1
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Hashimshony T, Levin L, Fröbius AC, Dahan N, Chalifa-Caspi V, Hamo R, Gabai-Almog O, Blais I, Assaraf YG, Lubzens E. A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they "animal seeds"? BMC Genomics 2024; 25:119. [PMID: 38281016 PMCID: PMC10821554 DOI: 10.1186/s12864-024-09961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".
Collapse
Affiliation(s)
- Tamar Hashimshony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Levin
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas C Fröbius
- Molecular Andrology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Gießen, Gießen, Germany.
| | - Nitsan Dahan
- Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vered Chalifa-Caspi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reini Hamo
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oshri Gabai-Almog
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idit Blais
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and IVF, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Lubzens
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- (Retired) Israel Oceanographic and Limnological Research, Haifa, Israel.
| |
Collapse
|
3
|
Gu SH, Lin PL, Chang CH. Expressions of sugar transporter genes during Bombyx mori embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:788-798. [PMID: 37407486 DOI: 10.1002/jez.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Sugar transporters (Sts) play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. Few studies have been conducted on expressions of Sts during insect embryonic development. In the present study, we investigated temporal expressions of St genes during the embryonic diapause process in Bombyx mori. We found that in HCl-treated developing eggs, high gene expressions of trehalose transporter 1 (Tret1) were detected during middle and later embryonic development. St4 and St3 gene expressions gradually increased during the early stages, reached a small peak on Day 3, and large peaks were again detected on Day 7. However, in diapause eggs, expression levels of the Tret1, St4, and St3 genes all remained at low levels. Differential temporal changes in expressions of the Tret1, St4, and St3 genes found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited similar changing patterns as those of HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development. In addition, high gene expressions of Tret1 were also detected when dechorionated eggs were incubated in the medium. The addition of LY294002 (a specific phosphatidylinositol 3-kinase [PI3K] inhibitor) and U0126 (a mitogen-activated protein kinase/extracellular signal-regulated kinase [ERK] kinase [MEK] inhibitor) partially inhibited Tret1 gene expression in dechorionated eggs, but did not affect either ecdysteroid-phosphate phosphatase gene expression or ecdysteroid biosynthesis, clearly indicating that both PI3K and ERK are involved in increased gene expression of Tret1 that was independent of ecdysteroid levels. To our knowledge, this is the first comprehensive report to demonstrate the transcriptional regulation of St genes during embryonic development, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| |
Collapse
|
4
|
Tian YL, Fu TY, Zhong QE, Lin YG, Zheng SC, Xu GF. Homeobox protein A1-like and DNA methylation regulate embryo-specific Zinc finger protein 615 gene expression and embryonic development in the silkworm Bombyx mori. INSECT SCIENCE 2023; 30:1063-1080. [PMID: 36419227 DOI: 10.1111/1744-7917.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and transcription factors play roles in gene expression and animal development. In insects, DNA methylation modifies gene bodies, but how DNA methylation and transcription factors regulate gene expression is unclear. In this study, we investigated the mechanism that regulates the expression of Bombyx mori Zinc finger protein 615 (ZnF 615), which is a downstream gene of DNA methyltransferase 1 (Dnmt1), and its effects on the regulation of embryonic development. By progressively truncating the ZnF 615 promoter, it was found that the -223 and -190 nt region, which contains homeobox (Hox) protein cis-regulatory elements (CREs), had the greatest impact on the transcription of ZnF 615. RNA interference (RNAi)-mediated knockdown and overexpression of Hox family genes showed that Hox A1-like can enhance the messenger RNA level of ZnF 615. Further studies showed that Hox A1-like regulates ZnF 615 expression by directly binding to the -223 and -190 nt region of its promoter. Simultaneous RNAi-mediated knockdown or overexpression of Hox A1-like and Dnmt1 significantly inhibited or enhanced the regulatory effect of either gene alone on ZnF 615 expression, suggesting that both DNA methylation of gene bodies and binding of transcription factors to promoters are essential for gene expression. RNAi-mediated knockdown of Hox A1-like and Dnmt1 showed that the embryonic development was retarded and the hatching rate was decreased. Taken together, these data suggest that Hox A1-like and DNA methylation enhance the expression of ZnF 615, thereby affecting the development of B. mori embryos.
Collapse
Affiliation(s)
- Yu-Lin Tian
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Tong-Yu Fu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-En Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Xu GF, Gong CC, Lyu H, Deng HM, Zheng SC. Dynamic transcriptome analysis of Bombyx mori embryonic development. INSECT SCIENCE 2022; 29:344-362. [PMID: 34388292 DOI: 10.1111/1744-7917.12934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori has been extensively studied but the gene expression control of its embryonic development is unclear. In this study, we performed transcriptome profiling of six stages of B. mori embryonic development using RNA sequencing (RNA-seq). A total of 12 894 transcripts were obtained from the embryos. Of these, 12 456 transcripts were shared among the six stages, namely, fertilized egg, blastoderm, germ-band, organogenesis, reversal period, and youth period stages. There were 111, 48, 41, 54, 77, and 107 transcripts specifically expressed during the six stages, respectively. By analyzing weighted gene correlation networks and differently expressed genes, we found that during embryonic development, many genes related to DNA replication, transcription, protein synthesis, and epigenetic modifications were upregulated in the early embryos. Genes of cuticle proteins, chitin synthesis-related proteins, and neuropeptides were more abundant in the late embryos. Although pathways of juvenile hormone and the ecdysteroid 20-hydroxyecdysone, and transcription factors were expressed throughout the embryonic development stages, more regulatory pathways were highly expressed around the organogenesis stage, suggesting more gene expression for organogenesis. The results of RNA-seq were confirmed by quantitative real-time polymerase chain reaction of 16 genes of different pathways. Nucleic acid methylation and seven sites in histone H3 modifications were confirmed by dot blot and western blot. This study increases the understanding of the molecular mechanisms of the embryonic developmental process and information on the regulation of B. mori development.
