1
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Aryal YP, Han SY, Rana B, Neupane S, Kim TY, Pokharel E, Ha JH, Jung JK, An CH, Kim JY, Yamamoto H, Lee Y, An SY, Suh JY, Kim JY, Sohn WJ. Prohibitin modulates periodontium differentiation in mice development. Front Cell Dev Biol 2024; 12:1369634. [PMID: 38756696 PMCID: PMC11096493 DOI: 10.3389/fcell.2024.1369634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Prohibitin (PHB) is an essential scaffold protein that modulates signaling pathways controlling cell survival, metabolism, inflammation, and bone formation. However, its specific role in periodontium development remains less understood. This study aims to elucidate the expression pattern and function of PHB in periodontium development and its involvement in alveolar bone formation. Methods: Immunolocalization of PHB in the periodontium of postnatal (PN) mice were examined. Phb morpholino was micro-injected into the right-side mandible at PN5, corresponding to the position where the alveolar bone process forms in relation to the lower first molar. The micro-injection with a scramble control (PF-127) and the left-side mandibles were used as control groups. Five days post-micro-injection, immunohistochemical analysis and micro-CT evaluation were conducted to assess bone mass and morphological changes. Additionally, expression patterns of signaling molecules were examined following Phb downregulation using 24-h in vitro cultivation of developing dental mesenchyme at E14.5. Results: The immunostaining of PHB showed its localization in the periodontium at PN5, PN8, and PN10. The in vitro cultivation of dental mesenchyme resulted in alterations in Bmps, Runx2, and Wnt signalings after Phb knock-down. At 5 days post-micro-injection, Phb knocking down showed weak immunolocalizations of runt-related transcription factor (RUNX2) and osteocalcin (OCN). However, knocking down Phb led to histological alterations characterized by decreased bone mass and stronger localizations of Ki67 and PERIOSTIN in the periodontium compared 1 to control groups. The micro-CT evaluation showed decreased bone volume and increased PDL space in the Phb knock-down specimens, suggesting its regulatory role in bone formation. Discussion: The region-specific localization of PHB in the margin where alveolar bone forms suggests its involvement in alveolar bone formation and the differentiation of the periodontal ligament. Overall, our findings suggest that Phb plays a modulatory role in alveolar bone formation by harmoniously regulating bone-forming-related signaling molecules during periodontium development.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Song-Yi Han
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Bandana Rana
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United Sates
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, Republic of Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Toky, Japan
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Wern-Joo Sohn
- College of K-Biohealth, Daegu Haany University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Nan DN, Everts V, Ferreira JN, Trachoo V, Osathanon T, Klincumhom N, Pavasant P. Alteration of extracellular matrix proteins in atrophic periodontal ligament of hypofunctional rat molars. BDJ Open 2023; 9:31. [PMID: 37463885 DOI: 10.1038/s41405-023-00155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the effect of mechanical force on possible dynamic changes of the matrix proteins deposition in the PDL upon in vitro mechanical and in vivo occlusal forces in a rat model with hypofunctional conditions. MATERIALS AND METHODS Intermittent compressive force (ICF) and shear force (SF) were applied to human periodontal ligament stem cells (PDLSCs). Protein expression of collagen I and POSTN was analyzed by western blot technique. To establish an in vivo model, rat maxillary molars were extracted to facilitate hypofunction of the periodontal ligament (PDL) tissue of the opposing mandibular molar. The mandibles were collected after 4-, 8-, and 12-weeks post-extraction and used for micro-CT and immunohistochemical analysis. RESULTS ICF and SF increased the synthesis of POSTN by human PDLSCs. Histological changes in the hypofunctional teeth revealed a narrowing of the PDL space, along with a decreased amount of collagen I, POSTN, and laminin in perivascular structures compared to the functional contralateral molars. CONCLUSION Our results revealed that loss of occlusal force disrupts deposition of some major matrix proteins in the PDL, underscoring the relevance of mechanical forces in maintaining periodontal tissue homeostasis by modulating ECM composition.
Collapse
Affiliation(s)
- Daneeya Na Nan
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Cell Biology, Faculty of Dentistry, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Klincumhom
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Fujii S, Takebe H, Mizoguchi T, Nakamura H, Shimo T, Hosoya A. Bone formation ability of Gli1 + cells in the periodontal ligament after tooth extraction. Bone 2023; 173:116786. [PMID: 37164217 DOI: 10.1016/j.bone.2023.116786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
During the process of socket healing after tooth extraction, osteoblasts appear in the tooth socket and form alveolar bone; however, the source of these osteoblasts is still uncertain. Recently, it has been demonstrated that cells expressing Gli1, a downstream factor of sonic hedgehog signaling, exhibit stem cell properties in the periodontal ligament (PDL). Therefore, in the present study, the differentiation ability of Gli1+-PDL cells after tooth extraction was analyzed using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. After the final administration of tamoxifen to iGli1/Tomato mice, Gli1/Tomato+ cells were rarely detected in the PDL. One day after the tooth extraction, although inflammatory cells appeared in the tooth socket, Periostin+ PDL-like tissues having a few Gli1/Tomato+ cells remained near the alveolar bone. Three days after the extraction, the number of Gli1/Tomato+ cells increased as evidenced by numerous PCNA+ cells in the socket. Some of these Gli1/Tomato+ cells expressed BMP4 and Phosphorylated (P)-Smad1/5/8. After seven days, the Osteopontin+ bone matrix was formed in the tooth socket apart from the alveolar bone. Many Gli1/Tomato+ osteoblasts that were positive for Runx2+ were arranged on the surface of the newly formed bone matrix. In the absence of Gli1+-PDL cells in Gli1-CreERT2/Rosa26-loxP-stop-loxP-tdDTA (iGli1/DTA) mice, the amount of newly formed bone matrix was significantly reduced in the tooth socket. Therefore, these results collectively suggest that Gli1+-PDL cells differentiate into osteoblasts to form the bone matrix in the tooth socket; thus, this differentiation might be regulated, at least in part, by bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Saki Fujii
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
5
|
Deng Y, Luo N, Xie M, He L, Jiang R, Hu N, Wen J, Jiang X. Transcriptome landscape comparison of periodontium in developmental and renewal stages. Front Endocrinol (Lausanne) 2023; 14:1154931. [PMID: 37008900 PMCID: PMC10050752 DOI: 10.3389/fendo.2023.1154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVES Periodontium regeneration remains a significant challenge in clinics and research, and it is essential to understand the stage-specific biological process in situ. However, differing findings have been reported, and the mechanism has yet to be elucidated. The periodontium of adult mice molars is considered to be stable remodeling tissue. At the same time, the continuously growing incisors and the developing dental follicle (DF) of postnatal mice highly represent fast remodeling tissue. In this study, we attempted to explore different clues of temporal and spatial comparisons to provide improved references for periodontal regeneration. METHODS Periodontal tissues from the developing periodontium (DeP) of postnatal mice, and continuously growing periodontium (CgP) and stable remodeling periodontium (ReP) of adult mice were isolated and compared using RNA sequencing. Based on the Dep and CgP separately compared with the ReP, differentially expressed genes and signaling pathways were analyzed using GO, KEGG databases, and Ingenuity Pathway Analysis (IPA). The results and validation were obtained by immunofluorescence staining and RT-PCR assays. Data were expressed as means ± standard deviation (SD) and analyzed by GraphPad Prism 8 software package, and one-way ANOVA was used to test multiple groups. RESULTS Principal component analysis showed that the three groups of periodontal tissue were successfully isolated and had distinct expression profiles. A total of 792 and 612 DEGs were identified in the DeP and CgP groups compared with the ReP. Upregulated DEGs in the DeP were closely related to developmental processes, while the CgP showed significantly enhanced cellular energy metabolism. The DeP and CgP showed a common downregulation of the immune response, with activation, migration, and recruitment of immune cells. IPA and further validation jointly suggested that the MyD88/p38 MAPK pathway played an essential regulatory role in periodontium remodeling. CONCLUSION Tissue development, energy metabolism, and immune response were critical regulatory processes during periodontal remodeling. Developmental and adult stages of periodontal remodeling showed different expression patterns. These results contribute to a deeper understanding of periodontal development and remodeling and may provide references for periodontal regeneration.
