1
|
Becerra F, Buezas GN, Cisilino A, Vassallo AI. Bite hard: Linking cranial loading mechanics to ecological differences in gnawing behavior in caviomorph rodents. J Anat 2024; 245:775-786. [PMID: 39086103 PMCID: PMC11470795 DOI: 10.1111/joa.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian skull is very malleable and has notably radiated into highly diverse morphologies, fulfilling a broad range of functional needs. Although gnawing is relatively common in mammals, this behavior and its associated morphology are diagnostic features for rodents. These animals possess a very versatile and highly mechanically advantageous masticatory apparatus, which, for instance, allowed caviomorph rodents to colonize South America during the Mid-Eocene and successfully radiate in over 200 extant species throughout most continental niches. Previous work has shown that differences in bite force within caviomorphs could be better explained by changes in muscle development than in mechanical advantages (i.e., in cranial overall morphology). Considering the strong bites they apply, it is interesting to assess how the reaction forces upon the incisors (compression) and the powerful adductor musculature pulling (tension) mechanically affect the cranium, especially between species with different ecologies (e.g., chisel-tooth digging). Thus, we ran finite element analyses upon crania of the subterranean Talas' tuco-tuco Ctenomys talarum, the semi-fossorial common degu Octodon degus, and the saxicolous long-tailed chinchilla Chinchilla lanigera to simulate: (A) in vivo biting in all species, and (B) rescaled muscle forces in non-ctenomyid rodents to match those of the tuco-tuco. Results show that the stress patterns correlate with the mechanical demands of distinctive ecologies, on in vivo-based simulations, with the subterranean tuco-tuco being the most stressed species. In contrast, when standardizing all three species (rescaled models), non-ctenomyid models exhibited a several-fold increase in stress, in both magnitude and affected areas. Detailed observations evidenced that this increase in stress was higher in lateral sections of the snout and, mainly, the zygomatic arch; between approximately 2.5-3.5 times in the common degu and 4.0-5.0 times in the long-tailed chinchilla. Yet, neither species, module, nor simulation condition presented load factor levels that would imply structural failure by strong, incidental biting. Our results let us conclude that caviomorphs have a high baseline for mechanical strength of the cranium because of the inheritance of a very robust "rodent" model, while interspecific differences are associated with particular masticatory habits and the concomitant level of development of the adductor musculature. Especially, the masseteric and zygomaticomandibular muscles contribute to >80% of the bite force, and therefore, their contraction is responsible for the highest strains upon their origin sites, that is, the zygomatic arch and the snout. Thus, the robust crania of the subterranean and highly aggressive tuco-tucos allow them to withstand much stronger forces than degus or chinchillas, such as the ones produced by their hypertrophied jaw adductor muscles or imparted by the soil reaction.
Collapse
Affiliation(s)
- Federico Becerra
- Laboratorio de Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras (Universidad Nacional Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina
| | - Guido Nicolás Buezas
- Instituto de Investigaciones Marinas y Costeras (Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina
| | - Adrián Cisilino
- División Mecánica de Materiales, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina
| | - Aldo Iván Vassallo
- Laboratorio de Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras (Universidad Nacional Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina
| |
Collapse
|
2
|
Liang C, Landi F, Çetin IE, Profico A, Buzi C, Dutel H, Khonsari RH, O'Higgins P, Moazen M. Functional adaptation of the infant craniofacial system to mechanical loadings arising from masticatory forces. Proc Biol Sci 2024; 291:20240654. [PMID: 38889789 DOI: 10.1098/rspb.2024.0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
The morphology and biomechanics of infant crania undergo significant changes between the pre- and post-weaning phases due to increasing loading of the masticatory system. The aims of this study were to characterize the changes in muscle forces, bite forces and the pattern of mechanical strain and stress arising from the aforementioned forces across crania in the first 48 months of life using imaging and finite element methods. A total of 51 head computed tomography scans of normal individuals were collected and analysed from a larger database of 217 individuals. The estimated mean muscle forces of temporalis, masseter and medial pterygoid increase from 30.9 to 87.0 N, 25.6 to 69.6 N and 23.1 to 58.9 N, respectively (0-48 months). Maximum bite force increases from 90.5 to 184.2 N (3-48 months). There is a change in the pattern of strain and stress from the calvaria to the face during postnatal development. Overall, this study highlights the changes in the mechanics of the craniofacial system during normal development. It further raises questions as to how and what level of changes in the mechanical forces during the development can alter the morphology of the craniofacial system.
Collapse
Affiliation(s)
- Ce Liang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Federica Landi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona 43007, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona 43002, Spain
| | - Izel Ezgi Çetin
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam 3015, The Netherlands
- Craniofacial Growth and Form Laboratory, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris 75015, France
| | - Antonio Profico
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Costantino Buzi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona 43007, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona 43002, Spain
| | - Hugo Dutel
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol S8 1TQ, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac 33600, France
| | - Roman Hossein Khonsari
- Craniofacial Growth and Form Laboratory, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris 75015, France
| | - Paul O'Higgins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
3
|
Panagiotopoulou O, Robinson D, Iriarte-Diaz J, Ackland D, Taylor AB, Ross CF. Dynamic finite element modelling of the macaque mandible during a complete mastication gape cycle. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220549. [PMID: 37839457 PMCID: PMC10577025 DOI: 10.1098/rstb.2022.0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Three-dimensional finite element models (FEMs) are powerful tools for studying the mechanical behaviour of the feeding system. Using validated, static FEMs we have previously shown that in rhesus macaques the largest food-related differences in strain magnitudes during unilateral postcanine chewing extend from the lingual symphysis to the endocondylar ridge of the balancing-side ramus. However, static FEMs only model a single time point during the gape cycle and probably do not fully capture the mechanical behaviour of the jaw during mastication. Bone strain patterns and moments applied to the mandible are known to vary during the gape cycle owing to variation in the activation peaks of the jaw-elevator muscles, suggesting that dynamic models are superior to static ones in studying feeding biomechanics. To test this hypothesis, we built dynamic FEMs of a complete gape cycle using muscle force data from in vivo experiments to elucidate the impact of relative timing of muscle force on mandible biomechanics. Results show that loading and strain regimes vary across the chewing cycle in subtly different ways for different foods, something which was not apparent in static FEMs. These results indicate that dynamic three-dimensional FEMs are more informative than static three-dimensional FEMs in capturing the mechanical behaviour of the jaw during feeding by reflecting the asymmetry in jaw-adductor muscle activations during a gape cycle. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Dale Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria 3053, Australia
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria 3053, Australia
| | - Andrea B. Taylor
- Department of Foundational Biomedical Sciences, Touro University California, Vallejo, CA 94592, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Jamison-Todd S, Moon BC, Rowe AJ, Williams M, Benton MJ. Dietary niche partitioning in Early Jurassic ichthyosaurs from Strawberry Bank. J Anat 2022; 241:1409-1423. [PMID: 36175086 DOI: 10.1111/joa.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Jurassic ichthyosaurs dominated upper trophic levels of marine ecosystems. Many species coexisted alongside each another, and it is uncertain whether they competed for the same array of food or divided dietary resources, each specializing in different kinds of prey. Here, we test whether feeding differences existed between species, applying finite element analysis to ichthyosaurs for the first time. We examine two juvenile ichthyosaur specimens, referred to Hauffiopteryx typicus and Stenopterygius triscissus, from the Strawberry Bank Lagerstätte, a shallow marine environment from the Early Jurassic of southern England (Toarcian, ~183 Ma). Snout and cranial robusticity differ between the species, with S. triscissus having a more robust snout and cranium and specializing in slow biting of hard prey, and H. typicus with its slender snout specializing in fast, but weaker bites on fast-moving, but soft prey. The two species did not differ in muscle forces, but stress distributions varied in the nasal area, reflecting differences when biting at different points along the tooth row: the more robustly snouted Stenopterygius resisted increases or shifts in stress distribution when the bite point was shifted from the posterior to the mid-point of the tooth row, but the slender-snouted Hauffiopteryx showed shifts and increases in stress distributions between these two bite points. The differences in cranial morphology, dentition and inferred stresses between the two species suggest adaptations for dietary niche partitioning.
