such as in COVID-19. SARS-CoV-2 uses ACE2 as a receptor to recognize host cells, and the protease TMPRSS2 for priming the Spike protein, facilitating virus entry into cells. However, the involvement of estrogenic receptors in SARS-CoV-2 infection are still being explored. Thus, in order to investigate the role of estrogen and its receptors in COVID-19, the estrogen receptors ERα, ERβ and GPER1 were overexpressed in bronchial BEAS-2B cell, and then infected with SARS-CoV-2. Interestingly, the levels of ACE2 and TMPRSS2 mRNA were higher in SARS-CoV-2-infected cells, but no difference was observed in cells with estrogen receptors overexpression. GPER1 can be involved in virus infection or replication, since its higher levels reduces SARS-CoV-2 load. On the other hand, pharmacological antagonism of GPER1 enhanced viral load. Those data suggest that GPER1 has an important role in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Angelica Jardim Costa
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil; Universidade Federal de São Paulo, Instituto de Saúde e Sociedade, Departament of Biosciences, Santos, SP, Brazil
| | - Tamires Alves Nunes
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil; Universidade Federal de São Paulo, Instituto de Saúde e Sociedade, Departament of Biosciences, Santos, SP, Brazil
| | - Gabriela Cruz Pereira
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Biochemistry, São Paulo, SP, Brazil
| | - Rafaela Brito Oliveira
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Alexandre Lopes Gomes
- Instituto Biológico, Secretaria de Agricultura e Abastecimento, São Paulo, SP, Brazil
| | - Soraya Soubhi Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Medicine, São Paulo, SP, Brazil
| | - Louise Newson
- Newson Health Research and Education, Stratford-Upon-Avon, UK
| | | | - Liria Hiromi Okuda
- Instituto Biológico, Secretaria de Agricultura e Abastecimento, São Paulo, SP, Brazil
| | - Carla Máximo Prado
- Universidade Federal de São Paulo, Instituto de Saúde e Sociedade, Departament of Biosciences, Santos, SP, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Portes Ureshino
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Front Immunol 2022; 13:928171. [PMID: 35983046 PMCID: PMC9379861 DOI: 10.3389/fimmu.2022.928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.
Collapse
Affiliation(s)
- Marina Averyanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- *Correspondence: Polina Vishnyakova,
| | - Svetlana Yureneva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Oksana Yakushevskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, Laboratory of Growth and Development, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
11
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
12
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
13
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
14
|
Curcio D. Overview of special issue on current advances in Brazilian biomedical and anatomical sciences. Anat Rec (Hoboken) 2021; 304:1159-1163. [PMID: 33987960 DOI: 10.1002/ar.24634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
This special issue of The Anatomical Record honors the bridges of knowledge and communications between Brazil and the United States in Anatomical Science, Healthcare, and Medical Education. The volume is organized in two sets of manuscripts: the first one stems from presentations of Brazilian colleagues in the latest iteration of the Building Bridges outreach initiative-a meeting entitled Building Bridges Back to Back, held at the Icahn School of Medicine at Mount Sinai, in December of 2019; the second, is a compilation of selected papers submitted independently to The Anatomical Record, authored by Brazilian researchers. All abstracts in this volume are featured in English and in Portuguese, and the opening piece is fully available in both languages. This bold and innovative addition represents the commitment of The Anatomical Record to support and help grow our bridges; it is a gesture of utmost respect and appreciation for our people and our culture. Together, our efforts to advance the knowledge in basic, translational, and clinical sciences, to expand our connections, and to build on our relationships across boundaries becomes a reality. This is an introduction and an overview of the manuscripts contained in this very special issue.
Collapse
Affiliation(s)
- Daniella Curcio
- Center for Anatomy and Functional Morphology, Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|