Collapse
Affiliation(s)
- Yuwei Deng
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xie
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ruixue Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Hu
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endodontics, Ninth People’ Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| |
Collapse
|
6
|
Sari A, Dogan S, Nibali L, Koseoglu S. Evaluation of IL-23p19/Ebi3 (IL-39) gingival crevicular fluid levels in periodontal health, gingivitis, and periodontitis. Clin Oral Investig 2022; 26:7209-7218. [PMID: 35986791 DOI: 10.1007/s00784-022-04681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
IL-23p19/Ebi3 (IL-39) was described as a new IL-12 family member. The aim of this study is to evaluate the gingival crevicular fluid (GCF) IL-39 levels in periodontal diseases and health and to correlate them to GCF levels of IL-1β and periostin.
Materials and methods
Sixty-six adult patients were included in the study. The study design was comprised of three groups, each containing 22 individuals: the periodontally healthy (PH), gingivitis (G), and periodontitis (P) groups. The clinical periodontal parameters were recorded and GCF samples were collected from the participants. GCF interleukin (IL)-39, IL-1β, and periostin levels were examined using the enzyme-linked immunosorbent assay.
Results
GCF IL‑1β, periostin, and IL-39 levels were higher in the P and G groups than in the PH group (p < 0.001). Positive correlations were detected between all GCF biochemical parameters and clinical periodontal parameters (p < 0.05). In the multivariate generalized linear regression analysis, the P (β = 37.6, 95% CI = 22.9–52.4) and G (β = 28.4, 95% CI = 15.8–41) groups were associated with GCF IL-39 levels (p < 0.001).
Conclusion
IL-39 levels were elevated in the presence of periodontal disease paralleling the increase in IL‑1β and periostin levels. IL-39 may have a role in the periodontal inflammation process.
Statement of clinical relevance
IL-39, a new cytokine from the IL-12 family, can be a possible predictor marker of periodontal diseases.
Collapse
|
7
|
Mohanarangam S, Victor DJ, Subramanian S, Prakash P. The influence of periostin on osteoblastic adhesion and proliferation on collagen matrices - An in vitro study. J Indian Soc Periodontol 2021; 25:480-484. [PMID: 34898912 PMCID: PMC8603795 DOI: 10.4103/jisp.jisp_396_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose: The purpose of the study was to evaluate the ability of periostin when impregnated onto varied collagen matrices to influence osteoblast cell adhesion, proliferation, and activity. Materials and Methods: Saos-2 osteoblast cells were cultured and seeded onto two different collagen matrices as follows: Group A: absorbable collagen sponge (ACS), Group B: ACS impregnated with recombinant human periostin, Group C: nanocrystalline hydroxyapatite collagen (NcHC), and Group D: NcHC impregnated with recombinanant human periostin. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to evaluate cell viability as well as adhesion and proliferation on 2nd, 5th, and 7th day. Osteoblast activity was studied using alkaline phosphatase (ALP) assay for the study groups. Results: The periostin-treated absorbable collagen matrices showed a statistically significant increase in the osteoblast adhesion compared to periostin-treated NcHC on days 2, 5, and 7 (P < 0.001). The osteoblast activity as evaluated by ALP assay showed that there is increased activity in the periostin-treated ACS compared to the periostin-treated NcHC. Conclusion: From the observations of this study, it is evident that Periostin has a significant role in the modulating cellular response of the osteoblast cells. Further, incorporation of periostin into the ACS has been shown to increase the cell viability, proliferation, and adhesion of osteoblast-like Saos-2 cells.
Collapse
Affiliation(s)
| | - Dhayanand John Victor
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Psg Prakash
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
9
|
Jeong EL, Broad S, Moody R, Phillips-Jones M. The adherence-associated Fdp fasciclin I domain protein of the biohydrogen producer Rhodobacter sphaeroides is regulated by the global Prr pathway. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:26840-26854. [PMID: 33093750 PMCID: PMC7561615 DOI: 10.1016/j.ijhydene.2020.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 05/23/2023]
Abstract
Expression of fdp, encoding a fasciclin I domain protein important for adherence in the hydrogen-producing bacterium Rhodobacter sphaeroides, was investigated under a range of conditions to gain insights into optimization of adherence for immobilization strategies suitable for H2 production. The fdp promoter was linked to a lacZ reporter and expressed in wild type and in PRRB and PRRA mutant strains of the Prr regulatory pathway. Expression was significantly negatively regulated by Prr under all conditions of aerobiosis tested including anaerobic conditions (required for H2 production), and aerobically regardless of growth phase, growth medium complexity or composition, carbon source, heat and cold shock and dark/light conditions. Negative fdp regulation by Prr was reflected in cellular levels of translated Fdp protein. Since Prr is required directly for nitrogenase expression, we propose optimization of Fdp-based adherence in R. sphaeroides for immobilized biohydrogen production by inactivation of the PrrA binding site(s) upstream of fdp.
Collapse
Affiliation(s)
- E.-L. Jeong
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - S.J. Broad
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R.G. Moody
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - M.K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
10
|
Khurshid Z, Mali M, Adanir N, Zafar MS, Khan RS, Latif M. Periostin: Immunomodulatory Effects on Oral Diseases. Eur J Dent 2020; 14:462-466. [PMID: 32688410 PMCID: PMC7440953 DOI: 10.1055/s-0040-1714037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Periostin is a microcellular adapter protein. It plays a wide range of essential roles during the development and in immunomodulation. Periostin is a prominent contributor during the process of angiogenesis, tumorigenesis, and cardiac repair. It is expressed in periodontal ligaments, tendons, skin, adipose tissues, muscle, and bone. This is a protein-based biomolecule that has the diagnostic and monitoring capability and can potentially be used as a biomarker to detect physiological and pathological conditions. The aim of the present review was to explore the periostin morphology and associated structural features. Additionally, periostin’s immunomodulatory effects and associated biomarkers in context of oral diseases have been discussed.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Maria Mali
- Department of Orthodontics, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Rabia Sannam Khan
- Department of Bioengineering, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases, College of Medicine, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Sophia K, Suresh S, Sudhakar U, Abdul Cader S, Vardhini VM, Arunachalam LT, Jean SC. Comparative Evaluation of Serum and Gingival Crevicular Fluid Periostin Levels in Periodontal Health and Disease: A Biochemical Study. Cureus 2020; 12:e7218. [PMID: 32274276 PMCID: PMC7141796 DOI: 10.7759/cureus.7218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction Periostin, a secreted adhesion molecule, is a matricellular protein secreted most in periodontal ligament and periosteum. This periostin is needed for integrity and maturation of periodontal tissue. The present study was conducted to estimate and compare the gingival crevicular fluid and serum periostin levels in subjects having chronic periodontitis, gingivitis and healthy periodontium. Methods Ninety patients belonging to both sexes were categorized into three groups, 30 patients each as healthy periodontium (Group I), chronic gingivitis (Group II) and generalised chronic periodontitis (Group III). The clinical parameters included assessment of plaque index (PI), gingival index (GI), probing pocket depth (PPD) and clinical attachment level (CAL). Gingival crevicular fluid (GCF) and serum samples were collected and the enzyme-linked immunosorbent assay was used to estimate periostin levels. Results Periostin levels in GCF were comparatively low in the chronic periodontitis than in the gingivitis and healthy periodontium groups and the difference was statistically significant. No statistical difference was found for serum periostin levels among Group I, Group II and Group III. On comparison of clinical parameters, significant difference was noticed among the three groups. GCF periostin levels were correlated inversely with the clinical parameters in chronic periodontitis patients. Conclusion GCF periostin levels were gradually reduced with the increase in severity of periodontal disease. This novel biomarker has role in maintaining normal periodontal tissue function and may be used as a potential marker in periodontal disease activity evaluation.