Collapse
Affiliation(s)
| | - Benjamin C Moon
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Andre J Rowe
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Matt Williams
- Bath Royal Literary and Scientific Institution, Bath, UK
| | - Michael J Benton
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Holmes M, Taylor AB. The influence of jaw-muscle fibre-type phenotypes on estimating maximum muscle and bite forces in primates. Interface Focus 2021; 11:20210009. [PMID: 34938437 PMCID: PMC8361599 DOI: 10.1098/rsfs.2021.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous anthropological studies have been aimed at estimating jaw-adductor muscle forces, which, in turn, are used to estimate bite force. While primate jaw adductors show considerable intra- and intermuscular heterogeneity in fibre types, studies generally model jaw-muscle forces by treating the jaw adductors as either homogeneously slow or homogeneously fast muscles. Here, we provide a novel extension of such studies by integrating fibre architecture, fibre types and fibre-specific tensions to estimate maximum muscle forces in the masseter and temporalis of five anthropoid primates: Sapajus apella (N = 3), Cercocebus atys (N = 4), Macaca fascicularis (N = 3), Gorilla gorilla (N = 1) and Pan troglodytes (N = 2). We calculated maximum muscle forces by proportionally adjusting muscle physiological cross-sectional areas by their fibre types and associated specific tensions. Our results show that the jaw adductors of our sample ubiquitously express MHC α-cardiac, which has low specific tension, and hybrid fibres. We find that treating the jaw adductors as either homogeneously slow or fast muscles potentially overestimates average maximum muscle forces by as much as approximately 44%. Including fibre types and their specific tensions is thus likely to improve jaw-muscle and bite force estimates in primates.
Collapse
Affiliation(s)
- Megan Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
6
|
Cook RW, Vazzana A, Sorrentino R, Benazzi S, Smith AL, Strait DS, Ledogar JA. The cranial biomechanics and feeding performance of Homo floresiensis. Interface Focus 2021; 11:20200083. [PMID: 34938433 PMCID: PMC8361579 DOI: 10.1098/rsfs.2020.0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.
Collapse
Affiliation(s)
- Rebecca W Cook
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Rita Sorrentino
- Department of Cultural Heritage, University of Bologna, Bologna, Italy.,Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Amanda L Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
| | - Justin A Ledogar
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Smith AL, Robinson C, Taylor AB, Panagiotopoulou O, Davis J, Ward CV, Kimbel WH, Alemseged Z, Ross CF. Comparative biomechanics of the Pan and Macaca mandibles during mastication: finite element modelling of loading, deformation and strain regimes. Interface Focus 2021; 11:20210031. [PMID: 34938438 PMCID: PMC8361577 DOI: 10.1098/rsfs.2021.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 10/17/2023] Open
Abstract
The mechanical behaviour of the mandibles of Pan and Macaca during mastication was compared using finite element modelling. Muscle forces were calculated using species-specific measures of physiological cross-sectional area and scaled using electromyographic estimates of muscle recruitment in Macaca. Loading regimes were compared using moments acting on the mandible and strain regimes were qualitatively compared using maps of principal, shear and axial strains. The enlarged and more vertically oriented temporalis and superficial masseter muscles of Pan result in larger sagittal and transverse bending moments on both working and balancing sides, and larger anteroposterior twisting moments on the working side. The mandible of Pan experiences higher principal strain magnitudes in the ramus and mandibular prominence, higher transverse shear strains in the top of the symphyseal region and working-side corpus, and a predominance of sagittal bending-related strains in the balancing-side mandible. This study lays the foundation for a broader comparative study of Hominidae mandibular mechanics in extant and fossil hominids using finite element modelling. Pan's larger and more vertical masseter and temporalis may make it a more suitable model for hominid mandibular biomechanics than Macaca.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, 200 University Parkway, Yakima, WA 98901, USA
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chris Robinson
- Department of Biological Sciences, Bronx Community College, Bronx, NY 10453, USA
| | | | - Olga Panagiotopoulou
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Julian Davis
- Department of Engineering, University of Southern Indiana, 8600 University Boulevard, Evansville, IN 47712, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, One Hospital Drive, University of Missouri, Columbia, MO 65212, USA
| | - William H. Kimbel
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-4101, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Population affinity and variation of sexual dimorphism in three-dimensional facial forms: comparisons between Turkish and Japanese populations. Sci Rep 2021; 11:16634. [PMID: 34404851 PMCID: PMC8371176 DOI: 10.1038/s41598-021-96029-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Examining the extent to which sex differences in three-dimensional (3D) facial soft tissue configurations are similar across diverse populations could suggest the source of the indirect evolutionary benefits of facial sexual dimorphism traits. To explore this idea, we selected two geographically distinct populations. Three-dimensional model faces were derived from 272 Turkish and Japanese men and women; their facial morphologies were evaluated using landmark and surface-based analyses. We found four common facial features related to sexual dimorphism. Both Turkish and Japanese females had a shorter lower face height, a flatter forehead, greater sagittal cheek protrusion in the infraorbital region but less prominence of the cheek in the parotid-masseteric region, and an antero-posteriorly smaller nose when compared with their male counterparts. The results indicated the possible phylogenetic contribution of the masticatory organ function and morphogenesis on sexual dimorphism of the human face in addition to previously reported biological and psychological characteristics, including sexual maturity, reproductive potential, mating success, general health, immune response, age, and personality.
Collapse
|
9
|
Bates KT, Wang L, Dempsey M, Broyde S, Fagan MJ, Cox PG. Back to the bones: do muscle area assessment techniques predict functional evolution across a macroevolutionary radiation? J R Soc Interface 2021; 18:20210324. [PMID: 34283941 PMCID: PMC8292018 DOI: 10.1098/rsif.2021.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Measures of attachment or accommodation area on the skeleton are a popular means of rapidly generating estimates of muscle proportions and functional performance for use in large-scale macroevolutionary studies. Herein, we provide the first evaluation of the accuracy of these muscle area assessment (MAA) techniques for estimating muscle proportions, force outputs and bone loading in a comparative macroevolutionary context using the rodent masticatory system as a case study. We find that MAA approaches perform poorly, yielding large absolute errors in muscle properties, bite force and particularly bone stress. Perhaps more fundamentally, these methods regularly fail to correctly capture many qualitative differences between rodent morphotypes, particularly in stress patterns in finite-element models. Our findings cast doubts on the validity of these approaches as means to provide input data for biomechanical models applied to understand functional transitions in the fossil record, and perhaps even in taxon-rich statistical models that examine broad-scale macroevolutionary patterns. We suggest that future work should go back to the bones to test if correlations between attachment area and muscle size within homologous muscles across a large number of species yield strong predictive relationships that could be used to deliver more accurate predictions for macroevolutionary and functional studies.