Collapse
Affiliation(s)
- Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng-Cheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hui-Min Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
6
|
Hemolymph Ecdysteroid Titer Affects Maternal mRNAs during Bombyx mori Oogenesis. INSECTS 2021; 12:insects12110969. [PMID: 34821770 PMCID: PMC8622876 DOI: 10.3390/insects12110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Both maternal genes and ecdysteroids play important roles during embryonic development. In this study, we aimed to characterize the dynamic landscape of maternal mRNAs and the relationship between maternal genes and ecdysteroids during silkworm oogenesis. For the first time, we determined the start of the accumulation of maternal mRNAs in the ovary at the wandering stage during the larval period. We detected the developmental expression profiles of each gene in the ovary or ovariole. We finally confirmed the role of 20-hydroxyecdysone in regulating maternal gene expression. Taken together, our findings expand the understanding of insect oogenesis and provide a perspective on the embryonic development of the silkworm. Abstract Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori.
Collapse
|
7
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
8
|
Gu SH, Chen CH, Lin PL. Changes in expressions of ecdysteroidogenic enzyme and ecdysteroid signaling genes in relation to Bombyx embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:477-488. [PMID: 33929096 DOI: 10.1002/jez.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Although the role of ecdysteroids in regulating egg diapause process in Bombyx mori is well documented, temporal changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling are less well understood. In the present study, we studied changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling during embryonic development of B. mori. Results showed that in diapause eggs, the expression of ecdysteroid-phosphate phosphatase (EPPase) gene and Halloween genes (Spook [Spo] and Shade [Shd]) remained at very low levels. However, in eggs whose diapause initiation was prevented by HCl, significant increases in the messenger RNA (mRNA) levels of EPPase, Spo, and Shd were detected during embryonic development. Other Halloween genes (Neverland [Nvd] and Phantom [Phm]) also showed different changes between diapause and HCl-treated eggs. However, genes of Disembodied (Dib) and Shadow (Sad) showed similar changes in both diapause and HCl-treated eggs. We further investigated changes in expression levels of ecdysone receptor genes (EcRA, EcRB1, and USP) and downstream signaling genes (E75A, E75B, E74A, E74B, Br-C, HR3, HR4, KR-H1, and FTZ-F1). Results showed that genes of EcRA and the other nuclear receptors (E75A, E75B, E74A, HR3, HR4, KR-H1, and FTZ-F1) exhibited significant differential patterns between diapause and HCl-treated eggs, with increased levels being detected during later stages of embryonic development in HCl-treated eggs. Differential temporal changes in expressions of genes involved ecdysteroid biosynthesis and its downstream signaling found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited the same changing patterns as those in HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development in B. mori. To our knowledge, this is the first comprehensive report to study the transcriptional regulation of ecdysteroidogenic and ecdysteroid signaling genes, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| |
Collapse
|
9
|
Fujinaga D, Gu J, Kawahara H, Ogihara MH, Kojima I, Takeshima M, Kataoka H. Twenty-hydroxyecdysone produced by dephosphorylation and ecdysteroidogenesis regulates early embryonic development in the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103491. [PMID: 33096212 DOI: 10.1016/j.ibmb.2020.103491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids are key regulators of embryonic development as well as molting and metamorphosis in insects. Although an active form of ecdysteroids, 20-hydroxyecdysone (20E) is known to be produced through ecdysteroidogenesis from cholesterol and dephosphorylation of 20E-phosphate during embryogenesis in Lepidoptera, the importance of these production mechanisms in embryonic development has been unclear. Here, we investigated the activation timing of ecdysteroidogenesis from cholesterol and 20E-phosphate dephosphorylation during early embryogenesis in non-diapause eggs of the silkmoth Bombyx mori by observing morphological development, quantifying 20E and 20E-phosphate, measuring transcripts of enzymes involved in 20E production, and detecting activity of these enzymes using egg extracts. Stage-dependent 20E fluctuation and changes in mRNA amounts of enzymes suggest that the two 20E-producing mechanisms are activated at different stages during embryogenesis. Furthermore, knockdown of a dephosphorylation enzyme delayed development at early embryogenesis, whereas knockdown of an ecdysteroidogenic enzyme delayed development at early-middle embryogenesis. These results suggest that 20E is primarily produced initially by dephosphorylation of 20E-phosphate, and then by ecdysteroidogenesis from cholesterol to induce progression of embryonic development in B. mori.