Collapse
Affiliation(s)
- Khumukcham Sophia
- Periodontics, Jawaharlal Nehru Institute of Medical Sciences, Imphal, IND
| | - Snophia Suresh
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Uma Sudhakar
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Shaik Abdul Cader
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Varsha M Vardhini
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | | | - S Catherine Jean
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| |
Collapse
|
12
|
Architecture of connective tissue regenerated by enamel matrix derivative around hydroxyapatite implanted into tooth extraction sockets in the rat maxilla. Anat Sci Int 2020; 95:334-341. [DOI: 10.1007/s12565-020-00526-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
|
13
|
Ganieva U, Nakamura T, Osuka S, Bayasula, Nakanishi N, Kasahara Y, Takasaki N, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Involvement of Transcription Factor 21 in the Pathogenesis of Fibrosis in Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:145-157. [DOI: 10.1016/j.ajpath.2019.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
|
14
|
Abstract
Periostin is a secreted matricellular protein that primarily interacts with type I collagen and fibronectin extracellular matrix proteins, and is widely distributed in tissues rich in collagen-rich connective tissues, including the periodontal ligament. Its expression in these tissues is especially regulated by mechanical load. While the expression and regulation of periostin in the teeth of murine models and cell lines is well known, its presence in human teeth is poorly documented. Here we update and summarize the available data on the distribution of periostin in the human periodontal ligament, gingiva and dental pulp.
Collapse
|
15
|
Radhika BN, Appukuttan DP, Prakash PSG, Subramanian S, Victor DJ, Balasundaram A. Estimation of Periostin and Tumour Necrosis Factor-α in Type II Diabetics with Chronic Periodontitis: A case-control study. J Indian Soc Periodontol 2019; 23:106-112. [PMID: 30983780 PMCID: PMC6434735 DOI: 10.4103/jisp.jisp_397_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Periostin, a matricellular protein, is downregulated in chronic inflammatory periodontal disease and is negatively modulated by tumor necrosis factor-α (TNF-α) in human periodontal fibroblast cell culture. The study aimed to estimate the gingival crevicular fluid (GCF) levels of periostin and TNF-α and to discern their relationship in chronic periodontitis (CP) individuals with and without Type II diabetes mellitus (DM). Materials and Methods: A total of 60 participants were divided into three groups, with 20 in each group. Group I – systemically and periodontally healthy, Group II – generalized CP, and Group III – generalized CP with Type II DM. Plaque index, gingival index, sulcular bleeding index, probing depth, and clinical attachment level were recorded. GCF periostin and TNF-α were quantified using the enzyme-linked immunosorbent assay. Results: Intergroup comparison was performed using the one-way ANOVA and Kruskal–Wallis. The relationship between the variables was analyzed using the Pearson's and Kendall's Tau correlation. The GCF periostin levels in Groups I, II, and III was 27.52 ± 2.39 ng/mL, 20.18 ± 1.42 ng/mL, and 16.77 ± 3.29 ng/mL, respectively. The GCF TNF-α levels in Groups I, II, and III was 92.41 ± 19.30 ng/L, 118.53 ± 21.93 ng/L, and 147.67 ± 16.35 ng/L, respectively. Periostin decreased, and TNF-α increased in periodontal disease; moreover, periostin level correlated negatively with all the site-specific clinical parameters whereas TNF-α positively correlated (P < 0.001). Conclusions: TNF-α strongly and negatively downregulates periostin in a chronically inflamed locale leading to compromised integrity of the periodontium.
Collapse
Affiliation(s)
- Burra Naga Radhika
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Deva Priya Appukuttan
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | | | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:63-72. [PMID: 31037625 DOI: 10.1007/978-981-13-6657-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of periodontal regeneration therapy is to reliably restore teeth's supporting periodontal tissue, while aiding the formation of new connective tissue attached to the periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein, primarily expressed in the periosteum and PDL of adult mice. Its biological functions have been extensively studied in the fields of cardiovascular physiology and oncology. Despite being initially identified in bone and dental tissue, the function of Periostin in PDL and the pathophysiology associated with alveolar bone are scarcely studied. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a key role in the regeneration of PDL and alveolar bone after periodontal surgery. In this chapter, the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration are reviewed.
Collapse
|
17
|
Practical Application of Periostin as a Biomarker for Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:195-204. [PMID: 31037636 DOI: 10.1007/978-981-13-6657-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In physiological condition, periostin is expressed in limited tissues such as periodontal ligament, periosteum, and heart valves. Periostin protein is mainly localized on extracellular collagen bundles and in matricellular space. On the other hand, in pathological condition, expression of periostin is induced in disordered tissues of human patients. In tumor development and progression, periostin is elevated mainly in its microenvironment and stromal tissue rich in extracellular matrix. Tumor stromal fibroblasts highly express periostin and organize the tumor-surrounding extracellular matrix architecture. In fibrosis in lung, liver, and kidney, proliferating activated fibroblasts express periostin and replace normal functional tissues with dense connective tissues. In inflammation and allergy, inflammatory cytokines such as IL-4 and IL-13 induce expression of periostin that plays important roles in pathogenesis of these diseases. The elevated levels of periostin in human patients could be detected not only in tissue biopsy samples but also in peripheral bloods using specific antibodies against periostin, because periostin secreted from the disordered tissues is transported into blood vessels and circulates in the cardiovascular system. In this chapter, I introduce the elevated expression of periostin in pathological conditions, and discuss how periostin could be utilized as a biomarker in disease diagnosis.