Collapse
Affiliation(s)
- Karl T Bates
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Linjie Wang
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Matthew Dempsey
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Sarah Broyde
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Michael J Fagan
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Philip G Cox
- Department of Archaeology, University of York, PalaeoHub, Wentworth Way, Heslington, York YO10 5DD, UK.,Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
10
|
Kumari A, Tripathy A, Mandre NR. Artificial neural network-based sensitivity analysis and experimental investigation of liquid–solid fluidization technique for low-grade coal upgradation. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1947846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ajita Kumari
- Department of Fuel, Minerals & Metallurgical Engineering, IIT (ISM) Dhanbad, Dhanbad, India
- CSIR - National Metallurgical Laboratory Madras Centre, Chennai, India
| | - Alok Tripathy
- CSIR - Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - N. R. Mandre
- Department of Fuel, Minerals & Metallurgical Engineering, IIT (ISM) Dhanbad, Dhanbad, India
| |
Collapse
|
11
|
Xu X, Cheng KJ, Liu YF, Fan YY, Wang JH, Wang R, Baur DA, Jiang XF, Dong XT. Experimental validation of finite element simulation of a new custom-designed fixation plate to treat mandibular angle fracture. Biomed Eng Online 2021; 20:15. [PMID: 33546713 PMCID: PMC7866451 DOI: 10.1186/s12938-021-00851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of the study was to validate biomechanical characteristics of a 3D-printed, novel-designated fixation plate for treating mandibular angle fracture, and compare it with two commonly used fixation plates by finite element (FE) simulations and experimental testing. METHODS A 3D virtual mandible was created from a patient's CT images as the master model. A custom-designed plate and two commonly used fixation plates were reconstructed onto the master model for FE simulations. Modeling of angle fracture, simulation of muscles of mastication, and defining of boundary conditions were integrated into the theoretical model. Strain levels during different loading conditions were analyzed using a finite element method (FEM). For mechanical test design, samples of the virtual mandible with angle fracture and the custom-designed fixation plates were printed using selective laser sintering (SLS) and selective laser melting (SLM) printing methods. Experimental data were collected from a testing platform with attached strain gauges to the mandible and the plates at different 10 locations during mechanical tests. Simulation of muscle forces and temporomandibular joint conditions were built into the physical models to improve the accuracy of clinical conditions. The experimental vs the theoretical data collected at the 10 locations were compared, and the correlation coefficient was calculated. RESULTS The results show that use of the novel-designated fixation plate has significant mechanical advantages compared to the two commonly used fixation plates. The results of measured strains at each location show a very high correlation between the physical model and the virtual mandible of their biomechanical behaviors under simulated occlusal loading conditions when treating angle fracture of the mandible. CONCLUSIONS Based on the results from our study, we validate the accuracy of our computational model which allows us to use it for future clinical applications under more sophisticated biomechanical simulations and testing.
Collapse
Affiliation(s)
- Xu Xu
- Department of Stomatology, People's Hospital of Quzhou, Quzhou, 324000, China
| | - Kang-Jie Cheng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yun-Feng Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China.
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Ying-Ying Fan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Joanne H Wang
- Department of Orthopedic Surgery, University Hospitals of Cleveland, Case Medical Center, 11100 Euclid Ave., Cleveland, OH, 44016, USA
| | - Russell Wang
- Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, 10900 Euclid Ave., Cleveland, OH, 44106-4905, USA
| | - Dale A Baur
- Department of Oral Maxillofacial Surgery, Case Western Reserve University School of Dental Medicine, 10900 Euclid Ave., Cleveland, OH, 44106-4905, USA
| | - Xian-Feng Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xing-Tao Dong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
12
|
Brassard C, Merlin M, Guintard C, Monchâtre-Leroy E, Barrat J, Bausmayer N, Bausmayer S, Bausmayer A, Beyer M, Varlet A, Houssin C, Callou C, Cornette R, Herrel A. Bite force and its relationship to jaw shape in domestic dogs. J Exp Biol 2020; 223:jeb224352. [PMID: 32587065 DOI: 10.1242/jeb.224352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 08/26/2023]
Abstract
Previous studies based on two-dimensional methods have suggested that the great morphological variability of cranial shape in domestic dogs has impacted bite performance. Here, we used a three-dimensional biomechanical model based on dissection data to estimate the bite force of 47 dogs of various breeds at several bite points and gape angles. In vivo bite force for three Belgian shepherd dogs was used to validate our model. We then used three-dimensional geometric morphometrics to investigate the drivers of bite force variation and to describe the relationships between the overall shape of the jaws and bite force. The model output shows that bite force is rather variable in dogs and that dogs bite harder on the molar teeth and at lower gape angles. Half of the bite force is determined by the temporal muscle. Bite force also increased with size, and brachycephalic dogs showed higher bite forces for their size than mesocephalic dogs. We obtained significant covariation between the shape of the upper or lower jaw and absolute or residual bite force. Our results demonstrate that domestication has not resulted in a disruption of the functional links in the jaw system in dogs and that mandible shape is a good predictor of bite force.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| | - Claude Guintard
- ANSES, Laboratoire de la Rage et de la Faune Sauvage, Station Expérimentale d'Atton, CS 40009 54220 Malzéville, France
- Laboratoire d'Anatomie Comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique - ONIRIS, Nantes Cedex 03, France
| | - Elodie Monchâtre-Leroy
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Nathalie Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Stéphane Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Adrien Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Michel Beyer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - André Varlet
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
13
|
|
14
|
Morales-García NM, Burgess TD, Hill JJ, Gill PG, Rayfield EJ. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J R Soc Interface 2019; 16:20190674. [PMID: 31822222 PMCID: PMC6936041 DOI: 10.1098/rsif.2019.0674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium. In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.
Collapse
Affiliation(s)
| | - Thomas D Burgess
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Jennifer J Hill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
15
|
Principal coordinate analysis assisted chromatographic analysis of bacterial cell wall collection: A robust classification approach. Anal Biochem 2018; 550:8-14. [PMID: 29649471 DOI: 10.1016/j.ab.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022]
Abstract
In the present work, Principal coordinate analysis (PCoA) is introduced to develop a robust model to classify the chromatographic data sets of peptidoglycan sample. PcoA captures the heterogeneity present in the data sets by using the dissimilarity matrix as input. Thus, in principle, it can even capture the subtle differences in the bacterial peptidoglycan composition and can provide a more robust and fast approach for classifying the bacterial collection and identifying the novel cell wall targets for further biological and clinical studies. The utility of the proposed approach is successfully demonstrated by analysing the two different kind of bacterial collections. The first set comprised of peptidoglycan sample belonging to different subclasses of Alphaproteobacteria. Whereas, the second set that is relatively more intricate for the chemometric analysis consist of different wild type Vibrio Cholerae and its mutants having subtle differences in their peptidoglycan composition. The present work clearly proposes a useful approach that can classify the chromatographic data sets of chromatographic peptidoglycan samples having subtle differences. Furthermore, present work clearly suggest that PCoA can be a method of choice in any data analysis workflow.