Collapse
Affiliation(s)
- Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Junjie Gu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hajime Kawahara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ikumi Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
10
|
Matsushima D, Kasahara R, Matsuno K, Aoki F, Suzuki MG. Involvement of Ecdysone Signaling in the Expression of the doublesex Gene during Embryonic Development in the Silkworm, Bombyx mori. Sex Dev 2019; 13:151-163. [PMID: 31487710 DOI: 10.1159/000502361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/09/2023] Open
Abstract
Steroid hormones, represented by estrogen and testosterone, act as sex hormones that play an essential role in the sexual differentiation of vertebrates. However, it remains unclear whether ecdysteroids, typical steroid hormones in insects, function as sex hormones. In this study, we investigated whether ecdysteroids or ecdysone signals are involved in the sexual differentiation of the silkworm (Bombyx mori) embryo. Quantitative analysis using LC-MS/MS demonstrated that there was no significant difference in the 20-hydroxyecdysone (20E) titer between sexes during embryonic development. Consistent with this result, expression levels of 2 genes encoding ecdysteroid-phosphate phosphatase (EPPase) and ecdysone 20-hydroxylase (E20OHase), which are essential for the biosynthesis of ecdysone and 20E in eggs, did not show a significant difference between male and female embryos. Expression levels of ecdysone receptor (EcR) and E75, which is one of a small set of genes induced directly by 20E, were also similar between the 2 sexes. However, knockdown of EPPase and one isoform of EcR (EcR-A) resulted in decreased expression of Bombyx doublesex (Bmdsx), a master regulatory gene for sexual differentiation of the silkworm in both male and female embryos. In vitro analysis with cultured testes revealed that expression levels of Bmdsx were increased in a dose-dependent manner of the ecdysone analog, ponasterone A. These results suggest that ecdysone signaling may play a role in indirectly regulating the expression of some genes involved in sexual differentiation through inducing expression of Bmdsx in the silkworm.
Collapse
|
11
|
Muchate NS, Rajurkar NS, Suprasanna P, Nikam TD. NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Sci Rep 2019; 9:12522. [PMID: 31467324 PMCID: PMC6715662 DOI: 10.1038/s41598-019-48737-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/06/2019] [Indexed: 11/24/2022] Open
Abstract
Spinach (Spinacia oleracea L.) is a vegetable plant with high nutritional properties. In the present work, we studied responses of in vitro shoot cultures to salt stress (0 (control), 100, 200 and 300 mM NaCl) and salt stress-induced accumulation of 20-hydroxyecdysone (20E). Our results revealed that effect of low to moderate level of salinity stress (100-200 mM) was less pronounced on growth and tissue water content (TWC) of shoot cultures compared to higher salinity level (300 mM). The salt treated shoot cultures showed better osmotic adjustment in terms of significant accumulation of compatible solutes and total soluble sugars and also higher antioxidant enzyme activity. As the NaCl stress was increased, there was a corresponding linear raise in the Na+ accumulation while the contents of both K+ and Ca2+ decreased significantly. We also studied salt-stress induced accumulation of a bioactive compound; 20E and results showed that 200 mM salt treated shoot cultures accumulated significantly 2.9 fold higher 20E as compared to untreated shoot cultures. The results suggest that Spinacia oleracea exhibits considerable salt tolerance with better osmotic adjustment and can be considered a suitable candidate for the production of bioactive secondary metabolite.
Collapse
Affiliation(s)
- Niramaya S Muchate
- Department of Botany, Savitribai Phule Pune University, Pune, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Nilima S Rajurkar
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
12
|
Wang CF, Zhang Z, Sun W. Ecdysone oxidase and 3-dehydroecdysone-3β-reductase contribute to the synthesis of ecdysone during early embryonic development of the silkworm. Int J Biol Sci 2018; 14:1472-1482. [PMID: 30262999 PMCID: PMC6158727 DOI: 10.7150/ijbs.26227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022] Open
Abstract
Maternal ecdysteroids regulate a variety of cellular processes during early embryonic development of insects, yet little is known about the genes involved in the biosynthesis of these hormones. In this study, we found that ecdysone oxidase (EO) gene, which encodes an enzyme to catalyze ecdysone (or 20-hydroxyecdysone, 20E) to 3-dehydroecdysone (3DE), was highly expressed in the mature ovaries of the domestic silkworm, Bombyx mori. B. mori EO (BmEO) was localized in the cytoplasm around the yolk granules of oocyte. Furthermore, the down-regulated expression of the BmEO gene using RNA interference could not affect normal development of the female silkworm, but lower the 20E titer and hatching rate of its offspring. Rescue experiments by injecting the product (3DE) of BmEO can significantly elevate the 20E level and hatching rate of the BmEO RNAi offspring. Meanwhile, during embryonic stage, the down-regulating expression of 3DE-3β-reductase, which can reduce 3DE into ecdysone, also lowered the 20E titer. Taken together, our results prove that 3DE can be synthesized from ecdysone in maternal ovary yolk granules, and then the maternal 3DE is converted into active ecdysone during the early embryonic development of offspring. Thus, our findings reveal a new pathway to explain the origin of high 20E level before the formation the prothoracic gland in the silkworm.