Collapse
|
18
|
Kii I. Periostin Functions as a Scaffold for Assembly of Extracellular Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:23-32. [DOI: 10.1007/978-981-13-6657-4_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Zhang X, Shi C, Zhao H, Zhou Y, Hu Y, Yan G, Liu C, Li D, Hao X, Mishina Y, Liu Q, Sun H. Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J Mol Histol 2018; 50:43-61. [PMID: 30519900 DOI: 10.1007/s10735-018-9806-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/29/2018] [Indexed: 11/24/2022]
Abstract
Dentin is a major component of teeth that protects dental pulp and maintains tooth health. Bone morphogenetic protein (BMP) signaling is required for the formation of dentin. Mice lacking a BMP type I receptor, activin A receptor type 1 (ACVR1), in the neural crest display a deformed mandible. Acvr1 is known to be expressed in the dental mesenchyme. However, little is known about how BMP signaling mediated by ACVR1 regulates dentinogenesis. To explore the role of ACVR1 in dentin formation in molars and incisors in mice, Acvr1 was conditionally disrupted in Osterix-expressing cells (designated as cKO). We found that loss of Acvr1 in the dental mesenchyme led to dentin dysplasia in molars and osteodentin formation in incisors. Specifically, the cKO mice exhibited remarkable tooth phenotypes characterized by thinner dentin and thicker predentin, as well as compromised differentiation of odontoblasts in molars. We also found osteodentin formation in the coronal part of the cKO mandibular incisors, which was associated with a reduction in the expression of odontogenic gene Dsp and an increase in the expression of osteogenic gene Bsp, leading to an alteration of cell fate from odontoblasts to osteoblasts. In addition, the expressions of WNT antagonists, Dkk1 and Sost, were downregulated and B-catenin was up-regulated in the cKO incisors, while the expression levels were not changed in the cKO molars, compared with the corresponding controls. Our results indicate the distinct and critical roles of ACVR1 between incisors and molars, which is associated with alterations in the WNT signaling related molecules. This study demonstrates for the first time the physiological roles of ACVR1 during dentinogenesis.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Huan Zhao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yijun Zhou
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yue Hu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Guangxing Yan
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Daowei Li
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Xinqing Hao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
| | - Qilin Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| |
Collapse
|
20
|
Liu Q, Huang P, Guo SJ. [Progress relationship between periostin and periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:681-685. [PMID: 30593118 DOI: 10.7518/hxkq.2018.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Periostin, a kind of matricellular protein highly expressed in periodontal ligament and periosteum, is an important regulator of the integrity of periodontal ligament and periodontitis processes. Periostin has been shown to play a positive role in the recovery of periodontitis. This paper reviews relevant literature about the role of periostin in periodontal tissue and periodontitis.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu-Juan Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Allard DE, Wang Y, Li JJ, Conley B, Xu EW, Sailer D, Kimpston C, Notini R, Smith CJ, Koseoglu E, Starmer J, Zeng XL, Howard JF, Hoke A, Scherer SS, Su MA. Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest 2018; 128:4727-4741. [PMID: 30222134 PMCID: PMC6159985 DOI: 10.1172/jci99308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain-Barre syndrome (GBS) are inflammatory neuropathies that affect humans and are characterized by peripheral nerve myelin destruction and macrophage-containing immune infiltrates. In contrast to the traditional view that the peripheral nerve is simply the target of autoimmunity, we report here that peripheral nerve Schwann cells exacerbate the autoimmune process through extracellular matrix (ECM) protein induction. In a spontaneous autoimmune peripheral polyneuropathy (SAPP) mouse model of inflammatory neuropathy and CIDP nerve biopsies, the ECM protein periostin (POSTN) was upregulated in affected sciatic nerves and was primarily expressed by Schwann cells. Postn deficiency delayed the onset and reduced the extent of neuropathy, as well as decreased the number of macrophages infiltrating the sciatic nerve. In an in vitro assay, POSTN promoted macrophage chemotaxis in an integrin-AM (ITGAM) and ITGAV-dependent manner. The PNS-infiltrating macrophages in SAPP-affected nerves were pathogenic, since depletion of macrophages protected against the development of neuropathy. Our findings show that Schwann cells promote macrophage infiltration by upregulating Postn and suggest that POSTN is a novel target for the treatment of macrophage-associated inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Yan Wang
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Jian Joel Li
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bridget Conley
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Erin W. Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - David Sailer
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Caellaigh Kimpston
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Rebecca Notini
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | | | - Emel Koseoglu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Neurology Department, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Xiaopei L. Zeng
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - James F. Howard
- Department of Neurology, UNC-CH, Chapel Hill, North Carolina, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maureen A. Su
- Department of Microbiology and Immunology and
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
- Department of Pediatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Periostin contributes to the maturation and shape retention of tissue-engineered cartilage. Sci Rep 2018; 8:11210. [PMID: 30046126 PMCID: PMC6060118 DOI: 10.1038/s41598-018-29228-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
Traditional tissue-engineered cartilage applied in clinical practice consists of cell suspensions or gel-form materials for which it is difficult to maintain their shapes. Although biodegradable polymer scaffolds are used for shape retention, deformation after transplantation can occur. Here, we showed that periostin (PN), which is abundantly expressed in fibrous tissues, contributes to the maturation and shape retention of tissue-engineered cartilage through conformational changes in collagen molecules. The tissue-engineered cartilage transplanted in an environment lacking PN exhibited irregular shapes, while transplants originating from chondrocytes lacking PN showed limited regeneration. In the in vitro assay, PN added to the culture medium of chondrocytes failed to show any effects, while the 3D culture embedded within the collagen gel premixed with PN (10 μg/mL) enhanced chondrogenesis. The PN-mediated collagen structure enhanced the mechanical strength of the surrounding fibrous tissues and activated chondrocyte extracellular signaling by interstitial fibrous tissues.
Collapse
|
23
|
Liu J, Zhang J, Xu F, Lin Z, Li Z, Liu H. Structural characterizations of human periostin dimerization and cysteinylation. FEBS Lett 2018; 592:1789-1803. [PMID: 29754429 DOI: 10.1002/1873-3468.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
Abstract
Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1I-IV ) and its Cys60Ala mutant. In combination with multi-angle light-scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions.
Collapse
Affiliation(s)
- Jianmei Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Fei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Zhaohan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Zhiqiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| |
Collapse
|
24
|
Yun H, Kim EH, Lee CW. 1H, 13C, and 15N resonance assignments of FAS1-IV domain of human periostin, a component of extracellular matrix proteins. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:95-98. [PMID: 29086898 DOI: 10.1007/s12104-017-9786-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Periostin, an extracellular matrix protein, is secreted by fibroblasts and is overexpressed in various types of cancers. The four internal repeat fasciclin 1 (FAS1) domains of human periostin play crucial roles in promoting tumor metastasis and progression via interaction with cell surface integrins. Among four FAS1 domains of human periostin, the fourth FAS1 domain (FAS1-IV) was prepared for NMR study, since only FAS1-IV was highly soluble, and showed a well-dispersed 2D 1H-15N HSQC spectrum. Here, we report nearly complete backbone and side chain resonance assignments and a secondary structural analysis of the FAS1-IV domain as first steps toward the structure determination of FAS1-IV of human periostin.
