1
|
Dong Y, Huang L, Liu L. Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights. Gen Comp Endocrinol 2024; 356:114562. [PMID: 38848820 DOI: 10.1016/j.ygcen.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Collapse
Affiliation(s)
- Yaqun Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Orchard I, Lange AB. The neuroendocrine and endocrine systems in insect - Historical perspective and overview. Mol Cell Endocrinol 2024; 580:112108. [PMID: 37956790 DOI: 10.1016/j.mce.2023.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
A complex cascade of events leads to the initiation and maintenance of a behavioral act in response to both internally and externally derived stimuli. These events are part of a transition of the animal into a new behavioral state, coordinated by chemicals that bias tissues and organs towards a new functional state of the animal. This form of integration is defined by the neuroendocrine (or neurosecretory) system and the endocrine system that release neurohormones or hormones, respectively. Here we describe the classical neuroendocrine and endocrine systems in insects to provide an historic perspective and overview of how neurohormones and hormones support plasticity in behavioral expression. Additionally, we describe peripheral tissues such as the midgut, epitracheal glands, and ovaries, which, whilst not necessarily being endocrine glands in the pure sense of the term, do produce and release hormones, thereby providing even more flexibility for inter-organ communication and regulation.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
3
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
4
|
Tang YE, Wang J, Li N, He Y, Zeng Z, Peng Y, Lv B, Zhang XR, Sun HM, Wang Z, Song QS. Comparative analysis unveils the cadmium-induced reproductive toxicity on the testes of Pardosa pseudoannulata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154328. [PMID: 35257768 DOI: 10.1016/j.scitotenv.2022.154328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution is one of the most serious heavy metal pollutions in the world, which has been demonstrated to cause different toxicities to living organisms. Cd has been widely suggested to cause reproductive toxicity to vertebrates, yet its reproductive toxicity to invertebrates is not comprehensive. In this study, the wolf spider Pardosa pseudoannulata was used as a bioindicator to evaluate the male reproductive toxicity of invertebrates under Cd stress. Cd stress had no effect on the color, size and length of testis. However, Cd significantly increased the contents of catalase, glutathione peroxidase and malondialdehyde, the antioxidants in the testis of P. pseudoannulata. Then we analyzed the transcriptome of testis exposed to Cd, and identified a total of 4739 differentially expressed genes (DEGs) compared to control, with 2368 up-regulated and 2371 down-regulated. The enrichment analysis showed that Cd stress could affect spermatogenesis, sperm motility, post-embryonic development, oxidative phosphorylation and metabolism and synthesis of male reproductive components. At the same time, the protein-protein interaction network was constructed with the generated DEGs. Combined with the enrichment analysis of key modules, it revealed that Cd stress could further affect the metabolic process in testis. In general, the analysis of testicular damage and transcriptome under Cd stress can provide a novel insight into the reproductive toxicity of Cd on rice filed arthropods and offer a reference for the protection of rice filed spiders under Cd pollution.
Collapse
Affiliation(s)
- Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Na Li
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Yuan He
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Yong Peng
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Bo Lv
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Xin-Ru Zhang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Hui-Min Sun
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Qi-Sheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Hiroyoshi S, Reddy GVP, Mitsuhashi J. Effects of juvenile hormone analogue (methoprene) and 20-hydroxyecdysone on reproduction in Polygonia c-aureum (Lepidoptera: Nymphalidae) in relation to adult diapause. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:635-647. [DOI: 10.1007/s00359-017-1179-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023]
|
6
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
7
|
Perera OP, Shelby KS, Popham HJR, Gould F, Adang MJ, Jurat-Fuentes JL. Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression. PLoS One 2015; 10:e0128563. [PMID: 26047101 PMCID: PMC4457788 DOI: 10.1371/journal.pone.0128563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/29/2015] [Indexed: 02/04/2023] Open
Abstract
Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete transcriptome to date for this species. Over 138 million reads from the three platforms were assembled into the final set of 63,648 contigs. Of these, 29,978 had significant BLAST scores indicating orthologous relationships to transcripts of other insect species, with the top-hit species being the monarch butterfly (Danaus plexippus) and silkworm (Bombyx mori). Among identified H. virescens orthologs were immune effectors, signal transduction pathways, olfactory receptors, hormone biosynthetic pathways, peptide hormones and their receptors, digestive enzymes, and insecticide resistance enzymes. As an example, we demonstrate the utility of this transcriptomic resource to study gene expression profiling of larval midguts and detect transcripts of putative Bacillus thuringiensis (Bt) Cry toxin receptors. The substantial molecular resources described in this study will facilitate development of H. virescens as a relevant biological model for functional genomics and for new biological experimentation needed to develop efficient control efforts for this and related Noctuid pest moths.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, 38776, United States of America