Collapse
|
16
|
Godinho RM, Fitton LC, Toro-Ibacache V, Stringer CB, Lacruz RS, Bromage TG, O'Higgins P. The biting performance of Homo sapiens and Homo heidelbergensis. J Hum Evol 2018; 118:56-71. [DOI: 10.1016/j.jhevol.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/10/2023]
|
17
|
Marghoub A, Libby J, Babbs C, Pauws E, Fagan MJ, Moazen M. Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. J Anat 2018; 232:440-448. [PMID: 29243252 PMCID: PMC5807955 DOI: 10.1111/joa.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Joseph Libby
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Christian Babbs
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Erwin Pauws
- Institute of Child HealthGreat Ormond StreetUniversity College LondonLondonUK
| | - Michael J. Fagan
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
18
|
Konietzko-Meier D, Gruntmejer K, Marcé-Nogué J, Bodzioch A, Fortuny J. Merging cranial histology and 3D-computational biomechanics: a review of the feeding ecology of a Late Triassic temnospondyl amphibian. PeerJ 2018; 6:e4426. [PMID: 29503770 PMCID: PMC5831156 DOI: 10.7717/peerj.4426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Finite Element Analysis (FEA) is a useful method for understanding form and function. However, modelling of fossil taxa invariably involves assumptions as a result of preservation-induced loss of information in the fossil record. To test the validity of predictions from FEA, given such assumptions, these results could be compared to independent lines of evidence for cranial mechanics. In the present study a new concept of using bone microstructure to predict stress distribution in the skull during feeding is put forward and a correlation between bone microstructure and results of computational biomechanics (FEA) is carried out. The bony framework is a product of biological optimisation; bone structure is created to meet local mechanical conditions. To test how well results from FEA correlate to cranial mechanics predicted from bone structure, the well-known temnospondyl Metoposaurus krasiejowensis was used as a model. A crucial issue to Temnospondyli is their feeding mode: did they suction feed or employ direct biting, or both? Metoposaurids have previously been characterised either as active hunters or passive bottom dwellers. In order to test the correlation between results from FEA and bone microstructure, two skulls of Metoposaurus were used, one modelled under FE analyses, while for the second one 17 dermal bone microstructure were analysed. Thus, for the first time, results predicting cranial mechanical behaviour using both methods are merged to understand the feeding strategy of Metoposaurus. Metoposaurus appears to have been an aquatic animal that exhibited a generalist feeding behaviour. This taxon may have used two foraging techniques in hunting; mainly bilateral biting and, to a lesser extent, lateral strikes. However, bone microstructure suggests that lateral biting was more frequent than suggested by Finite Element Analysis (FEA). One of the potential factors that determined its mode of life may have been water levels. During optimum water conditions, metoposaurids may have been more active ambush predators that were capable of lateral strikes of the head. The dry season required a less active mode of life when bilateral biting is particularly efficient. This, combined with their characteristically anteriorly positioned orbits, was optimal for ambush strategy. This ability to use alternative modes of food acquisition, independent of environmental conditions, might hold the key in explaining the very common occurrence of metoposaurids during the Late Triassic.
Collapse
Affiliation(s)
- Dorota Konietzko-Meier
- Steinmann Institute, University of Bonn, Bonn, Germany.,Department of Biosystematics, University of Opole, Opole, Poland
| | - Kamil Gruntmejer
- Department of Biosystematics, University of Opole, Opole, Poland.,European Centre of Palaeontology, University of Opole, Opole, Poland
| | - Jordi Marcé-Nogué
- Centre of Natural History, University of Hamburg, Hamburg, Germany.,Virtual Paleontology Department, Institut Català de Paleontologia M. Crusafont, Cerdanyola del Vallès, Spain
| | - Adam Bodzioch
- Department of Biosystematics, University of Opole, Opole, Poland
| | - Josep Fortuny
- Virtual Paleontology Department, Institut Català de Paleontologia M. Crusafont, Cerdanyola del Vallès, Spain.,Centre de Recherches en Paléobiodiversité et Paléoenvironnements, Muséum national d'Histoire Naturelle, Paris, France
| |
Collapse
|
19
|
ORSBON COURTNEYP, GIDMARK NICHOLASJ, ROSS CALLUMF. Dynamic Musculoskeletal Functional Morphology: Integrating diceCT and XROMM. Anat Rec (Hoboken) 2018; 301:378-406. [PMID: 29330951 PMCID: PMC5786282 DOI: 10.1002/ar.23714] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
The tradeoff between force and velocity in skeletal muscle is a fundamental constraint on vertebrate musculoskeletal design (form:function relationships). Understanding how and why different lineages address this biomechanical problem is an important goal of vertebrate musculoskeletal functional morphology. Our ability to answer questions about the different solutions to this tradeoff has been significantly improved by recent advances in techniques for quantifying musculoskeletal morphology and movement. Herein, we have three objectives: (1) review the morphological and physiological parameters that affect muscle function and how these parameters interact; (2) discuss the necessity of integrating morphological and physiological lines of evidence to understand muscle function and the new, high resolution imaging technologies that do so; and (3) present a method that integrates high spatiotemporal resolution motion capture (XROMM, including its corollary fluoromicrometry), high resolution soft tissue imaging (diceCT), and electromyography to study musculoskeletal dynamics in vivo. The method is demonstrated using a case study of in vivo primate hyolingual biomechanics during chewing and swallowing. A sensitivity analysis demonstrates that small deviations in reconstructed hyoid muscle attachment site location introduce an average error of 13.2% to in vivo muscle kinematics. The observed hyoid and muscle kinematics suggest that hyoid elevation is produced by multiple muscles and that fascicle rotation and tendon strain decouple fascicle strain from hyoid movement and whole muscle length. Lastly, we highlight current limitations of these techniques, some of which will likely soon be overcome through methodological improvements, and some of which are inherent. Anat Rec, 301:378-406, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- COURTNEY P. ORSBON
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637
| | | | - CALLUM F. ROSS
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
20
|
Perry JMG. Inferring the Diets of Extinct Giant Lemurs from Osteological Correlates of Muscle Dimensions. Anat Rec (Hoboken) 2018; 301:343-362. [DOI: 10.1002/ar.23719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
21
|
Ledogar JA, Luk THY, Perry JMG, Neaux D, Wroe S. Biting mechanics and niche separation in a specialized clade of primate seed predators. PLoS One 2018; 13:e0190689. [PMID: 29324822 PMCID: PMC5764286 DOI: 10.1371/journal.pone.0190689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
We analyzed feeding biomechanics in pitheciine monkeys (Pithecia, Chiropotes, Cacajao), a clade that specializes on hard-husked unripe fruit (sclerocarpy) and resistant seeds (seed predation). We tested the hypothesis that pitheciine crania are well-suited to generate and withstand forceful canine and molar biting, with the prediction that they generate bite forces more efficiently and better resist masticatory strains than the closely-related Callicebus, which does not specialize on unripe fruits and/or seeds. We also tested the hypothesis that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasing sclerocarpic specialization with respect to biting leverage and craniofacial strength, consistent with anterior dental morphology. We found that pitheciines have higher biting leverage than Callicebus and are generally more resistant to masticatory strain. However, Cacajao was found to experience high strain magnitudes in some facial regions. We therefore found limited support for the morphocline hypothesis, at least with respect to the mechanical performance metrics examined here. Biting leverage in Cacajao was nearly identical (or slightly less than) in Chiropotes and strain magnitudes during canine biting were more likely to follow a Cacajao-Chiropotes-Pithecia trend of increasing strength, in contrast to the proposed morphocline. These results could indicate that bite force efficiency and derived anterior teeth were selected for in pitheciines at the expense of increased strain magnitudes. However, our results for Cacajao potentially reflect reduced feeding competition offered by allopatry with other pitheciines, which allows Cacajao species to choose from a wider variety of fruits at various stages of ripeness, leading to reduction in the selection for robust facial features. We also found that feeding biomechanics in sympatric Pithecia and Chiropotes are consistent with data on food structural properties and observations of dietary niche separation, with the former being well-suited for the regular molar crushing of hard seeds and the latter better adapted for breaching hard fruits.