Collapse
Affiliation(s)
- Hyosuk Yun
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
25
|
Periostin, dentin matrix protein 1 and P2rx7 ion channel in human teeth and periodontal ligament. Ann Anat 2018; 216:103-111. [DOI: 10.1016/j.aanat.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
26
|
Du J, Li M. Functions of Periostin in dental tissues and its role in periodontal tissues' regeneration. Cell Mol Life Sci 2017; 74:4279-4286. [PMID: 28889194 PMCID: PMC11107504 DOI: 10.1007/s00018-017-2645-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
The goal of periodontal regenerative therapy is to predictably restore the tooth's supporting periodontal tissues and form a new connective tissue attachment of periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein so named for its expression primarily in the periosteum and PDL of adult mice. Its biological functions have been widely studied in areas such as cardiovascular physiology and oncology. Despite being initially identified in the dental tissues and bone, investigations of Periostin functions in PDL and alveolar-bone-related physiopathology are less abundant. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a pivotal part in regeneration of the PDL and alveolar bone following periodontal surgery. The aim of this article is to provide an extensive review of the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Juan Du
- Department of Bone Metabolism, School of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, 250012, China.
| |
Collapse
|
27
|
Kii I, Ito H. Periostin and its interacting proteins in the construction of extracellular architectures. Cell Mol Life Sci 2017; 74:4269-4277. [PMID: 28887577 PMCID: PMC11107766 DOI: 10.1007/s00018-017-2644-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Abstract
Periostin is a matricellular protein that is composed of a multi-domain structure with an amino-terminal EMI domain, a tandem repeat of four FAS 1 domains, and a carboxyl-terminal domain. These distinct domains have been demonstrated to bind to many proteins including extracellular matrix proteins (Collagen type I and V, fibronectin, tenascin, and laminin), matricellular proteins (CCN3 and βig-h3), and enzymes that catalyze covalent crosslinking between extracellular matrix proteins (lysyl oxidase and BMP-1). Adjacent binding sites on periostin have been suggested to put the interacting proteins in close proximity, promoting intermolecular interactions between each protein, and leading to their assembly into extracellular architectures. These extracellular architectures determine the mechanochemical properties of connective tissues, in which periostin plays an important role in physiological homeostasis and disease progression. In this review, we introduce the proteins that interact with periostin, and discuss how the multi-domain structure of periostin functions as a scaffold for the assembly of interacting proteins, and how it underlies construction of highly sophisticated extracellular architectures.
Collapse
Affiliation(s)
- Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Harumi Ito
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
28
|
Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal 2017; 12:301-308. [PMID: 29086200 DOI: 10.1007/s12079-017-0422-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Periostin is a secretory protein with a multi-domain structure, comprising an amino-terminal cysteine-rich EMI domain, four internal FAS 1 domains, and a carboxyl-terminal hydrophilic domain. These adjacent domains bind to extracellular matrix proteins (type I collagen, fibronectin, tenascin-C, and laminin γ2), and BMP-1 that catalyzes crosslinking of type I collagen, and proteoglycans, which play a role in cell adhesion. The binding sites on periostin have been demonstrated to contribute to the mechanical strength of connective tissues, enhancing intermolecular interactions in close proximity and their assembly into extracellular matrix architectures, where periostin plays further essential roles in physiological maintenance and pathological progression. Furthermore, periostin also binds to Notch 1 and CCN3, which have functions in maintenance of stemness, thus opening up a new field of periostin action.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Showa University, Tokyo, 142-8555, Japan.
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chūō-ku, Kobe, Hyogo, 650-0047, Japan.,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| |
Collapse
|
29
|
Tang Y, Liu L, Wang P, Chen D, Wu Z, Tang C. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions. Cell Prolif 2017; 50. [PMID: 28833827 DOI: 10.1111/cpr.12369] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. MATERIALS AND METHODS PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. RESULTS After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. CONCLUSIONS Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Donglei Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziqiang Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunbo Tang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
An SY, Lee YJ, Neupane S, Jun JH, Kim JY, Lee Y, Choi KS, An CH, Suh JY, Shin HI, Sohn WJ, Kim JY. Effects of vascular formation during alveolar bone process morphogenesis in mice. Histochem Cell Biol 2017; 148:435-443. [PMID: 28612087 DOI: 10.1007/s00418-017-1584-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
31
|
Intravenous bisphosphonate therapy does not thicken cementum or change periodontal ligaments of cancer patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:591-599. [PMID: 28407986 DOI: 10.1016/j.oooo.2017.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/28/2016] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test the hypothesis that intravenous (IV) bisphosphonate (BP) therapy thickens or alters the micromorphology of cementum and periodontal ligament (PDL) in cancer patients. STUDY DESIGN Thirty-two teeth extracted from 24 cancer patients and separated into test (patients who have undergone IV BP therapy, n = 16) and control (patients naive to BP therapy, n = 16) groups were studied. Cementum thickness was measured in 3 different areas of the dental root with polarized light microscopy. PDL was assessed by optical light microscopy and the immunohistochemical expression of periostin. RESULTS No significant difference was detected in cementum thickness (apical, P = .06; medium, P = .16; cervical, P = .18) between groups. The numbers of fibroblasts in PDL (P = .56), incremental lines of cementum (P = .51) and the immunohistochemical patterns of periostin expression in PDL (P = .68) did not differ between groups. CONCLUSION IV BP therapy does not thicken cementum or change the micromorphology of PDL.
Collapse
|
32
|
Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root. Sci Rep 2017; 7:44635. [PMID: 28401887 PMCID: PMC5388852 DOI: 10.1038/srep44635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
Treated dentin matrix (TDM) as a kind of scaffolding material has been proved odontogenic induction ability on dental-derived stem cells. Given the limited resources of dental stem cells, it is necessary to seek new seed cell which easily obtained. Jaw bone marrow mesenchymal stem cell (JBMMSC) as non-dental-derived stem cell relates to the development of teeth and jaws which suggest us JBMMSCs could act as a new seed cell for tooth tissue engineering. To assess the odontogenic and osteogenic potential of JBMMSCs, cells were induced by TDM extraction in vitro and combined with TDM in vivo. Results were analyzed by PCR, Western Blotting and histology. PCR and Western Blotting showed odontogenic and osteogenic makers were significantly enhanced in varying degrees after induced by TDM extraction in vitro. In vivo, JBMMSCs expressed both odontogenic and osteogenic-related protein, and the latter showed stronger positive expression. Furthermore, histological examination of the harvested grafts was observed the formation of bone-like tissue. Therefore, osteogenic differentiation ability of JBMMSCs were enhanced significantly after being inducted by TDM which illustrates that non-odontogenic derived stem cells are still promising seed cells in tooth root tissue engineering.
Collapse
|
33
|
ITAYA S, OKA K, OGATA K, TAMURA S, KIRA -TATSUOKA M, FUJIWARA N, OTSU K, TSURUGA E, OZAKI M, HARADA H. Hertwig’s epithelial root sheath cells contribute to formation of periodontal ligament through epithelial-mesenchymal transition by TGF-β . Biomed Res 2017; 38:61-69. [DOI: 10.2220/biomedres.38.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Satoshi ITAYA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Kyoko OKA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Kayoko OGATA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Shougo TAMURA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Michiko KIRA -TATSUOKA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Naoki FUJIWARA
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Keishi OTSU
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Eichi TSURUGA
- Department of Radiation Science, Graduate School of Health Sci-ences, Hirosaki University
| | - Masao OZAKI
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Hidemitsu HARADA
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| |
Collapse
|
34
|
Walker JT, McLeod K, Kim S, Conway SJ, Hamilton DW. Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res 2016; 365:453-65. [PMID: 27234502 DOI: 10.1007/s00441-016-2426-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
Abstract
During tissue healing, the dynamic and temporal alterations required for effective repair occur in the structure and composition of the extracellular matrix (ECM). Matricellular proteins (MPs) are a group of diverse non-structural ECM components that bind cell surface receptors mediating interactions between the cell and its microenviroment, effectively regulating adhesion, migration, proliferation, signaling, and cell phenotype. Periostin (Postn), a pro-fibrogenic secreted glycoprotein, is defined as an MP based on its expression pattern and regulatory roles during development and healing and in disease processes. Postn consists of a typical signal sequence, an EMI domain responsible for binding to fibronectin, four tandem fasciclin-like domains that are responsible for integrin binding, and a C-terminal region in which multiple splice variants originate. This review focuses specifically on the role of Postn in wound healing and remodeling, an area of intense research during the last 10 years, particularly as related to skin healing and myocardium post-infarction. Postn interacts with cells through various integrin pairs and is an essential downstream effector of transforming growth factor-β superfamily signaling. Across various tissues, Postn is associated with the pro-fibrogenic process: specifically, the transition of fibroblasts to myofibroblasts, collagen fibrillogenesis, and ECM synthesis. Although the complexity of Postn as a modulator of cell behavior in tissue healing is only beginning to be elucidated, its expression is clearly a defining event in moving wound healing through the proliferative and remodeling phases.