Collapse
Affiliation(s)
- Cheng-Fang Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
13
|
Nilsson B, Hansen BW. Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana). PLoS One 2018. [PMID: 29513715 PMCID: PMC5841787 DOI: 10.1371/journal.pone.0193727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Like 41 other calanoid copepods, Acartia tonsa, are capable of inducing embryonic quiescence when experiencing unfavorable environmental conditions. The ecdysone-signaling cascade is known to have a key function in developmental processes like embryogenesis and molting of arthropods, including copepods. We examined the role of ecdysteroid-phosphate phosphatase (EPPase), ecdysone receptor (EcR), ß fushi tarazu transcription factor 1 (ßFTZ-F1), and the ecdysteroid-regulated early gene E74 (E74), which represent different levels of the ecdysone-signaling cascade in our calanoid model organism. Progression of embryogenesis was monitored and hatching success determined to evaluate viability. Embryos that were induced quiescence before the gastrulation stage would stay in gastrulation during the rest of quiescence and exhibited a slower pace of hatching as compared to subitaneous embryos. In contrast, embryos developed further than gastrulation would stay in gastrulation or later stages during quiescence and showed a rapid pace in hatching after quiescence termination. Expression patterns suggested two peaks of the biological active ecdysteroids, 20-hydroxyecdysone (20E). The first peak of 20E was expressed in concert with the beginning of embryogenesis originating from yolk-conjugated ecdysteroids, based on EPPase expression. The second peak is suggested to originate from de novo synthesized 20E around the limb bud stage. During quiescence, the expression patterns of EPPase, EcR, ßFTZ-F1, and E74 were either decreasing or not changing over time. This suggests that the ecdysone-signaling pathway play a key role in the subitaneous development of A. tonsa embryogenesis, but not during quiescence. The observation is of profound ecological and practical relevance for the dynamics of egg banks.
Collapse
Affiliation(s)
- Birgitte Nilsson
- Department of Science and Environment, Roskilde University. Universitetsvej 1, Roskilde, Denmark
- * E-mail:
| | - Benni Winding Hansen
- Department of Science and Environment, Roskilde University. Universitetsvej 1, Roskilde, Denmark
| |
Collapse
|
14
|
Akitomo S, Egi Y, Nakamura Y, Suetsugu Y, Oishi K, Sakamoto K. Genome-wide microarray screening for Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. INSECT SCIENCE 2017; 24:187-193. [PMID: 26596800 DOI: 10.1111/1744-7917.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae) exhibits a maternally controlled embryonic diapause. Maternal silkworms decide whether to lay diapause or nondiapause eggs depending on environmental factors such as the temperature and photoperiod during the egg and larval stages, and then induce diapause eggs during the pupal stage. However, little is known about the molecular mechanism that conveys the outcome of whether to produce diapause or nondiapause eggs from the egg or larval stages to the pupal stage. This study used microarray analysis to investigate differentially expressed genes in the larval brains of diapause- and nondiapause-egg producers, to which bivoltine silkworms were destined by thermal or photic stimulation during the egg stage. The cytochrome P450 18a1 and Krüppel homolog 1 genes were upregulated in producers of diapause eggs compared with those of nondiapause eggs under both experimental conditions. Cytochrome P450 18a1 encodes a key enzyme for steroid hormone inactivation and Krüppel homolog 1 is an early juvenile hormone-inducible gene that mediates the repression of metamorphosis. The upregulation of these genes during the larval stage might be involved in the signaling pathway that transmits information about the diapause program from the egg stage to the pupal stage in the silkworm.
Collapse
Affiliation(s)
- Shion Akitomo
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuichi Egi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuki Nakamura
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Yoshitaka Suetsugu
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
15
|
Techa S, Alvarez JV, Sook Chung J. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus. Gen Comp Endocrinol 2015; 214:157-66. [PMID: 25101839 DOI: 10.1016/j.ygcen.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022]
Abstract
Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus.
Collapse
Affiliation(s)
- Sirinart Techa
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| | - Javier V Alvarez
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA.
| |
Collapse
|
16
|
Kim MK, Jang MS, Youn JH, Son SH, Lee JE, Kim TW, Kim SK. Occurrence of phosphorylated castasterone in Arabidopsis thaliana and Lycopersicum esculentum. PHYSIOLOGIA PLANTARUM 2015; 153:58-67. [PMID: 24939035 DOI: 10.1111/ppl.12242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
An in vitro enzyme assay using radioisotope-labeled (3) H-castasterone ((3) H-CS) or (32) P-ATP showed that CS can be phosphorylated by ATP in Arabidopsis and tomato plants. Gas chromatography-mass spectrometry (GC-MS) analysis using non-isotope-labeled CS and ATP revealed that the phosphorylation of CS occurs at the side chain, most likely at the C-23 hydroxyl. The polar fractions than free brassinosteroids (BRs) obtained from extracts of Arabidopsis and tomato showed almost no BRs activity in a rice lamina inclination bioassay. However, the fractions showed increased bioactivity after treatment with wheat germ acidic phosphatase (WGAP). Additionally, CS was identified from the hydrolysate by WGAP using GC-MS analysis in both plants. In contrast, the polar fractions obtained from BR-deficient mutants, Arabidopsis cyp85a2 and tomato d(x) , did not show an increase in biological activity with WGAP treatment, and no free BRs, including CS, were detected in the hydrolysate. This suggests that CS phosphate is a naturally occurring biologically inactive conjugate that is generated when CS is normally synthesized in Arabidopsis and tomato plants. Taken together, these results suggest that phosphorylation of CS is an important conjugation process for the maintenance of the homeostatic level of an active BR and thus the regulation of the growth and development of plants.
Collapse
Affiliation(s)
- Min Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Heavner ME, Gueguen G, Rajwani R, Pagan PE, Small C, Govind S. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 2013; 526:195-204. [PMID: 23688557 PMCID: PMC3905606 DOI: 10.1016/j.gene.2013.04.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma's predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation is among the first functional genomic studies for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts' immunity and shed light on the molecular basis of a natural arms race between these insects.
