1
|
Dowd WW, Kültz D. Lost in translation? Evidence for a muted proteomic response to thermal stress in a stenothermal Antarctic fish and possible evolutionary mechanisms. Physiol Genomics 2024; 56:721-740. [PMID: 39250150 DOI: 10.1152/physiolgenomics.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise posttranscriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by a thorough assessment of proteomic responses in the brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of the numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved [e.g., Ser-52, eukaryotic translation initiation factor 2α (eIF2α)], but other proteins comprising the cellular "integrated stress response," specifically, the eIF2α kinases general control nonderepressible 2 (GCN2) and PKR-like endoplasmic reticulum kinase (PERK), may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.NEW & NOTEWORTHY Antarctic fishes have some of the lowest known heat tolerances among vertebrates, but the molecular mechanisms underlying this pattern are not fully understood. By combining detailed analyses of protein expression patterns in several tissues under various heat treatments with a broader evolutionary perspective, this study offers a novel hypothesis to explain the narrow range of temperature tolerance in this extraordinary group of fishes.
Collapse
Affiliation(s)
- W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Dietmar Kültz
- Physiological Genomics Group, Department of Animal Science and Genome Center, University of California, Davis, California, United States
| |
Collapse
|
2
|
Saravia J, Paschke K, Oyarzún-Salazar R, Cheng CHC, Navarro JM, Vargas-Chacoff L. Effects of warming rates on physiological and molecular components of response to CTMax heat stress in the Antarctic fish Harpagifer antarcticus. J Therm Biol 2021; 99:103021. [PMID: 34420652 DOI: 10.1016/j.jtherbio.2021.103021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/25/2021] [Accepted: 05/30/2021] [Indexed: 12/28/2022]
Abstract
Maximum and minimum Critical thermal limits (CTMax and CTMin) have been studied extensively to assess thermal tolerance in ectotherms by means of ramping assays. Notothenioid fish have been proposed as particularly sensitive to temperature increases related to global climate change. However, there are large gaps in our understanding of the thermal responses of these extreme cold-adapted fish in assays with heating rates. We evaluated the effects of two commonly used heating rates (0.3 and 1 °C/min) on the cellular stress responses in the intertidal Antarctic fish Harpagifer antarcticus immediately after CTMax was reached, and at 2 and 4 h of recovery time in ambient water. We compared CTMax values, the relative transcript expression of genes relvant to heat shock response (Hsc70, Hsp70, Grp78), hypoxia (Hif1-α, LDHa, GR), ubiquitination (Ube2), and apoptosis (SMAC/DIABLO), and five plasma parameters - glucose, lactate, total protein, osmolality and cortisol. CTMax values between the two heating rates are not significantly different, and both rates elicited a similar stress response at molecular and physiological levels. We found a lack of up-regulated response of heat shock proteins, consistent with other Antarctic notothenioids. The general transcriptional pattern trended to downregulation, which was more evident in the slower 0.3 °C/min rate, and instances of upregulation were mainly related to ubiquitination. The faster 1 °C/min rate, rarely used for Antarctic fish, can be suitable for studying cold-adapted stenothermic fish without overestimating thermal tolerance or inducing damage from longer heat exposure.
Collapse
Affiliation(s)
- Julia Saravia
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Effects of seawater acclimation on two Na +/K +-ATPase α-subunit isoforms in the gills of the marble goby, Oxyeleotris marmorata. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110853. [PMID: 33249144 DOI: 10.1016/j.cbpa.2020.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/23/2022]
Abstract
The marble goby, Oxyeleotris marmorata, is a freshwater teleost, but can acclimate progressively to survive in seawater (salinity 30). As an obligatory air-breather, it can also survive long periods of emersion. Two isoforms of Na+/K+-ATPase (nka) α-subunit, nkaα1 and nkaα3, but not nkaα2, had been cloned from the gills of O. marmorata. The cDNA sequence of nkaα1 consisted of 3069 nucleotides, coding for 1023 amino acids (112.5 kDa), whereas nkaα3 consisted of 2976 nucleotides, coding for 992 amino acids (109.5 kDa). As only one form of branchial Nkaα1 was identified using molecular cloning in this study, O. marmorata lacks specific freshwater- and seawater-type Nkaα isoforms as demonstrated by some other euryhaline fish species. The nkaα1 transcript level was about 2.5-fold higher than that of nkaα3 in the gills of freshwater O. marmorata. During exposure to seawater, the branchial transcript level of nkaα1 increased significantly on day 1 (~3.3-fold) and day 6 (~2.6-fold). By contrast, the branchial transcript level of nkaα3 increased significantly on day 1 (~2.6-fold), but not on day 6, of seawater exposure. Six days of exposure to seawater also led to significant increases in protein abundances of Nkaα1 (~6.9-fold) and Nkaα3 (~2.8-fold) in the gills of O. marmorata. Hence, the mRNA and protein expressions of both nkaα1/Nkaα1 and nkaα3/Nkaα3 were up-regulated in O. marmorata during seawater acclimation. This could explain why Vmax increases but Km for Na+ and K+ remain unchanged in Nka extracted from the gills of O. marmorata acclimated to seawater as reported previously.