Collapse
Affiliation(s)
- John T Walker
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Karrington McLeod
- Graduate Program in Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Shawna Kim
- Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1.
- Graduate Program in Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1.
- Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON, Canada, N6A 5C1.
| |
Collapse
|
35
|
Cobo T, Viloria CG, Solares L, Fontanil T, González-Chamorro E, De Carlos F, Cobo J, Cal S, Obaya AJ. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells. PLoS One 2016; 11:e0147837. [PMID: 26809067 PMCID: PMC4725750 DOI: 10.1371/journal.pone.0147837] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022] Open
Abstract
Periostin is an extracellular matrix protein highly expressed in collagen-rich tissues subjected to continuous mechanical stress. Functionally, periostin is involved in tissue remodeling and its altered function is associated to numerous pathological processes. In orthodontics, periostin plays key roles in the maintenance of dental tissues and it is mainly expressed in those areas where tension or pressing forces are taking place. In this regard, high expression of periostin is essential to promote migration and proliferation of periodontal ligament fibroblasts. However little is known about the participation of periostin in migration and adhesion processes of bone remodeling cells. In this work we employ the mouse pre-osteoblastic MC3T3-E1 and the macrophage-like RAW 264.7 cell lines to overexpress periostin and perform different cell-based assays to study changes in cell behavior. Our data indicate that periostin overexpression not only increases adhesion capacity of MC3T3-E1 cells to different matrix proteins but also hampers their migratory capacity. Changes on RNA expression profile of MC3T3-E1 cells upon periostin overexpression have been also analyzed, highlighting the alteration of genes implicated in processes such as cell migration, adhesion or bone metabolism but not in bone differentiation. Overall, our work provides new evidence on the impact of periostin in osteoblasts physiology.
Collapse
Affiliation(s)
- Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Cristina G. Viloria
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Elena González-Chamorro
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Félix De Carlos
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
36
|
Alfaqeeh S, Oralova V, Foxworthy M, Matalova E, Grigoriadis AE, Tucker AS. Root and Eruption Defects in c-Fos Mice Are Driven by Loss of Osteoclasts. J Dent Res 2015; 94:1724-31. [PMID: 26442949 DOI: 10.1177/0022034515608828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
c-Fos homozygous mice lack osteoclasts with a failure of the teeth to erupt and with an arrest of root development. Here, we characterize the defects associated with the failure in root development and the loss of the tooth-bone interface, and we investigate the underlying causes. We show that, while homozygous c-Fos mice have no multinucleated osteoclasts, heterozygous mice have a reduction in the number of osteoclasts with a reduction in the tooth-bone interface during development and subtle skeletal defects postnatally. In the homozygous mutants bone is found to penetrate the tooth, particularly at the apical end, physically disrupting the root forming HERS (Hertwig's epithelial root sheath) cells. The cells of the HERS continue to proliferate but cannot extend downward due to the presence of bone, leading to a loss of root formation. Tooth germ culture showed that the developing tooth invaded the static bone in mutant tissue, rather than the bone encroaching on the tooth. Although c-Fos has been shown to be expressed in developing teeth, the defect in maintenance of the tooth-bone interface appears to be driven solely by the lack of osteoclasts, as this defect can be rescued in the presence of donor osteoclasts. The rescue suggests that signals from the tooth recruit osteoclasts to clear the bone from around the tooth, allowing the tooth to grow, form roots, and later erupt.
Collapse
Affiliation(s)
- S Alfaqeeh
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - V Oralova
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - M Foxworthy
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| | - E Matalova
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A E Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| | - A S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| |
Collapse
|
37
|
Cobo T, Obaya A, Cal S, Solares L, Cabo R, Vega JA, Cobo J. Immunohistochemical localization of periostin in human gingiva. Eur J Histochem 2015; 59:2548. [PMID: 26428890 PMCID: PMC4598602 DOI: 10.4081/ejh.2015.2548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/16/2015] [Accepted: 08/22/2015] [Indexed: 12/27/2022] Open
Abstract
The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered.
Collapse
Affiliation(s)
- T Cobo
- Instituto Asturiano de Odontología.
| | | | | | | | | | | | | |
Collapse
|
38
|
Padial-Molina M, Volk SL, Rios HF. Preliminary insight into the periostin leverage during periodontal tissue healing. J Clin Periodontol 2015. [PMID: 26202398 DOI: 10.1111/jcpe.12432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue repair and regeneration is assisted by the efficient coordination of cell and extracellular matrix interactions mediated by matricellular molecules such as periostin. Given its high expression around the teeth, the periodontal organ represents an ideal system to capture the protein dynamics during wound healing. METHODS An observational prospective case-control study was designed to characterize periostin changes over time after periodontal surgery in tissue, oral fluids and serum by histological, protein and mRNA analyses. RESULTS Histological analysis showed lower periostin with a diffuse local distribution pattern in disease patients. Levels of periostin in gingival crevicular fluid (GCF) increased over time for both groups, more noticeably in the periodontitis subjects. A transient and subtle change in circulating periostin levels was also noticed. The mRNA periostin levels contrasted with the protein levels and may indicate the underlying post-transcriptional regulatory process during chronic inflammation. Levels of known periodontal disease biomarkers such as IL-β, IL1-α, TNF-α, MIP-1α and CRP served as tissue stability markers and complemented the clinical parameters recorded. CONCLUSION The transient local increase in GCF periostin after eliminating the local etiology in periodontally affected sites suggests its importance in the maturation and stability of the connective tissue. The decreasing levels observed as the tissue healed highlight its spatial/temporal significance.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Sarah L Volk
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hector F Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Mosher DF, Johansson MW, Gillis ME, Annis DS. Periostin and TGF-β-induced protein: Two peas in a pod? Crit Rev Biochem Mol Biol 2015; 50:427-39. [PMID: 26288337 DOI: 10.3109/10409238.2015.1069791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Periostin (PN) and TGF-β-induced protein (βig-h3) are paralogs that contain a single emilin and four fasciclin-1 modules and are secreted from cells. PN receives attention because of its up-regulation in cancer and degenerative and allergic diseases. βig-h3 is highly enriched in cornea and best known for harboring mutations in humans associated with corneal dystrophies. Both proteins are expressed widely, and many functions, some over-lapping, have been attributed to PN and βig-h3 based on biochemical, cell culture, and whole animal experiments. We attempt to organize this knowledge so as to facilitate research on these interesting and incompletely understood proteins. We focus particularly on whether PN and βig-h3 are modified by vitamin K-dependent γ-glutamyl carboxylation, a question of considerable importance given the profound effects of γ-carboxylation on structure and function of other proteins. We consider the roles of PN and βig-h3 in formation of extracellular matrix and as ligands for integrin receptors. We attempt to reconcile the contradictory results that have arisen concerning the role of PN, which has emerged as a marker of TH2 immunity, in murine models of allergic asthma. Finally, when possible we compare and contrast the structures and functions of the two proteins.