Collapse
Affiliation(s)
- Justin A. Ledogar
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Theodora H. Y. Luk
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dimitri Neaux
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Stephen Wroe
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
22
|
Panagiotopoulou O, Iriarte-Diaz J, Wilshin S, Dechow PC, Taylor AB, Mehari Abraha H, Aljunid SF, Ross CF. In vivo bone strain and finite element modeling of a rhesus macaque mandible during mastication. ZOOLOGY 2017; 124:13-29. [PMID: 29037463 DOI: 10.1016/j.zool.2017.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022]
Abstract
Finite element analysis (FEA) is a commonly used tool in musculoskeletal biomechanics and vertebrate paleontology. The accuracy and precision of finite element models (FEMs) are reliant on accurate data on bone geometry, muscle forces, boundary conditions and tissue material properties. Simplified modeling assumptions, due to lack of in vivo experimental data on material properties and muscle activation patterns, may introduce analytical errors in analyses where quantitative accuracy is critical for obtaining rigorous results. A subject-specific FEM of a rhesus macaque mandible was constructed, loaded and validated using in vivo data from the same animal. In developing the model, we assessed the impact on model behavior of variation in (i) material properties of the mandibular trabecular bone tissue and teeth; (ii) constraints at the temporomandibular joint and bite point; and (iii) the timing of the muscle activity used to estimate the external forces acting on the model. The best match between the FEA simulation and the in vivo experimental data resulted from modeling the trabecular tissue with an isotropic and homogeneous Young's modulus and Poisson's value of 10GPa and 0.3, respectively; constraining translations along X,Y, Z axes in the chewing (left) side temporomandibular joint, the premolars and the m1; constraining the balancing (right) side temporomandibular joint in the anterior-posterior and superior-inferior axes, and using the muscle force estimated at time of maximum strain magnitude in the lower lateral gauge. The relative strain magnitudes in this model were similar to those recorded in vivo for all strain locations. More detailed analyses of mandibular strain patterns during the power stroke at different times in the chewing cycle are needed.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Moving Morphology & Functional Mechanics Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - José Iriarte-Diaz
- Department of Oral Biology, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, USA
| | - Simon Wilshin
- Department of Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Paul C Dechow
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - Andrea B Taylor
- Department of Basic Science, Touro University, 1310 Club Drive, Mare Island, Vellejo, CA 94592, USA
| | - Hyab Mehari Abraha
- Moving Morphology & Functional Mechanics Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sharifah F Aljunid
- Materialise Unit 5-01, Menara OBYU, No. 4, Jalan PJU 8/8A, Damansara Perdana, 47820 Petaling Jaya, Selangor, Malaysia
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Prado FB, Freire AR, Cláudia Rossi A, Ledogar JA, Smith AL, Dechow PC, Strait DS, Voigt T, Ross CF. Review of In Vivo Bone Strain Studies and Finite Element Models of the Zygomatic Complex in Humans and Nonhuman Primates: Implications for Clinical Research and Practice. Anat Rec (Hoboken) 2017; 299:1753-1778. [PMID: 27870351 DOI: 10.1002/ar.23486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 11/09/2022]
Abstract
The craniofacial skeleton is often described in the clinical literature as being comprised of vertical bony pillars, which transmit forces from the toothrow to the neurocranium as axial compressive stresses, reinforced transversely by buttresses. Here, we review the literature on bony microarchitecture, in vivo bone strain, and finite-element modeling of the facial skeleton of humans and nonhuman primates to address questions regarding the structural and functional existence of facial pillars and buttresses. Available bone material properties data do not support the existence of pillars and buttresses in humans or Sapajus apella. Deformation regimes in the zygomatic complex emphasize bending and shear, therefore conceptualizing the zygomatic complex of humans or nonhuman primates as a pillar obscures its patterns of stress, strain, and deformation. Human fossil relatives and chimpanzees exhibit strain regimes corroborating the existence of a canine-frontal pillar, but the notion of a zygomatic pillar has no support. The emerging consensus on patterns of strain and deformation in finite element models (FEMs) of the human facial skeleton corroborates hypotheses in the clinical literature regarding zygomatic complex function, and provide new insights into patterns of failure of titanium and resorbable plates in experimental studies. It is suggested that the "pillar and buttress" model of human craniofacial skeleton function be replaced with FEMs that more accurately and precisely represent in vivo function, and which can serve as the basis for future research into implants used in restoration of occlusal function and fracture repair. Anat Rec, 299:1753-1778, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felippe Bevilacqua Prado
- Department of Morphology, Anatomy Area, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Alexandre Rodrigues Freire
- Department of Morphology, Anatomy Area, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Ana Cláudia Rossi
- Department of Morphology, Anatomy Area, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Justin A Ledogar
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Amanda L Smith
- Department of Anthropology, Washington University in St. Louis, Missouri
| | - Paul C Dechow
- Department of Biomedical Sciences Texas A&M University, College of Dentistry, Dallas, Texas
| | - David S Strait
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Tilman Voigt
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois
| | - Callum F Ross
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Functional Morphology of the Primate Hand: Recent Approaches Using Biomedical Imaging, Computer Modeling, and Engineering Methods. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3646-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Ledogar JA, Dechow PC, Wang Q, Gharpure PH, Gordon AD, Baab KL, Smith AL, Weber GW, Grosse IR, Ross CF, Richmond BG, Wright BW, Byron C, Wroe S, Strait DS. Human feeding biomechanics: performance, variation, and functional constraints. PeerJ 2016; 4:e2242. [PMID: 27547550 PMCID: PMC4975005 DOI: 10.7717/peerj.2242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak. An alternate hypothesis, based on the observation that humans have mechanically efficient jaw adductors, states that the modern human face is adapted to generate and withstand high biting forces. We used finite element analysis (FEA) to test two opposing mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less well configured, or (2) better configured to generate and withstand high magnitude bite forces. We considered intraspecific variation in our examination of human feeding biomechanics by examining a sample of geographically diverse crania that differed notably in shape. We found that our biomechanical models of human crania had broadly similar mechanical behavior despite their shape variation and were, on average, less structurally stiff than the crania of chimpanzees during unilateral biting when loaded with physiologically-scaled muscle loads. Our results also show that modern humans are efficient producers of bite force, consistent with previous analyses. However, highly tensile reaction forces were generated at the working (biting) side jaw joint during unilateral molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a configuration would have increased the risk of joint dislocation and constrained the maximum recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, premolars) biting could have been selectively important in humans, although the reduced size of the premolars in humans has been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that human craniofacial evolution was probably not driven by selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency in humans is likely to be a secondary byproduct of selection for some function unrelated to forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures maintaining craniofacial features that favor forceful biting and chewing behaviors, leading to the characteristically small and gracile faces of modern humans.