Collapse
Affiliation(s)
- Mary E Heavner
- Biology Department, The City College, City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sonobe H, Ito Y. Phosphoconjugation and dephosphorylation reactions of steroid hormone in insects. Mol Cell Endocrinol 2009; 307:25-35. [PMID: 19524123 DOI: 10.1016/j.mce.2009.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
In insects, the major products of phase II metabolism of ecdysteroids, which include the molting hormone, are phosphate esters. The phosphoconjugation pathway is a reversible process, comprising two enzyme systems: ecdysteroid 22-kinase (EcKinase) and ecdysteroid-phosphate phosphatase (EPPase). We report here that: (1) the biochemical characteristics of EcKinase and EPPase, (2) the physiological significance of the reciprocal conversion of ecdysteroids and ecdysteroid phosphates in the ovary-egg system in insects, (3) the biochemical mechanism by which ecdysteroid phosphates are synthesized in the ovary, transferred to eggs, and finally dephosphorylated in eggs, and (4) the possible catalytic steps of EcKinase and EPPase on the basis of the data obtained by an in silico study. From these studies, it is obvious that ecdysteroid phosphates as well as steroid sulfates, which are major products of phase II metabolism in mammals, function as precursors for the formation of biologically active hormones.
Collapse
Affiliation(s)
- Haruyuki Sonobe
- Department of Biology, Konan University, Higashinada-ku, Kobe, Japan.
| | | |
Collapse
|
19
|
Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart JJ, Vieira RF, Otoni WC. Level and distribution of 20-hydroxyecdysone during Pfaffia glomerata development. ACTA ACUST UNITED AC 2008. [DOI: 10.1590/s1677-04202008000400006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Chen Y, Jakoncic J, Wang J, Zheng X, Carpino N, Nassar N. Structural and functional characterization of the c-terminal domain of the ecdysteroid phosphate phosphatase from bombyx mori reveals a new enzymatic activity. Biochemistry 2008; 47:12135-45. [PMID: 18937503 DOI: 10.1021/bi801318w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the crystal structure of the ecdysone phosphate phosphatase (EPPase) phosphoglycerate mutase (PGM) homology domain, the first structure of a steroid phosphate phosphatase. The structure reveals an alpha/beta-fold common to members of the two histidine (2H)-phosphatase superfamily with strong homology to the Suppressor of T-cell receptor signaling-1 (Sts-1 PGM) protein. The putative EPPase PGM active site contains signature residues shared by 2H-phosphatase enzymes, including a conserved histidine (His80) that acts as a nucleophile during catalysis. The physiological substrate ecdysone 22-phosphate was modeled in a hydrophobic cavity close to the phosphate-binding site. EPPase PGM shows limited substrate specificity with an ability to hydrolyze steroid phosphates, the phospho-tyrosine (pTyr) substrate analogue para-nitrophenylphosphate ( pNPP) and pTyr-containing peptides and proteins. Altogether, our data demonstrate a new protein tyrosine phosphatase (PTP) activity for EPPase. They suggest that EPPase and its closest homologues can be grouped into a distinct subfamily in the large 2H-phosphatase superfamily of proteins.
Collapse
Affiliation(s)
- Yunting Chen
- Department of Physiology and Biophysics, Stony Brook University, Basic Sciences Tower, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ito Y, Yasuda A, Sonobe H. Synthesis and Phosphorylation of Ecdysteroids During Ovarian Development in the Silkworm, Bombyx mori. Zoolog Sci 2008; 25:721-7. [DOI: 10.2108/zsj.25.721] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022]
|
22
|
Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:507-16. [DOI: 10.1016/j.cbpb.2007.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 11/15/2022]
|
23
|
Kojima K, Oritani K, Nakatsukasa T, Asano S, Sahara K, Bando H. Ecdysone response element in a baculovirus immediate-early gene, ie1, promoter. Virus Res 2007; 130:202-9. [PMID: 17658648 DOI: 10.1016/j.virusres.2007.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/23/2022]
Abstract
A computer-assisted analysis identified tentative target sequences for regulatory proteins including ecdysone-inducible factors such as BmFTZ-F1 and Broad-Complex Z4 (BR-C Z4) in the ie1 promoter of BmNPV. A transient expression experiment using BmN cells and a series of truncated ie1 promoter constructs demonstrated that the activity of the ie1 promoter responded to alpha-ecdysone and 20-hydroxyecdysone, which required a tridecameric nucleotide stretch (ie1EcRE, 5'-GTGTTATCGACCT-3') homologous to the ecdysone response element reported for Drosophila (DmEcRE). RT-PCR demonstrated the expression of BmEcR and BmUSP, which are required as ecdysone-specific activators for EcRE-mediated activation, in BmN cells. Furthermore, the ie1 EcRE-mediated response was confirmed by using a recombinant BmNPV possessing a luciferase gene under the control of the ie1 promoter with or without ie1 EcRE. This is the first report of an ecdysone response element in a baculoviral gene promoter. These results also suggested that the regulation of the ie1 by ecdysone may militate viral replication at least under certain conditions during natural infections in vivo.