Collapse
Affiliation(s)
- Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Mats W Johansson
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Mary E Gillis
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Douglas S Annis
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
40
|
Hasegawa D, Wada N, Maeda H, Yoshida S, Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A, Akamine A. Wnt5a Induces Collagen Production by Human Periodontal Ligament Cells Through TGFβ1-Mediated Upregulation of Periostin Expression. J Cell Physiol 2015; 230:2647-60. [DOI: 10.1002/jcp.24950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 01/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Daigaku Hasegawa
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Naohisa Wada
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hidefumi Maeda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Shinichiro Yoshida
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hiromi Mitarai
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Atsushi Tomokiyo
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Satoshi Monnouchi
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Sayuri Hamano
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Asuka Yuda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Akifumi Akamine
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| |
Collapse
|
41
|
The expression of periostin in dental pulp cells. Arch Oral Biol 2015; 60:760-7. [DOI: 10.1016/j.archoralbio.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/12/2015] [Accepted: 02/07/2015] [Indexed: 01/09/2023]
|
42
|
Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodontal Res 2015; 50:855-63. [PMID: 25900259 DOI: 10.1111/jre.12277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE The periodontal ligament (PDL) is characterized by rapid turnover, high remodeling capacity and high inherent regenerative potential compared with other connective tissues. Periostin, which is highly expressed in the fibroblasts in the PDL, has been widely discussed in relation to collagen fibrillogenesis in the PDL. Recently, several reports have indicated periostin in cell migration. The aim of this study was to examine whether human PDL fibroblasts (hPDLFs) with high levels of periostin expression promote the migration of human bone marrow mesenchymal stem cells (hMSCs). MATERIAL AND METHODS The migration of hMSCs was examined by transwell chamber migration assay under different conditions: medium alone, hPDLFs, human dermal fibroblasts, recombinant periostin, integrin αvβ3 blocking antibody (anti-CD51/61 antibody) and inhibitors of FAK (PF431396) and PI3K (LY294002). Phosphorylation of FAK and Akt in hMSCs under stimulation of periostin was examined by western blotting. RESULTS The migration assay revealed that the number of migrated hMSCs by hPDLFs was significantly larger than those by dermal fibroblasts, periostin small interfering RNA hPDLFs and medium alone. Furthermore, recombinant periostin also strongly induced hMSC migration. The addition of anti-CD51/61 antibody, PF431396 and LY294002 caused a significant reduction in the number of migrated hMSCs respectively. The anti-CD51/61 antibody inhibited both FAK and Akt phosphorylations under periostin stimulation. PF431396 inhibited both FAK and Akt phosphorylations. LY294002 inhibited only Akt phosphorylation, and FAK phosphorylation was not influenced under periostin stimulation. CONCLUSION Periostin expression in hPDLFs promotes the migration of hMSCs through the αvβ3 integrin/FAK/PI3K/Akt pathway in vitro.
Collapse
Affiliation(s)
- M Matsuzawa
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - C Arai
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - Y Nomura
- Department of Translation Research, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - T Murata
- Department of Translation Research, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - Y Yamakoshi
- Department of Biochemistry and Molecular Biology, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - S Oida
- Department of Biochemistry and Molecular Biology, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - N Hanada
- Department of Translation Research, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| | - Y Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
43
|
Chau E, Daley T, Darling MR, Hamilton D. The expression and immunohistochemical localization of periostin in odontogenic tumors of mixed epithelial/mesenchymal origin. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 116:214-20. [PMID: 23849375 DOI: 10.1016/j.oooo.2013.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The object of this study was to determine the expression and localization of periostin in the major mixed odontogenic tumors and to correlate any differential staining of the mesenchymal components to the interrelationship of these tumors. STUDY DESIGN Five ameloblastic fibromas, 8 ameloblastic fibro-odontomas and 10 odontomas were assessed immunohistochemically for periostin staining. Because mesenchymal tissues were consistently present in all studied cases, these tissues were selected for statistical analysis of differential periostin staining. RESULTS Periostin was variably localized to the mesenchymal component of the tumors as well as to preameloblasts and ameloblasts. Analysis of the mesenchymal staining intensity was statistically significantly different between ameloblastic fibro-odontomas and odontomas (P < .001; Dunn multiple comparisons test). CONCLUSIONS Our results document periostin staining in human mixed odontogenic tumors. Statistical analysis of differential stromal staining supports the concept that the ameloblastic fibroma is a histogenetically distinct neoplasm as compared to ameloblastic fibro-odontoma and odontoma.
Collapse
Affiliation(s)
- E Chau
- Division of Oral and Maxillofacial Surgery, Schulich Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: a review. ARTHRITIS 2013; 2013:154812. [PMID: 24324885 PMCID: PMC3842050 DOI: 10.1155/2013/154812] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
Abstract
This review summarizes the genetic alterations and knockdown approaches published in the literature to assess the role of key proteoglycans and glycoproteins in the structural development, function, and repair of tendon, ligament, and enthesis. The information was collected from (i) genetically altered mice, (ii) in vitro knockdown studies, (iii) genetic variants predisposition to injury, and (iv) human genetic diseases. The genes reviewed are for small leucine-rich proteoglycans (lumican, fibromodulin, biglycan, decorin, and asporin); dermatan sulfate epimerase (Dse) that alters structure of glycosaminoglycan and hence the function of small leucine-rich proteoglycans by converting glucuronic to iduronic acid; matricellular proteins (thrombospondin 2, secreted phosphoprotein 1 (Spp1), secreted protein acidic and rich in cysteine (Sparc), periostin, and tenascin X) including human tenascin C variants; and others, such as tenomodulin, leukocyte cell derived chemotaxin 1 (chondromodulin-I, ChM-I), CD44 antigen (Cd44), lubricin (Prg4), and aggrecan degrading gene, a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5 (Adamts5). Understanding these genes represents drug targets for disrupting pathological mechanisms that lead to tendinopathy, ligamentopathy, enthesopathy, enthesitis and tendon/ligament injury, that is, osteoarthritis and ankylosing spondylitis.
Collapse
|
45
|
Lv S, Liu H, Cui J, Hasegawa T, Hongo H, Feng W, Li J, Sun B, Kudo A, Amizuka N, Li M. Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth movement in periostin deficient mice. J Mol Histol 2013; 45:303-9. [PMID: 24202437 DOI: 10.1007/s10735-013-9548-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to investigate immunolocalization of collagenolytic enzymes including cathepsin K, matrix metalloproteinase (MMP) 1 and 2 in the compressed periodontal ligament (PDL) during orthodontic tooth movement using a periostin deficient (Pn-/-) mouse model. Twelve-week-old male mice homozygous for the disrupted periostin gene and their wild type (WT) littermates were used in these experiments. The tooth movement was performed according to Waldo's method, in which elastic bands of 0.5 mm thickness were inserted between the first and second upper molars of mice under anesthesia. At 1 and 3 days after orthodontic force application, mice were fixed with transcardial perfusion of 4 % paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), and the first molars and peripheral alveolar bones were extracted for histochemical analyses. Compared with WT mice, immunolocalization of cathepsin K, MMP1 and MMP2 was significantly decreased at 1 and 3 days after orthodontic tooth movement in the compressed PDL of Pn-/- mice, although MMP1-reactivity and MMP2-reactivity decreased at different amounts. Very little cathepsin K-immunoreactivity was observed in the assessed regions of Pn-/- mice, both before and after orthodontic force application. Furthermore, Pn-/- mice showed a much wider residual PDL than WT mice. Taken together, we concluded that periostin plays an essential role in the function of collagenolytic enzymes like cathepsin K, MMP1 and MMP2 in the compressed PDL after orthodontic force application.