Collapse
Affiliation(s)
- Justin A. Ledogar
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
- Department of Anthropology, State University of New York at Albany, Albany, New York, United States
| | - Paul C. Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States
| | - Poorva H. Gharpure
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States
| | - Adam D. Gordon
- Department of Anthropology, State University of New York at Albany, Albany, New York, United States
| | - Karen L. Baab
- Department of Anatomy, Midwestern University, Glendale, Arizona, United States
| | - Amanda L. Smith
- Department of Anthropology, State University of New York at Albany, Albany, New York, United States
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Gerhard W. Weber
- Department of Anthropology, University of Vienna, Vienna, Austria
| | - Ian R. Grosse
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, United States
| | - Callum F. Ross
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois, United States
| | - Brian G. Richmond
- Division of Anthropology, American Museum of Natural History, New York, New York, United States
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barth W. Wright
- Department of Anatomy, Kansas City University of Medicine and Biosciences, Kansas City, Missouri, United States
| | - Craig Byron
- Department of Biology, Mercer University, Macon, Georgia, United States
| | - Stephen Wroe
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - David S. Strait
- Department of Anthropology, State University of New York at Albany, Albany, New York, United States
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
26
|
Santana SE, Miller KE. Extreme Postnatal Scaling in Bat Feeding Performance: A View of Ecomorphology from Ontogenetic and Macroevolutionary Perspectives. Integr Comp Biol 2016; 56:459-68. [DOI: 10.1093/icb/icw075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Toro-Ibacache V, O'Higgins P. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium. Anat Rec (Hoboken) 2016; 299:828-39. [PMID: 27111484 DOI: 10.1002/ar.23358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/07/2022]
Abstract
Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Viviana Toro-Ibacache
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
- Facultad De Odontología, Universidad De Chile, Sergio Livingstone Pohlhammer 943, Independencia, Región Metropolitana, Chile
| | - Paul O'Higgins
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
28
|
Goyens J, Dirckx J, Aerts P. Jaw morphology and fighting forces in stag beetles. J Exp Biol 2016; 219:2955-2961. [DOI: 10.1242/jeb.141614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
Abstract
The jaws of different species of stag beetles show a large variety of shapes and sizes. The male jaws are used as weapons in fights, and they may exert a very forceful bite in some species. We investigated in 16 species whether and how their forcefulness is reflected in their jaw morphology. We found a large range of maximal muscle forces (1.8N-33N; factor 18). Species investing in large bite muscles, also have disproportionately large jaw volumes. They use this additional jaw volume to elongate their jaws, increasing their winning chances in battles. The fact that this also decreases the mechanical advantage, is largely compensated by elongated in-levers. As a result, high muscle forces are correlated with elevated bite forces (0.27N-7.6N; factor 28). Despite the large difference in forcefulness, all investigated species experience similar Von Mises stresses in their jaws while biting (29MPa–114MPa; factor 4.0; calculated with Finite Element simulations). Hence, stag beetles have successfully adapted their jaw anatomy according to their bite force in fights.
Collapse
Affiliation(s)
- Jana Goyens
- University of Antwerp, Laboratory of Functional Morphology, Universiteitsplein 1, 2610 Antwerp, Belgium
- University of Antwerp, Laboratory of Biophysics and BioMedical Physics, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joris Dirckx
- University of Antwerp, Laboratory of Biophysics and BioMedical Physics, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Peter Aerts
- University of Antwerp, Laboratory of Functional Morphology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Movement and Sport Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Püschel TA, Sellers WI. Standing on the shoulders of apes: Analyzing the form and function of the hominoid scapula using geometric morphometrics and finite element analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:325-41. [DOI: 10.1002/ajpa.22882] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas A. Püschel
- Computational and Evolutionary Biology Group, Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - William I. Sellers
- Computational and Evolutionary Biology Group, Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
30
|
Cuff AR, Bright JA, Rayfield EJ. Validation experiments on finite element models of an ostrich (Struthio camelus) cranium. PeerJ 2015; 3:e1294. [PMID: 26500813 PMCID: PMC4614885 DOI: 10.7717/peerj.1294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
The first finite element (FE) validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus). Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific finite element (FE) models. The FE models contained segmented cortical and trabecular bone, sutures and the keratinous rhamphotheca as identified from micro-CT scan data. Each of these individual materials was assigned isotropic material properties either from the literature or from nanoindentation, and the FE models compared to the ex-vivo results. The FE models generally replicate the location of peak strains and reflect the correct mode of deformation in the rostral region. The models are too stiff in regions of experimentally recorded high strain and too elastic in regions of low experimentally recorded low strain. The mode of deformation in the low strain neurocranial region is not replicated by the FE models, and although the models replicate strain orientations to within 10° in some regions, in most regions the correlation is not strong. Cranial sutures, as has previously been found in other taxa, are important for modifying both strain magnitude and strain patterns across the entire skull, but especially between opposing the sutural junctions. Experimentally, we find that the strains on the surface of the rhamphotheca are much lower than those found on nearby bone. The FE models produce much higher principal strains despite similar strain ratios across the entirety of the rhamphotheca. This study emphasises the importance of attempting to validate FE models, modelling sutures and rhamphothecae in birds, and shows that whilst location of peak strain and patterns of deformation can be modelled, replicating experimental data in digital models of avian crania remains problematic.
Collapse
Affiliation(s)
- Andrew R Cuff
- GEE, University College London , London , United Kingdom ; Structure and Motion Laboratory, The Royal Veterinary College , Hatfield , United Kingdom ; School of Earth Sciences, University of Bristol , Bristol , United Kingdom
| | - Jen A Bright
- School of Earth Sciences, University of Bristol , Bristol , United Kingdom ; Department of Animal and Plant Sciences, University of Sheffield , Sheffield , United Kingdom
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
31
|
Fitton LC, PrôA M, Rowland C, Toro-Ibacache V, O'higgins P. The impact of simplifications on the performance of a finite element model of a Macaca fascicularis cranium. Anat Rec (Hoboken) 2015; 298:107-21. [PMID: 25339306 DOI: 10.1002/ar.23075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/11/2014] [Indexed: 11/08/2022]
Abstract
In recent years finite element analysis (FEA) has emerged as a useful tool for the analysis of skeletal form-function relationships. While this approach has obvious appeal for the study of fossil specimens, such material is often fragmentary with disrupted internal architecture and can contain matrix that leads to errors in accurate segmentation. Here we examine the effects of varying the detail of segmentation and material properties of teeth on the performance of a finite element model of a Macaca fascicularis cranium within a comparative functional framework. Cranial deformations were compared using strain maps to assess differences in strain contours and Procrustes size and shape analyses, from geometric morphometrics, were employed to compare large scale deformations. We show that a macaque model subjected to biting can be made solid, and teeth altered in material properties, with minimal impact on large scale modes of deformation. The models clustered tightly by bite point rather than by modeling simplification approach, and fell out as being distinct from another species. However localized fluctuations in predicted strain magnitudes were recorded with different modeling approaches, particularly over the alveolar region. This study indicates that, while any model simplification should be undertaken with care and attention to its effects, future applications of FEA to fossils with unknown internal architecture may produce reliable results with regard to general modes of deformation, even when detail of internal bone architecture cannot be reliably modeled.
Collapse
Affiliation(s)
- Laura C Fitton
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, York, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Santana SE. Quantifying the effect of gape and morphology on bite force: biomechanical modelling and
in vivo
measurements in bats. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12522] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sharlene E. Santana
- Department of Biology and Burke Museum of Natural History and Culture University of Washington Box 315800 Seattle WA 98195‐1800USA
| |
Collapse
|
33
|
Sharp AC. Comparative finite element analysis of the cranial performance of four herbivorous marsupials. J Morphol 2015; 276:1230-43. [PMID: 26193997 DOI: 10.1002/jmor.20414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 11/07/2022]
Abstract
Marsupial herbivores exhibit a wide variety of skull shapes and sizes to exploit different ecological niches. Several studies on teeth, dentaries, and jaw adductor muscles indicate that marsupial herbivores exhibit different specializations for grazing and browsing. No studies, however, have examined the skulls of marsupial herbivores to determine the relationship between stress and strain, and the evolution of skull shape. The relationship between skull morphology, biomechanical performance, and diet was tested by applying the finite element method to the skulls of four marsupial herbivores: the common wombat (Vombatus ursinus), koala (Phascolarctos cinereus), swamp wallaby (Wallabia bicolor), and red kangaroo (Macropus rufus). It was hypothesized that grazers, requiring stronger skulls to process tougher food, would have higher biomechanical performance than browsers. This was true when comparing the koala and wallaby (browsers) to the wombat (a grazer). The cranial model of the wombat resulted in low stress and high mechanical efficiency in relation to a robust skull capable of generating high bite forces. However, the kangaroo, also a grazer, has evolved a very different strategy to process tough food. The cranium is much more gracile and has higher stress and lower mechanical efficiency, but they adopt a different method of processing food by having a curved tooth row to concentrate force in a smaller area and molar progression to remove worn teeth from the tooth row. Therefore, the position of the bite is crucial for the structural performance of the kangaroo skull, while it is not for the wombat which process food along the entire tooth row. In accordance with previous studies, the results from this study show the mammalian skull is optimized to resist forces generated during feeding. However, other factors, including the lifestyle of the animal and its environment, also affect selection for skull morphology to meet multiple functional demands.