Collapse
|
4
|
Antonucci M, Belghit I, Truzzi C, Illuminati S, Araujo P. Modeling the influence of time and temperature on the levels of fatty acids in the liver of Antarctic fish Trematomus bernacchii. Polar Biol 2019. [DOI: 10.1007/s00300-019-02577-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Antarctic fish (Trematomus bernacchii) are an ideal group for studying the effect of ocean warming on vital physiological and biochemical mechanisms of adaptation, including changes in the fatty acid composition to higher heat tolerance in the sub-zero waters of the Southern Ocean. Despite the awareness of the impact of ocean warming on marine life, bioclimatic models describing the effect of temperature and time on fatty acid levels in marine species have not been considered yet. The objective of the present study was to investigate changes in the concentrations of fatty acids in liver from T. bernacchii in response to an increase in temperature in the Antarctic region. Changes in the concentrations of fatty acids in liver from T. bernacchii were observed after varying simultaneously and systematically the temperature and time. The fatty acid profiles were determined by gas chromatography prior to acclimation (− 1.8 °C) and after acclimation (0.0, 1.0, and 2.0 °C) at different times (1, 5, and 10 days). The observed changes were graphically visualized by expressing the fatty acid concentration in absolute units (mg g−1) as a function of the temperature and time using polynomial models. Major changes in fatty acid composition were observed at day 1 of exposition at all temperatures. At day 5, the fish seem to tolerate the new temperature condition. The concentrations of saturated fatty acids were almost constant throughout the various conditions. The concentrations of monounsaturated fatty acids (in particular 18:1n − 9) decrease at day 1 for all temperatures. In contrast, there was an increase in the concentrations of polyunsaturated fatty acids (in particular 20:5n − 3 and 22:6n − 3) with increasing temperatures after 1, 5, and 10 days of exposure. The proposed models were in agreement with reported studies on polar and temperate fish, indicating possibly similar adaptation mechanisms for teleost to cope with global warming.
Collapse
|
5
|
Hu YC, Chu KF, Hwang LY, Lee TH. Cortisol regulation of Na +, K +-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-Hsd1L) in gills of hypothermal freshwater milkfish, Chanos chanos. J Steroid Biochem Mol Biol 2019; 192:105381. [PMID: 31128249 DOI: 10.1016/j.jsbmb.2019.105381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Hypothermal stress changes the balance of osmoregulation by affecting Na+, K+-ATPase (Na-K-ATPase) activity or inducing modulation to epithelium permeability in fish. Meanwhile, cellular concentrations of cortisol can be modulated by the pre-receptor enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-Hsd1 and 2). In fish, increasing levels of exogenous cortisol stimulate Na+ uptake via specific interaction with cortisol. This study investigated cortisol effects on expression of Na-K-ATPase subunit proteins and activity in gills of milkfish under hypothermal stress and revealed that the plasma cortisol contents as well as gill 11β-hsd1l and na-k-atpase β1 mRNA abundance were decreased in fresh water (FW) milkfish. Meanwhile, in the seawater (SW) milkfish, the plasma cortisol contents and gill 11β-hsd1l and na-k-atpase β1 mRNA abundance was increased under hypothermal stress. On the other hand, the abundance of 11β-hsd2 mRNA increased in both FW and SW. In addition, 11β-hsd1l expression increased in FW milkfish but decreased in SW milkfish after cortisol injection. Accordingly, the results that gill Na-K-ATPase activity of FW milkfish was affected by environmental temperatures as well as cortisol-dependent Na-K-ATPase β1-subunit levels might be due to increased expression of 11β-hsd1l that elevated intracellular cortisol contents. In hypothermal SW milkfish, decreasing abundance of Na-K-ATPase β1 protein due to reduced expression of 11β-hsd1l was found after cortisol injection. Thus, under hypothermal stress, 11β-HSD1L in FW milkfish gills was used to modulate cortisol and the following effects on increasing the transcription of Na-K-ATPase β1 protein.