Collapse
Affiliation(s)
- K Kojima
- Silk-Materials Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Sonobe H, Ohira T, Ieki K, Maeda S, Ito Y, Ajimura M, Mita K, Matsumoto H, Wilder MN. Purification, kinetic characterization, and molecular cloning of a novel enzyme, ecdysteroid 22-kinase. J Biol Chem 2006; 281:29513-24. [PMID: 16899460 DOI: 10.1074/jbc.m604035200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This is the first report succeeding in the isolation and characterization of an enzyme and its gene involved in the phosphorylation of a steroid hormone. It has been demonstrated that ecdysteroid 22-phosphates in insect ovaries, which are physiologically inactive, serve as a "reservoir" that supplies active free ecdysteroids during early embryonic development and that their dephosphorylation is catalyzed by a specific enzyme, ecdysteroid-phosphate phosphatase (Yamada, R., and Sonobe, H. (2003), J. Biol. Chem. 278, 26365-26373). In this study, ecdysteroid 22-kinase (EcKinase) was purified from the cytosol of the silkworm Bombyx mori ovaries to about 1,800-fold homogeneity in six steps of column chromatography and biochemically characterized. Results obtained indicated that the reciprocal conversion of free ecdysteroids and ecdysteroid 22-phosphates by two enzymes, EcKinase and ecdysteroid-phosphate phosphatase, plays an important role in ecdysteroid economy of the ovary-egg system of B. mori. On the basis of the partial amino acid sequence obtained from purified EcKinase, the nucleotide sequence of the cDNA encoding EcKinase was determined. The full-length cDNA of EcKinase was composed of 1,850 bp with an open reading frame encoding a protein of 386 amino acid residues. The cloned cDNA was confirmed to encode the functional EcKinase using the transformant harboring the open reading frame of EcKinase. A data base search showed that EcKinase has an amino acid sequence characteristic of phosphotransferases, in that it harbors Brenner's motif and putative ATP binding sites, but there are no functional proteins that share high identity with the amino acid sequence of EcKinase.
Collapse
Affiliation(s)
- Haruyuki Sonobe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fujiwara Y, Tanaka Y, Iwata KI, Rubio RO, Yaginuma T, Yamashita O, Shiomi K. ERK/MAPK regulates ecdysteroid and sorbitol metabolism for embryonic diapause termination in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:569-75. [PMID: 16546206 DOI: 10.1016/j.jinsphys.2006.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/01/2006] [Accepted: 02/06/2006] [Indexed: 05/07/2023]
Abstract
The eggs of the silkworm Bombyx mori undergo a state of suspended overt development and diminished metabolism called "diapause" to escape adverse environmental conditions. Termination of Bombyx embryonic diapause requires 2-3 months of low temperature (5 degrees C), but the molecular mechanisms underlying diapause termination are unknown. Diapause termination requires a decrease in the sorbitol concentration, which arrests embryonic development, and the secretion factors from yolk cells that promote embryonic development. In the present study, we report that 20-hydroxyecdysone promoted the development of denuded embryos and that ecdysteroid-phosphate phosphatase (EPPase), which is a key enzyme for active ecdysteroid production, was induced by incubation of diapausing eggs at 5 degrees C. In dechorionated egg cultures, extracellular signal-regulated kinase (ERK), which is activated by incubating diapausing eggs at 5 degrees C, regulated sorbitol-glycogen conversion, ecdysteroid secretion via gene transcription of key enzymes, sorbitol dehydrogenase-2, and EPPase, suggesting that ERK has a key role in diapause termination.
Collapse
Affiliation(s)
- Yoshihiro Fujiwara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Malausa T, Salles M, Marquet V, Guillemaud T, Alla S, Marion-Poll F, Lapchin L. Within-species variability of the response to 20-hydroxyecdysone in peach-potato aphid (Myzus persicae Sulzer). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:480-6. [PMID: 16516909 DOI: 10.1016/j.jinsphys.2006.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/17/2006] [Accepted: 01/22/2006] [Indexed: 05/06/2023]
Abstract
Phytoecdysteroids have been proposed as new tools for controlling crop pests because of their endocrine disruption and deterrent effects on insects and nematodes. There is increasing evidence of variability between taxa in sensitivity to phytoecdysteroids, but the genetic variability of this sensitivity within species is unknown. However, knowledge about this intraspecies variability is required for predicting evolution of the pest's response to new control methods. We assessed the variability of the response of the aphid Myzus persicae Sulzer, a major agricultural pest, to 20-hydroxyecdysone (20E). We determined the number of nymphs produced by six clones of M. persicae exposed to various concentrations of 20E and the capacity of these clones to detect 20E in choice experiments. High concentrations of 20E significantly decreased the number of nymphs produced for two clones and both increases and decreases in the number of offspring were detected at low concentrations. Two clones significantly avoided food with 20E, while one significantly preferred it, suggesting that 20E does not always act as a deterrent in this species. We conclude that genetic variability in the response to 20E exists in natural populations of M. persicae. The consequences of this finding on the sustainability of control methods using 20E are discussed.
Collapse
Affiliation(s)
- Thibaut Malausa
- Biologie des Populations en Interaction, U.M.R. 1112 INRA-UNSA, 400 Route des Chappes. BP167, 06903 Sophia Antipolis cedex, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kidokoro K, Iwata KI, Fujiwara Y, Takeda M. Effects of juvenile hormone analogs and 20-hydroxyecdysone on diapause termination in eggs of Locusta migratoria and Oxya yezoensis. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:473-9. [PMID: 16499923 DOI: 10.1016/j.jinsphys.2006.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 05/06/2023]
Abstract
To understand the hormonal control of embryonic diapause, juvenile hormone analogs (JHAs), methoprene and hydroprene, and 20-hydroxyecdysone (20E) were applied onto diapause eggs of Locusta migratoria and Oxya yezoensis. These insects enter diapause at the mid-stage of embryogenesis prior to blastokinesis. Topical application of JHAs significantly facilitated diapause termination in both species but JHA-treated embryos underwent abnormal morphogenesis, pigmentation and sclerotization without dorsal closure. The Locusta eggs immersed in the 20E solution for 24h terminated diapause in a dose-dependent manner. We also investigated phosphorylation of extracellular signal-regulated kinase (ERK), a member of mitogen-activated protein kinase (MAPK), during diapause-terminating process of Locusta migratoria and found that ERK was activated either by cold exposure or JHA treatment. The possible involvement of the hormones and ERK in embryonic diapause and the possibility of ecdysteroids synthesis by prothoracic glands of diapause embryo were proposed.