Collapse
Affiliation(s)
- Alana C Sharp
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia.,School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach. J Theor Biol 2015; 382:34-43. [PMID: 26141643 DOI: 10.1016/j.jtbi.2015.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 05/08/2015] [Accepted: 06/20/2015] [Indexed: 01/09/2023]
Abstract
Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system.
Collapse
|
35
|
McCullough EL, Ledger KJ, Moore TY. Variation in cross-sectional horn shape within and among rhinoceros beetle species. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erin L. McCullough
- Division of Biological Sciences; University of Montana; Missoula MT 59812 USA
- Centre for Evolutionary Biology; University of Western Australia; Crawley WA 6009 Australia
| | - Kimberly J. Ledger
- Division of Biological Sciences; University of Montana; Missoula MT 59812 USA
| | - Talia Y. Moore
- Department of Organismic and Evolutionary Biology; Harvard University; Concord Field Station Bedford MA 01730 USA
| |
Collapse
|
36
|
Terhune CE, Hylander WL, Vinyard CJ, Taylor AB. Jaw-muscle architecture and mandibular morphology influence relative maximum jaw gapes in the sexually dimorphic Macaca fascicularis. J Hum Evol 2015; 82:145-58. [DOI: 10.1016/j.jhevol.2015.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
|
37
|
Toro-Ibacache V, Zapata MuÑoz V, O'higgins P. The Predictability from Skull Morphology of Temporalis and Masseter Muscle Cross-Sectional Areas in Humans. Anat Rec (Hoboken) 2015; 298:1261-70. [DOI: 10.1002/ar.23156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Viviana Toro-Ibacache
- Department of Archaeology and Hull York Medical School; Centre for Anatomical and Human Sciences; University of York; Heslington York United Kingdom
- Facultad de Odontología Universidad de Chile; Independencia Región Metropolitana Chile
| | - Victor Zapata MuÑoz
- Centro de Imagenología, Hospital Clínico Universidad de Chile; Independencia Región Metropolitana Chile
| | - Paul O'higgins
- Department of Archaeology and Hull York Medical School; Centre for Anatomical and Human Sciences; University of York; Heslington York United Kingdom
| |
Collapse
|
38
|
Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952. PLoS One 2015; 10:e0118882. [PMID: 25760343 PMCID: PMC4356540 DOI: 10.1371/journal.pone.0118882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/23/2015] [Indexed: 12/03/2022] Open
Abstract
The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.
Collapse
|
39
|
Abstract
Feeding is the set of behaviors whereby organisms acquire and process the energy required for survival and reproduction. Thus, feeding system morphology is presumably subject to selection to maintain or improve feeding performance. Relationships among feeding system morphology, feeding behavior, and diet not only explain the morphological diversity of extant primates, but can also be used to reconstruct feeding behavior and diet in fossil taxa. Dental morphology has long been known to reflect aspects of feeding behavior and diet but strong relationships of craniomandibular morphology to feeding behavior and diet have yet to be defined.
Collapse
|
40
|
Jones KE, Smaers JB, Goswami A. Impact of the terrestrial-aquatic transition on disparity and rates of evolution in the carnivoran skull. BMC Evol Biol 2015; 15:8. [PMID: 25648618 PMCID: PMC4328284 DOI: 10.1186/s12862-015-0285-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity. Results Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm. Conclusion The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0285-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrina E Jones
- Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, MD, USA. .,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, NY, 11794-4364, USA.
| | - Anjali Goswami
- Department of Genetics, Evolution & Environment, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
41
|
Smith AL, Benazzi S, Ledogar JA, Tamvada K, Smith LCP, Weber GW, Spencer MA, Dechow PC, Grosse IR, Ross CF, Richmond BG, Wright BW, Wang Q, Byron C, Slice DE, Strait DS. Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving toward an integration of geometric morphometrics and finite element analysis. Anat Rec (Hoboken) 2015; 298:122-44. [PMID: 25529239 PMCID: PMC4274755 DOI: 10.1002/ar.23074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/11/2014] [Indexed: 11/05/2022]
Abstract
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P(3) and M(2) . Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Anthropology, University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Stefano Benazzi
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, 6 04103 Leipzig, Germany
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, Ravenna 48121, Italy
| | - Justin A. Ledogar
- Department of Anthropology, University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Kelli Tamvada
- Department of Anthropology, University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Leslie C. Pryor Smith
- Department of Biomedical Sciences, Texas A & M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX, 75246, USA
| | - Gerhard W. Weber
- Department of Anthropology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Mark A. Spencer
- School of Human Evolution and Social Change, Arizona State University, Box 874101, Tempe, AZ, 85287-4104
- Biology, South Mountain Community College, 7050 S. 24 Street, Phoenix, AZ, 85042
| | - Paul C. Dechow
- Department of Biomedical Sciences, Texas A & M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ian R. Grosse
- Department of Mechanical & Industrial Engineering, University of Massachusetts, 160 Governor's Drive, Amherst, MA, 01003-2210
| | - Callum F. Ross
- Department of Organismal Biology & Anatomy, University of Chicago, 1027 East 57th 30 Street, Chicago, IL, 60637, USA
| | - Brian G. Richmond
- Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 2110 G St. NW, Washington, D. C., 20052, USA
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, D. C., 20560, USA
- Division of Anthropology, American Museum of Natural History, Central Park West at 79 Street, New York, NY 10024-5192
| | - Barth W. Wright
- Department of Anatomy, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 64106-1453, USA
| | - Qian Wang
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA, 31207, USA
| | - Craig Byron
- Department of Biology, Mercer University, 1400 Coleman Avenue, Macon, GA, 31207, USA
| | - Dennis E. Slice
- Department of Anthropology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
- School of Computational Science & Department of Biological Science, Florida State University, Dirac Science Library, Tallahassee, FL, 32306-4120
| | - David S. Strait
- Department of Anthropology, University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
42
|
Laitman JT, Albertine KH. The Anatomical Record by the numbers: seeing anatomy through the lens of mathematics and geometry. Anat Rec (Hoboken) 2014; 298:1-2. [PMID: 25529236 DOI: 10.1002/ar.23077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023]
|
43
|
Cooke SB, Terhune CE. Form, Function, and Geometric Morphometrics. Anat Rec (Hoboken) 2014; 298:5-28. [DOI: 10.1002/ar.23065] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/11/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Siobhán B. Cooke
- Department of Anthropology; Northeastern Illinois University; Chicago Illinois
- New York Consortium in Evolutionary Primatology Morphometrics Group; New York New York
| | - Claire E. Terhune
- Department of Anthropology; University of Arkansas; Fayetteville Arkansas
| |
Collapse
|
44
|
Porro LB, Ross CF, Iriarte-Diaz J, O'Reilly JC, Evans SE, Fagan MJ. In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri. ACTA ACUST UNITED AC 2014; 217:1983-92. [PMID: 24577443 PMCID: PMC4059540 DOI: 10.1242/jeb.096362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology.