Collapse
Affiliation(s)
- Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Keng-Fu Chu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lie-Yueh Hwang
- Taishi Station, Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Yulin, 636, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Na +/K +-ATPase activity in the anoxic turtle (Trachemys scripta) brain at different acclimation temperature. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:11-16. [PMID: 28089857 DOI: 10.1016/j.cbpa.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
Survival of prolonged anoxia requires a balance between cellular ATP demand and anaerobic ATP supply from glycolysis, especially in critical tissues such as the brain. To add insight into the ATP demand of the brain of the anoxia-tolerant red-eared slider turtle (Trachemys scripta) during prolonged periods of anoxic submergence, we quantified and compared the number of Na+-K+-ATPase units and their molecular activity in brain tissue from turtles acclimated to either 21°C or 5°C and exposed to either normoxia or anoxia (6h 21°C; 14days at 5°C). Na+-K+-ATPase activity and density per g tissue were similar at 21°C and 5°C in normoxic turtles. Likewise, anoxia exposure at 21°C did not induce any change in Na+-K+-ATPase activity or density. In contrast, prolonged anoxia at 5°C significantly reduced Na+-K+-ATPase activity by 55%, which was largely driven by a 50% reduction of the number of Na+-K+-ATPase units without a change in the activity of existing Na+-K+-ATPase pumps or α-subunit composition. These findings are consistent with the "channel arrest" hypothesis to reduce turtle brain Na+-K+-ATPase activity during prolonged, but not short-term anoxia, a change that likely helps them overwinter under low temperature, anoxic conditions.
Collapse
|
7
|
Yang WK, Chung CH, Cheng HC, Tang CH, Lee TH. Different expression patterns of renal Na +/K +-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:23-30. [PMID: 27497666 DOI: 10.1016/j.cbpb.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 01/13/2023]
Abstract
Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na+/K+-ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences.
Collapse
Affiliation(s)
- Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hung Chung
- Graduate Institute of Science Education, National Changhua University of Education, Changhua 50007, Taiwan; Taichung Municipal Kuang Rong Junior High School, Taichung 41265, Taiwan
| | - Hui Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
8
|
Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motyka R, Dupont S, Pörtner HO. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp Physiol B 2015. [PMID: 26219611 PMCID: PMC4568026 DOI: 10.1007/s00360-015-0923-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3–4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na+/H+-exchange and HCO3− transport at high PCO2 (2200 µatm), paralleled by higher Na+/K+-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na+/K+-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na+ and/or Cl− concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.
Collapse
Affiliation(s)
- C M Kreiss
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - K Michael
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - F Jutfelt
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden.,The Sven Lovén Centre for Marine Sciences, Kristineberg 566, 451 78, Fiskebäckskil, Sweden
| | - R Motyka
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| | - S Dupont
- The Sven Lovén Centre for Marine Sciences, Kristineberg 566, 451 78, Fiskebäckskil, Sweden
| | - H-O Pörtner
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
9
|
Sandersfeld T, Davison W, Lamare MD, Knust R, Richter C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. ACTA ACUST UNITED AC 2015; 218:2373-81. [PMID: 26056241 DOI: 10.1242/jeb.122804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023]
Abstract
As a response to ocean warming, shifts in fish species distribution and changes in production have been reported that have been partly attributed to temperature effects on the physiology of animals. The Southern Ocean hosts some of the most rapidly warming regions on earth and Antarctic organisms are reported to be especially temperature sensitive. While cellular and molecular organismic levels appear, at least partially, to compensate for elevated temperatures, the consequences of acclimation to elevated temperature for the whole organism are often less clear. Growth and reproduction are the driving factors for population structure and abundance. The aim of this study was to assess the effect of long-term acclimation to elevated temperature on energy budget parameters in the high-Antarctic fish Trematomus bernacchii. Our results show a complete temperature compensation for routine metabolic costs after 9 weeks of acclimation to 4°C. However, an up to 84% reduction in mass growth was measured at 2 and 4°C compared with the control group at 0°C, which is best explained by reduced food assimilation rates at warmer temperatures. With regard to a predicted temperature increase of up to 1.4°C in the Ross Sea by 2200, such a significant reduction in growth is likely to affect population structures in nature, for example by delaying sexual maturity and reducing production, with severe impacts on Antarctic fish communities and ecosystems.