Collapse
Affiliation(s)
- Shengyu Lv
- Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Bone Metabolism, School of Stomatology, Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Padial-Molina M, Volk SL, Rios HF. Periostin increases migration and proliferation of human periodontal ligament fibroblasts challenged by tumor necrosis factor -α and Porphyromonas gingivalis lipopolysaccharides. J Periodontal Res 2013; 49:405-14. [PMID: 23919658 DOI: 10.1111/jre.12120] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND In the chronic established periodontal lesion, the proliferation and migration potential of periodontal ligament (PDL) cells are significantly compromised. Thus, the progressive loss of tissue integrity is favored and normal healing and regeneration compromised. Periostin, a known PDL marker, modulates cell-matrix interactions, cell behavior, as well as the matrix biomechanics and PDL homeostasis. OBJECTIVE To evaluate whether periostin restores the regenerative potential of PDL cells in terms of proliferation, migration, and activation of survival signaling pathways after being challenged by Porphyromonas gingivalis lipopolysaccharides and tumor necrosis factor alpha α. METHODS Human PDL (hPDL) cells were cultured under different conditions: control, periostin (50 or 100 ng/mL), and fibroblast growth factor 2 (10 ng/mL) to evaluate cell proliferation (by Ki67), cell migration (by scratch assays) and PI3K/AKT/mTOR pathway activation (by western blot analyses of total AKT, phospho-AKT and PS6). A different set of cultures was challenged by adding tumor necrosis factor alpha α (10 ng/mL) and P. gingivalis lipopolysaccharides (200 ng/mL) to evaluate the effects of periostin as described above. RESULTS Periostin significantly increased cell proliferation (twofold), migration (especially at earlier time points and low dose) and activation of survival signaling pathway (higher phosphorylation of AKT and PS6). Furthermore, periostin promoted similar cellular effects even after being challenged with proinflammatory cytokines and bacterial virulence factors. CONCLUSION Periostin acts as an important modulator of hPDL cell-matrix dynamics. It modulates hPDL proliferation, migration and PI3K/AKT/mTOR pathway. It also helps in overcoming the altered biological phenotype that chronic exposure to periodontal pathogens and proinflammatory cytokines produce in hPDL cells.
Collapse
Affiliation(s)
- M Padial-Molina
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | | | | |
Collapse
|
47
|
Padial-Molina M, Volk SL, Rodriguez JC, Marchesan JT, Galindo-Moreno P, Rios HF. Tumor Necrosis Factor-α andPorphyromonas gingivalisLipopolysaccharides Decrease Periostin in Human Periodontal Ligament Fibroblasts. J Periodontol 2013; 84:694-703. [DOI: 10.1902/jop.2012.120078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Chen K, Xiong H, Huang Y, Liu C. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Arch Oral Biol 2013; 58:997-1006. [PMID: 23582988 DOI: 10.1016/j.archoralbio.2013.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro periodontal properties of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). DESIGN SCAP and PDLSCs cultures were established from normal human impacted third molars with immature roots. The cells were cultured in differentiation medium containing dexamethasone, ß-glycerophosphate and ascorbate phosphate for 3 weeks and in normal medium for as long as 60 days, and then were analysed for mineralisation potential. Cell proliferation, colony-forming capacity and periodontal ligament (PDL)-specific markers were also measured. The mineralisation markers, including alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteocalcin (OC), were investigated by immunofluorescence staining and real-time polymerase chain reaction. The expression of PDL markers, including periostin and S100A4, was confirmed by reverse transcription polymerase chain reaction. RESULTS SCAP showed a significantly higher proliferation rate and colony-forming capacity than PDLSCs. Both types of cells displayed mineralisation potential after induction and long-term culture. The SCAP, however, exhibited higher levels of ALP, BSP and OC expression than the PDLSCs. Like the PDLSCs, the SCAP exhibited periostin and S100A4 expression. CONCLUSIONS Our study provides the first evidence showing that SCAP express periodontal properties in vitro. SCAP not only showed PDL-related markers, but also displayed a higher proliferation rate and a greater mineralisation capacity than those of PDLSCs. It might help understand the development of tooth root and periodontium. Furthermore, SCAP could be a promising candidate for periodontal tissue engineering.
Collapse
Affiliation(s)
- Ke Chen
- Department of Stomatology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou 510623, PR China.
| | | | | | | |
Collapse
|
49
|
Padial-Molina M, Volk S, Taut A, Giannobile W, Rios H. Periostin is down-regulated during periodontal inflammation. J Dent Res 2012; 91:1078-84. [PMID: 22933606 PMCID: PMC3525130 DOI: 10.1177/0022034512459655] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/15/2012] [Accepted: 08/08/2012] [Indexed: 11/16/2022] Open
Abstract
Periostin, a matricellular adapter protein highly expressed by periodontal ligament fibroblasts, is implicated in the maintenance of periodontal integrity, which is compromised during periodontal diseases. The aim of this study was to explore the influence of chronic periodontal inflammation on tissue periostin levels. Periodontal breakdown was induced in a pre-clinical ligature periodontal inflammatory disease model. Periodontal tissue specimens were harvested at baseline, 2 weeks, and 4 weeks and prepared for histologic, immunofluorescence, and micro-CT examination. Statistical analyses were conducted by Kruskal-Wallis, Mann-Whitney, and Spearman's tests. Periostin detection levels were reduced over time in response to the inflammatory process (1 ± 0.05; 0.67 ± 0.03; 0.31 ± 0.02; p < 0.001; baseline, 2, and 4 weeks, respectively). Simultaneously, alveolar bone loss increased from baseline to the 2- and 4-week time-points (0.40 ± 0.02 mm; 1.39 ± 0.08 mm; 1.33 ± 0.15 mm; p < 0.001), which was inversely correlated with the levels of periostin (ρ = -0.545; p < 0.001). In conclusion, periostin PDL tissue levels significantly decrease under chronic inflammatory response and correlate with the detrimental changes to the periodontium over time.
Collapse
Affiliation(s)
- M. Padial-Molina
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 North University Ave., Office 3349, Ann Arbor, MI, 48109-1078, USA
| | - S.L. Volk
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 North University Ave., Office 3349, Ann Arbor, MI, 48109-1078, USA
| | - A.D. Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 North University Ave., Office 3349, Ann Arbor, MI, 48109-1078, USA
| | - W.V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 North University Ave., Office 3349, Ann Arbor, MI, 48109-1078, USA
- Michigan Center for Oral Health Research, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - H.F. Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 North University Ave., Office 3349, Ann Arbor, MI, 48109-1078, USA
- Michigan Center for Oral Health Research, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
50
|
|