Collapse
Affiliation(s)
- Laura B Porro
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Jose Iriarte-Diaz
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - James C O'Reilly
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London WCIE 6BT, UK
| | - Michael J Fagan
- School of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
45
|
Characterization of craniofacial sutures using the finite element method. J Biomech 2014; 47:245-52. [DOI: 10.1016/j.jbiomech.2013.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 03/07/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
46
|
Walmsley CW, McCurry MR, Clausen PD, McHenry CR. Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics. PeerJ 2013; 1:e204. [PMID: 24255817 PMCID: PMC3828634 DOI: 10.7717/peerj.204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/14/2013] [Indexed: 11/24/2022] Open
Abstract
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
Collapse
Affiliation(s)
- Christopher W Walmsley
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University , Melbourne, Victoria , Australia ; School of Engineering, University of Newcastle , Newcastle, New South Wales , Australia
| | | | | | | |
Collapse
|
47
|
Piras P, Maiorino L, Teresi L, Meloro C, Lucci F, Kotsakis T, Raia P. Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Syst Biol 2013; 62:878-900. [PMID: 23925509 DOI: 10.1093/sysbio/syt053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cat-like carnivorous mammals represent a relatively homogeneous group of species whose morphology appears constrained by exclusive adaptations for meat eating. We present the most comprehensive data set of extant and extinct cat-like species to test for evolutionary transformations in size, shape and mechanical performance, that is, von Mises stress and surface traction, of the mandible. Size and shape were both quantified by means of geometric morphometrics, whereas mechanical performance was assessed applying finite element models to 2D geometry of the mandible. Additionally, we present the first almost complete composite phylogeny of cat-like carnivorans for which well-preserved mandibles are known, including representatives of 35 extant and 59 extinct species of Felidae, Nimravidae, and Barbourofelidae. This phylogeny was used to test morphological differentiation, allometry, and covariation of mandible parts within and among clades. After taking phylogeny into account, we found that both allometry and mechanical variables exhibit a significant impact on mandible shape. We also tested whether mechanical performance was linked to morphological integration. Mechanical stress at the coronoid process is higher in sabertoothed cats than in any other clade. This is strongly related to the high degree of covariation within modules of sabertooths mandibles. We found significant correlation between integration at the clade level and per-clade averaged stress values, on both original data and by partialling out interclade allometry from shapes when calculating integration. This suggests a strong interaction between natural selection and the evolution of developmental and functional modules at the clade level.
Collapse
Affiliation(s)
- Paolo Piras
- Center for Evolutionary Ecology, Largo San Leonardo Murialdo 1, 00146, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Porro LB, Metzger KA, Iriarte-Diaz J, Ross CF. In vivo bone strain and finite element modeling of the mandible of Alligator mississippiensis. J Anat 2013; 223:195-227. [PMID: 23855772 DOI: 10.1111/joa.12080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 11/28/2022] Open
Abstract
Forces experienced during feeding are thought to strongly influence the morphology of the vertebrate mandible; in vivo strain data are the most direct evidence for deformation of the mandible induced by these loading regimes. Although many studies have documented bone strains in the mammalian mandible, no information is available on strain magnitudes, orientations or patterns in the sauropsid lower jaw during feeding. Furthermore, strain gage experiments record the mechanical response of bone at a few locations, not across the entire mandible. In this paper, we present bone strain data recorded at various sites on the lower jaw of Alligator mississippiensis during in vivo feeding experiments. These data are used to understand how changes in loading regime associated with changes in bite location are related to changes in strain regime on the working and balancing sides of the mandible. Our results suggest that the working side mandible is bent dorsoventrally and twisted about its long-axis during biting, and the balancing side experiences primarily dorsoventral bending. Strain orientations are more variable on the working side than on the balancing side with changes in bite point and between experiments; the balancing side exhibits higher strain magnitudes. In the second part of this paper, we use principal strain orientations and magnitudes recorded in vivo to evaluate a finite element model of the alligator mandible. Our comparison demonstrates that strain orientations and mandibular deformation predicted by the model closely match in vivo results; however, absolute strain magnitudes are lower in the finite element model.
Collapse
Affiliation(s)
- Laura B Porro
- Department of Organismal Biology and Anatomy, University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
49
|
Strait DS, Constantino P, Lucas PW, Richmond BG, Spencer MA, Dechow PC, Ross CF, Grosse IR, Wright BW, Wood BA, Weber GW, Wang Q, Byron C, Slice DE, Chalk J, Smith AL, Smith LC, Wood S, Berthaume M, Benazzi S, Dzialo C, Tamvada K, Ledogar JA. Viewpoints: Diet and dietary adaptations in early hominins: The hard food perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:339-55. [DOI: 10.1002/ajpa.22285] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 04/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- David S. Strait
- Department of Anthropology; University at Albany; Albany; NY; 12222
| | - Paul Constantino
- Department of Biological Sciences; Marshall University; Huntington; WV; 25755
| | - Peter W. Lucas
- Department of Bioclinical Sciences; Faculty of Dentistry, Kuwait University; Kuwait
| | | | - Mark A. Spencer
- School of Human Evolution and Social Change; Institute of Human Origins, Arizona State University; Tempe; AZ; 85287-4104
| | - Paul C. Dechow
- Department of Biomedical Sciences; Texas A&M Health Science Center, Baylor College of Dentistry; Dallas; TX; 75246
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago; IL; 60637
| | - Ian R. Grosse
- Department of Mechanical and Industrial Engineering; University of Massachusetts; Amherst; MA; 01003-2210
| | - Barth W. Wright
- Department of Anatomy; Kansas City University of Medicine and Biosciences; Kansas City; MO; 64106-1453
| | | | - Gerhard W. Weber
- Department of Anthropology; University of Vienna; A-1090; Vienna; Austria
| | - Qian Wang
- Division of Basic Medical Sciences; Mercer University School of Medicine; Macon; GA; 31207
| | - Craig Byron
- Department of Biology; Mercer University; Macon; GA; 31207
| | - Dennis E. Slice
- School of Computational Science and Department of Biological Science; Florida State University; Tallahassee; FL; 32306-4120
| | - Janine Chalk
- Department of Evolutionary Anthropology; Duke University; Durham; NC; 27708-0383
| | - Amanda L. Smith
- Department of Anthropology; University at Albany; Albany; NY; 12222
| | - Leslie C. Smith
- Department of Biomedical Sciences; Texas A&M Health Science Center, Baylor College of Dentistry; Dallas; TX; 75246
| | - Sarah Wood
- Department of Mechanical and Industrial Engineering; University of Massachusetts; Amherst; MA; 01003-2210
| | - Michael Berthaume
- Department of Mechanical and Industrial Engineering; University of Massachusetts; Amherst; MA; 01003-2210
| | - Stefano Benazzi
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; 04103; Leipzig; Germany
| | - Christine Dzialo
- Department of Mechanical and Industrial Engineering; University of Massachusetts; Amherst; MA; 01003-2210
| | - Kelli Tamvada
- Department of Anthropology; University at Albany; Albany; NY; 12222
| | | |
Collapse
|
50
|
Daegling DJ, Judex S, Ozcivici E, Ravosa MJ, Taylor AB, Grine FE, Teaford MF, Ungar PS. Viewpoints: Feeding mechanics, diet, and dietary adaptations in early hominins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:356-71. [DOI: 10.1002/ajpa.22281] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/24/2013] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Daegling
- Department of Anthropology; University of Florida; Gainesville; FL; 32605
| | - Stefan Judex
- Department of Biomedical Engineering; Stony Brook University; Stony Brook; NY; 11794-5281
| | - Engin Ozcivici
- Department of Mechanical Engineering; Izmir Institute of Technology; Urla; Izmir; 35430; Turkey
| | | | | | | | - Mark F. Teaford
- Department of Physical Therapy; High Point University; High Point; NC; 27262-3598
| | - Peter S. Ungar
- Department of Anthropology; University of Arkansas; Fayetteville; AR; 72701
| |
Collapse
|