Collapse
Affiliation(s)
- Tina Sandersfeld
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Bentho-Pelagic Processes, Am Alten Hafen 26, 27568 Bremerhaven and University of Bremen, Germany
| | - William Davison
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Miles D Lamare
- Department of Marine Science, University of Otago, 30 Castle Street, Dunedin 9022, New Zealand
| | - Rainer Knust
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Bentho-Pelagic Processes, Am Alten Hafen 26, 27568 Bremerhaven, Germany
| | - Claudio Richter
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Bentho-Pelagic Processes, Am Alten Hafen 26, 27568 Bremerhaven and University of Bremen, Germany
| |
Collapse
|
10
|
Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod ( Gadus morhua ). Comp Biochem Physiol A Mol Integr Physiol 2015; 182:102-12. [DOI: 10.1016/j.cbpa.2014.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
|
11
|
Chandrasekar S, Nich T, Tripathi G, Sahu NP, Pal AK, Dasgupta S. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:983-996. [PMID: 24482094 DOI: 10.1007/s10695-013-9899-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na(+), K(+) and Cl(-) levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na(+)/K(+)-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na(+)/K(+)/2Cl(-) co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E. suratensis involving differential activation of ion transporters and thereby suggesting its potential as candidate for fish farming under different external salinities.
Collapse
Affiliation(s)
- S Chandrasekar
- Central Institute of Fisheries Education (Indian Council of Agricultural Research), Versova, Mumbai, 400061, India
| | | | | | | | | | | |
Collapse
|
12
|
Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic nototheniids Notothenia coriiceps and Notothenia rossii. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:21-8. [DOI: 10.1016/j.cbpb.2014.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 11/21/2022]
|
13
|
Ip YK, Loong AM, Kuah JS, Sim EWL, Chen XL, Wong WP, Lam SH, Delgado ILS, Wilson JM, Chew SF. Roles of three branchial Na(+)-K(+)-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol Regul Integr Comp Physiol 2012; 303:R112-25. [PMID: 22621969 DOI: 10.1152/ajpregu.00618.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three Na(+)-K(+)-ATPase (nka) α-subunit isoforms, nka α1a, nka α1b, and nka α1c, were identified from gills of the freshwater climbing perch Anabas testudineus. The cDNA sequences of nka α1a and nka α1b consisted of 3,069 bp, coding for 1,023 amino acids, whereas nka α1c was shorter by 22 nucleotides at the 5' end. In freshwater, the quantity of nka α1c mRNA transcripts present in the gills was the highest followed by nka α1a and nka α1b that was almost undetectable. The mRNA expression of nka α1a was downregulated in the gills of fish acclimated to seawater, indicating that it could be involved in branchial Na(+) absorption in a hypoosmotic environment. By contrast, seawater acclimation led to an upregulation of the mRNA expression of nka α1b and to a lesser extent nka α1c, indicating that they could be essential for ion secretion in a hyperosmotic environment. More importantly, ammonia exposure led to a significant upregulation of the mRNA expression of nka α1c, which might be involved in active ammonia excretion. Both seawater acclimation and ammonia exposure led to significant increases in the protein abundance and changes in the kinetic properties of branchial Na(+)-K(+)-ATPase (Nka), but they involved two different types of Nka-immunoreactive cells. Since there was a decrease in the effectiveness of NH(4)(+) to substitute for K(+) to activate branchial Nka from fish exposed to ammonia, Nka probably functioned to remove excess Na(+) and to transport K(+) instead of NH(4)(+) into the cell to maintain intracellular Na(+) and K(+) homeostasis during active ammonia excretion.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Windisch HS, Kathöver R, Pörtner HO, Frickenhaus S, Lucassen M. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1453-66. [PMID: 21865546 DOI: 10.1152/ajpregu.00158.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.