Collapse
Affiliation(s)
- Kurako Kidokoro
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
28
|
Huang J, Miao X, Jin W, Couble P, Zhang Y, Liu W, Shen Y, Zhao G, Huang Y. Radiation-induced changes in gene expression in the silkworm revealed by serial analysis of gene expression (SAGE). INSECT MOLECULAR BIOLOGY 2005; 14:665-74. [PMID: 16313566 DOI: 10.1111/j.1365-2583.2005.00594.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Serial analysis of gene expression (SAGE) was used to examine the profile of expressed genes during embryonic development in the domesticated silkworm, Bombyx mori, after irradiation with Cobalt-60. A comparison of the SAGE sequence tags derived from irradiated embryos with those from normal embryos revealed 673 differentially expressed genes (P < 0.01 and at least three folds change). Of these, 292 genes were highly expressed in normal embryos and 381 genes were highly expressed in irradiated embryos. These results provide valuable information for understanding the mechanisms of radiation-induced changes in gene expression. In addition, it was noted that the generation of longer cDNA fragments from SAGE tags is an efficient way to identify genes, thereby facilitating the analysis of large numbers of unknown genes.
Collapse
Affiliation(s)
- J Huang
- Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamada R, Yamahama Y, Sonobe H. Release of Ecdysteroid-Phosphates from Egg Yolk Granules and Their Dephosphorylation during Early Embryonic Development in Silkworm, Bombyx mori. Zoolog Sci 2005; 22:187-98. [PMID: 15738639 DOI: 10.2108/zsj.22.187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newly laid eggs of many insect species store maternal ecdysteroids as physiologically inactive phosphoric esters. In the silkworm Bombyx mori, we previously reported the presence of a specific enzyme, called ecdysteroid-phosphate phosphatase (EPPase), which catalyzes the dephosphorylation of ecdysteroid-phosphates to increase the amount of free ecdysteroids during early embryonic development. In this study, we demonstrated that (1) EPPase is found in the cytosol of yolk cells, (2) ecdysteroid-phosphates are localized in yolk granules, being bound to the yolk protein vitellin (Vn), and (3) Vn-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase, although free ecdysteroid-phosphates are completely hydrolyzed by EPPase. Thus, we investigated the mechanism by which ecdysteroid-phosphates dissociate from the Vn-ecdysteroid-phosphate complex, and indicated that the acidification of yolk granules causes the dissociation of ecdysteroid-phosphates from the Vn-ecdysteroid-phosphate complex and thereby ecdysteroid-phosphates are released from yolk granules into the cytosol. Indeed, the presence of vacuolar-type proton-translocating ATPase in the membrane fraction of yolk granules was also verified by Western blot analysis. Our experiments revealed that Vn functions as a reservoir of maternal ovarian ecdysteroid-phosphates as well as a nutritional source during embryonic development. This is the first report showing the biochemical mechanism by which maternal Vn-bound ecdysteroid-phosphates function during early embryonic development.
Collapse
Affiliation(s)
- Ryouichi Yamada
- Department of Life and Functional Material Science, Graduate School of Natural Sciences, Konan University, Kobe, Japan
| | | | | |
Collapse
|
30
|
Munyiri FN, Ishikawa Y. Endocrine changes associated with metamorphosis and diapause induction in the yellow-spotted longicorn beetle, Psacothea hilaris. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:1075-1081. [PMID: 15607510 DOI: 10.1016/j.jinsphys.2004.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 09/18/2004] [Accepted: 09/20/2004] [Indexed: 05/24/2023]
Abstract
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.
Collapse
Affiliation(s)
- Florence N Munyiri
- Laboratory of Applied Entomology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
31
|
Grenier AM, Da Rocha M, Jalabert A, Royer C, Mauchamp B, Chavancy G. Artificial parthenogenesis and control of voltinism to manage transgenic populations in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:751-760. [PMID: 15288208 DOI: 10.1016/j.jinsphys.2004.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/01/2004] [Accepted: 06/02/2004] [Indexed: 05/24/2023]
Abstract
In order to improve the management of transformed populations in a routine application of transgenesis technology in Bombyx mori, we modified its mode of reproduction and its voltinism. On one hand, after a stable integration of the gene of interest by transgenesis, it is preferable to maintain this gene in an identical genomic context through successive generations. This can be obtained by artificial parthenogenetic reproduction (ameiotic parthenogenesis) giving isogenic females identical to their transformed mother. On the other hand, it is essential to obtain continuous generations (polyvoltinism) after microinjection, in order to screen positive transgenic insects and study genetics and insertion of the transgene. Thereafter, it is more convenient to store these populations, as diapause eggs before their use in biotechnology application. We obtained such polyvoltine parthenoclones, first by selection for a parthenogenetic character in polyvoltine races, and second, by selection for a polyvoltine character in a parthenogenetic, but diapausing clone of B. mori. As diapause was directly under the control of diapause hormone (DH), we also tested direct injection of DH in female pupae of polyvoltine strains, as well as anti-DH antibody treatment to eliminate diapause in univoltine strains. We discussed the advantages and limitations of these methods and proved the feasibility in obtaining polyvoltine parthenoclones and determining the voltinism in B. mori. These methods would permit us to improve the management of populations used in transgenesis technology.