Collapse
|
15
|
Tang CH, Chiu YH, Tsai SC, Lee TH. Relative changes in the abundance of branchial Na+/K+-ATPase α-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities. ACTA ACUST UNITED AC 2009; 311:521-9. [DOI: 10.1002/jez.547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Wang PJ, Lin CH, Hwang HH, Lee TH. Branchial FXYD protein expression in response to salinity change and its interaction with Na+/K+-ATPase of the euryhaline teleost Tetraodon nigroviridis. ACTA ACUST UNITED AC 2009; 211:3750-8. [PMID: 19011216 DOI: 10.1242/jeb.018440] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound protein crucial for teleost osmoregulation. The enzyme is composed of two essential subunits, a catalytic alpha subunit and a glycosylated beta subunit which is responsible for membrane targeting of the enzyme. In mammals, seven FXYD members have been found. FXYD proteins have been identified as the regulatory protein of NKA in mammals and elasmobranchs, it is thus interesting to examine the expression and functions of FXYD protein in the euryhaline teleosts with salinity-dependent changes of gill NKA activity. The present study investigated the expression and distribution of the FXYD protein in gills of seawater (SW)- or freshwater (FW)-acclimated euryhaline pufferfish (Tetraodon nigroviridis). The full-length pufferfish FXYD gene (pFXYD) was confirmed by RT-PCR. pFXYD was found to be expressed in many organs including gills of both SW and FW pufferfish. pFXYD mRNA abundance in gills, determined by real-time PCR, was significantly higher in FW fish than in SW fish. An antiserum raised against a partial amino acid sequence of pFXYD was used for the immunoblots of gill homogenates and a major band at 13 kDa was detected. The relative amounts of pFXYD protein and mRNA in gills of SW and FW pufferfish were identical, but opposite to the expression levels of NKA. Immunofluorescent staining of frozen sections demonstrated that pFXYD was colocalized to NKA-immunoreactive cells in the gill filaments. In addition, interaction between pFXYD and NKA was demonstrated by co-immunoprecipitation. Taken together, salinity-dependent expression of pFXYD protein and NKA, as well as the evidence for their colocalization and interaction in pufferfish gills suggested that pFXYD regulates NKA activity in gills of euryhaline teleosts upon salinity challenge.
Collapse
Affiliation(s)
- Pei-Jen Wang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
17
|
Gómez E, Rodríguez A, Muñoz M, Caamaño JN, Carrocera S, Martín D, Facal N, Díez C. Development and quality of bovine morulae cultured in serum-free medium with specific retinoid receptor agonists. Reprod Fertil Dev 2009; 20:884-91. [PMID: 19007552 DOI: 10.1071/rd08103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/08/2008] [Indexed: 12/20/2022] Open
Abstract
Retinoids regulate development and differentiation of the bovine blastocyst in vitro, although the underlying mechanisms remain to be clarified. A challenge in reproductive biotechnology is the identification of pathways that regulate early embryonic development and their influence on blastocyst differentiation, apoptosis and survival to cryopreservation as traits of embryo quality. The present paper analyses the effects of short-term exposure (24 h) to retinoids on in vitro-produced bovine morulae. Immature cumulus oocyte complexes were in vitro matured and fertilised. Presumptive zygotes were subsequently cultured in modified synthetic oviduct fluid up to Day 6, in which morulae were randomly allocated to the different experimental groups. The treatments consisted of 0.1 microM LG100268 (LG; a retinoid X receptor agonist), 0.7 microM all-trans retinoic acid (ATRA; a retinoic acid receptor agonist) or no additives. Day 8 blastocyst development was increased in the ATRA-treated group compared with the LG and untreated embryos. In Day 7 embryos, the number of total cells and cells allocated to the trophectoderm were higher in the ATRA-treated group compared with untreated embryos. Apoptosis in the inner cell mass increased after LG treatment, whereas ATRA had no effect. After vitrification and warming, survival and hatching rates of Day 7 blastocysts did not change with retinoid treatment. Within the LG-treated and untreated blastocyst groups, survival and hatching rates were higher for Day 7 than Day 8 embryos; however, Day 8 blastocysts treated with ATRA showed improved hatching rates. In conclusion, treatment of morulae with ATRA in serum-free medium improves embryo development and quality without increasing the incidence of apoptosis and necrosis.