Collapse
Affiliation(s)
- Anne-Marie Grenier
- Unité Nationale Séricicole, INRA, 25 Quai Jean-Jacques Rousseau, 69350 La Mulatière, France.
| | | | | | | | | | | |
Collapse
|
32
|
Gilbert LI. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 2004; 215:1-10. [PMID: 15026169 DOI: 10.1016/j.mce.2003.11.003] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutation of members of the Halloween gene family results in embryonic lethality. We have shown that two of these genes code for enzymes responsible for specific steps in the synthesis of ecdysone, a polyhydroxylated sterol that is the precursor of the major molting hormone of all arthropods, 20-hydroxyecdysone. These two mitochondrial P450 enzymes, coded for by disembodied (dib) (CYP302A1) and shadow (sad) (CYP315A1), are the C22 and C2 hydroxylases, respectively, as shown by transfection of the gene into S2 cells and subsequent biochemical analysis. These are the last two enzymes in the ecdysone biosynthetic pathway. A third enzyme, necessary for the critical conversion of ecdysone to 20-hydroxyecdysone, the 20-monooxygenase, is encoded by shade (shd) (CYP314A1). All three enzymes are mitochondrial although shade has motifs suggesting both mitochondrial and microsomal locations. By tagging these enzymes, their subcellular location has been confirmed by confocal microscopy. Shade is present in several tissues as expected while disembodied and shadow are restricted to the ring gland. The paradigm used should allow us to define the enzymes mediating the entire ecdysteroid biosynthetic pathway.
Collapse
Affiliation(s)
- Lawrence I Gilbert
- The University of North Carolina at Chapel Hill, CB 3280, Coker Hall, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
33
|
Dong Y, Dinan L, Friedrich M. The effect of manipulating ecdysteroid signaling on embryonic eye development in the locust Schistocerca americana. Dev Genes Evol 2003; 213:587-600. [PMID: 14618403 DOI: 10.1007/s00427-003-0367-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 10/08/2003] [Indexed: 10/26/2022]
Abstract
Adult body plan differentiation in holometabolous insects depends on global induction and control by ecdysteroid hormones during the final phase of postembryogenesis. Studies in Drosophila melanogaster and Manduca sexta have shown that this pertains also to the development of the compound eye retina. It is unclear whether the hormonal control of postembryonic eye development in holometabolous insects represents evolutionary novelty or heritage from hemimetabolous insects, which develop compound eyes during embryogenesis. We therefore investigated the effect of manipulating ecdysteroid signaling in cultured embryonic eye primordia of the American desert locust Schistocerca americana, in which ecdysteroid level changes are known to induce three rounds of embryonic molt. Although at a considerably reduced rate compared to in vivo development, early differentiation and terminal maturation of the embryonic retina was observed in culture even if challenged with the ecdysteroid antagonist cucurbitacin B. Supplementing cultures with 20-hydroxyecdysone (20E) accelerated differentiation and maturation, and enhanced cell proliferation. Considering these results, and the relation between retina differentiation and ecdysteroid level changes during locust embryogenesis, we conclude that ecdysteroids are not an essential but possibly a modulatory component of embryonic retina development in S. americana. We furthermore found evidence that 20E initiated precocious epithelial morphogenesis of the posterior retinal margin indicating a more general role of ecdysteroids in insect embryogenesis.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
34
|
Yamada R, Sonobe H. Purification, kinetic characterization, and molecular cloning of a novel enzyme ecdysteroid-phosphate phosphatase. J Biol Chem 2003; 278:26365-73. [PMID: 12721294 DOI: 10.1074/jbc.m304158200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From eggs of the silkworm Bombyx mori, we isolated a novel enzyme that is involved in the conversion of physiologically inactive conjugated ecdysteroids, such as ecdysone 22-phosphate and 20-hydroxyecdysone 22-phosphate, to active free ecdysteroids. This enzyme, called ecdysteroid-phosphate phosphatase (EPPase), was located in the cytosol fraction and differed from nonspecific lysosomal acid phosphatases in various enzymic properties. EPPase was purified about 3,000-fold to homogeneity by seven steps of column chromatography. The cDNA clone encoding EPPase was isolated by reverse transcription polymerase chain reaction using degenerate primers on the basis of the partial amino acid sequence obtained from purified EPPase and by subsequent 3'- and 5'-rapid amplification of cDNA ends. The full-length cDNA of EPPase was found to be composed of 1620 bp with an open reading frame encoding a protein of 331 amino acid residues. A data base search showed that there was no functional protein with the amino acid sequence identical to that of EPPase. Northern blot analysis revealed that EPPase mRNA was expressed predominantly during gastrulation and organogenesis in nondiapause eggs but was not detected in diapause eggs whose development was arrested at the late gastrula stage. In nondiapause eggs, the developmental changes in the expression pattern of EPPase mRNA corresponded closely to changes in the enzyme activity and in the amounts of free ecdysteroids in eggs.
Collapse
Affiliation(s)
- Ryouichi Yamada
- Department of Life and Functional Material Science, Graduate School of Natural Sciences, Konan University, Kobe 658-8501, Japan
| | | |
Collapse
|
35
|
|