Collapse
|
18
|
Kang CK, Tsai SC, Lee TH, Hwang PP. Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:566-75. [PMID: 18692588 DOI: 10.1016/j.cbpa.2008.07.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 11/16/2022]
Abstract
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na(+)/K(+)-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA alpha-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and alpha-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell numberxcell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.
Collapse
Affiliation(s)
- Chao-Kai Kang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
19
|
Hudson HA, Brauer PR, Scofield MA, Petzel DH. Effects of warm acclimation on serum osmolality, cortisol and hematocrit levels in the Antarctic fish, Trematomus bernacchii. Polar Biol 2008. [DOI: 10.1007/s00300-008-0438-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Hwang PP, Lee TH. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:479-97. [PMID: 17689996 DOI: 10.1016/j.cbpa.2007.06.416] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Compared to terrestrial animals, fish have to cope with more-challenging osmotic and ionic gradients from aquatic environments with diverse salinities, ion compositions, and pH values. Gills, a unique and highly studied organ in research on fish osmoregulation and ionoregulation, provide an excellent model to study the regulatory mechanisms of ion transport. The present review introduces and discusses some recent advances in relevant issues of teleost gill ion transport and functions of gill ionocytes. Based on accumulating evidence, a conclusive model of NaCl secretion in gills of euryhaline teleosts has been established. Interpretations of results of studies on freshwater fish gill Na+/Cl- uptake mechanisms are still being debated compared with those for NaCl secretion. Current models for Na+/Cl- uptake are proposed based on studies in traditionally used model species. Many reported inconsistencies are claimed to be due to differences among species, various experimental designs, or acclimation conditions. Having the benefit of advanced techniques in molecular/cellular biology, functional genomics, and model animals, several new notions have recently been raised concerning relevant issues of Na+/Cl- uptake pathways. Several new windows have been opened particularly in terms of molecular mechanisms of ionocyte differentiation and energy metabolite transport between gill cells during environmental challenge.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| | | |
Collapse
|
21
|
Tang CH, Lee TH. The novel correlation of carbonic anhydrase II and anion exchanger 1 in gills of the spotted green pufferfish,Tetraodon nigrovirids. ACTA ACUST UNITED AC 2007; 307:411-8. [PMID: 17530665 DOI: 10.1002/jez.391] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel relationship between branchial carbonic anhydrase II (CAII) and anion exchanger 1 (AE1) was investigated in the euryhaline spotted green pufferfish (Tetraodon nigroviridis). The immunoblots revealed that AE1 was only detected in the membrane fraction of gills while CAII can be probed both in the membrane and cytosol fractions of gills. CAII protein abundance in the membrane fraction is salinity dependent. Immunological detection of the membrane fraction CAII protein in gills showed 3.9-fold higher in the hyposmotic (freshwater) group than the hyperosmotic (seawater;35 per thousand) group. In contrast, there was no change in the protein level of cytosolic CAII between seawater and freshwater groups. The whole-mount immunocytochemical staining demonstrated that both AE1 and CAII were colocalized to the Na(+)/K(+)-ATPase-immunoreactive cells in gill epithelium of the pufferfish. The interaction between CAII and AE1 was further identified by co-immunoprecipitation because AE1 was detected in the immunoprecipitates of CAII and vice versa. Our results showed that in pufferfish gills CAII was not only expressed in the cytosol to produce the substrate for AE1 transport during Cl(-) influx but also associated with the plasma membrane via AE1. Obviously, it is essential for the physiological function of AE1 to interact with CAII in the membrane of gill Na(+)/K(+)-ATPase-immunoreactive cells. To our knowledge, this is the first study to demonstrate the interaction of branchial CAII and AE1 in fish. The novel correlation proposed a new model of Cl(-)/HCO(3) (-) transport in gills of the teleosts.
Collapse
Affiliation(s)
- C H Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | | |
Collapse
|