| | - Kent S. Shelby
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, Missouri, 65203, United States of America
| | - Holly J. R. Popham
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, Missouri, 65203, United States of America
| | - Fred Gould
- Dept. Entomology, North Carolina State University, Raleigh, NC, 27607, United States of America
| | - Michael J. Adang
- Dept. Entomology, University of Georgia, Athens, GA, 30602, United States of America
| | - Juan Luis Jurat-Fuentes
- Dept. Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, United States of America
| |
Collapse
|
8
|
Wasielewski O, Skonieczna M, Kodrík D. Role of allatostatin-like factors from the brain of Tenebrio molitor females. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:223-235. [PMID: 19533743 DOI: 10.1002/arch.20317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of brain extract from females of freshly emerged Tenebrio molitor on ovary, oocyte development, total protein content of hemolymph, and ovary was studied in 4-day-old adult mealworm females. Injections of extracts of 2-brain equivalents into intact (unligatured) Tenebrio females did not affect ovarian and oocyte development. Injections of ligated females, however, with 2-brain equivalents on day 1 and 2 after adult emergence strongly inhibited ovarian growth and oocyte development. At day 4, ligated and injected females did not develop their ovaries and pre-vitellogenic oocytes were not found. The changes in ovarian development correlated with an increase in the concentration of soluble proteins in the hemolymph as compared with the saline-injected controls. Additionally, a strong reduction of total protein content in ovarian tissue was observed. Reverse phase HPLC separation of a methanolic brain extract of T. molitor females showed that fraction 5 has a similar retention time to synthetic cockroach allatostatin. Fraction 5 was eluted at 12.88 min, which was closest to the internal standard Dippu-AST I, which eluted at 12.77 min. An ELISA of fraction 5 from the methanolic brain extract using antibodies against allatostatins Grybi-AST A1 and Grybi-AST B1 from cricket Gryllus bimaculatus showed that fraction 5 cross-reacted with Grybi-AST A1 antibodies. The cross-reactivity was similar to the synthetic allatostatin from D. punctata, which was used as a positive control. These observations demonstrate a possible role for allatostatin-like brain factor(s) in regulating the reproductive cycle of Tenebrio molitor.
Collapse
Affiliation(s)
- O Wasielewski
- Department of Zoology, University of Life Sciences, Poznań, Poland.
| | | | | |
Collapse
|
9
|
Polanska MA, Maksimiuk-Ramirez E, Ciuk MA, Kotwica J, Bebas P. Clock-controlled rhythm of ecdysteroid levels in the haemolymph and testes, and its relation to sperm release in the Egyptian cotton leafworm, Spodoptera littoralis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:426-34. [PMID: 19233333 DOI: 10.1016/j.jinsphys.2009.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 05/12/2023]
Abstract
In Spodoptera littoralis, testicular sperm release occurs in a daily rhythm, which is controlled by endogenous circadian oscillator located in the male reproductive system. Although this rhythm is essential for male fertility, factors that initiate and maintain daily sperm release are not understood. In this study, we investigated a modulatory role for ecdysteroids in the sperm release rhythm and identified the source of ecdysteroids in adult males. We found that the onset of sperm release occurs two days pre-eclosion and coincides with a significant decrease in haemolymph ecdysteroids levels. 20-HE injection into the pupae prior to the first sperm release delayed its initiation and disrupted the developing rhythm in a dose dependent manner. 20-HE injection into adults depressed the number of sperm bundles leaving the testes. A day before the initial sperm release, ecdysteroid levels in the haemolymph and testes begin to oscillate in a circadian fashion. Ecdysteroid rhythms continue throughout imaginal life and correlate with the rhythm of sperm release. In each cycle, testicular sperm release coincides with a trough in testicular ecdysteroid concentration. Rhythmic changes in ecdysteroid levels are regulated by an endogenous circadian oscillator that continues to function in decapitated males. The generation of a complete cycle of ecdysteroid release by testes cultured in vitro indicates that this oscillator is located in the gonads. The haemolymph ecdysteroid levels are significantly lower and arrhythmic in males with removed testes, indicating that the testes are an important ecdysteroid source that may contribute to oscillations in haemolymph ecdysteroid levels.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, Warsaw 02-096, Poland
| | | | | | | | | |
Collapse
|
10
|
Brown MR, Sieglaff DH, Rees HH. Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:105-25. [PMID: 18680437 PMCID: PMC7205109 DOI: 10.1146/annurev.ento.53.103106.093334] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ecdysteroids are multifunctional hormones in male and female arthropods and are stored in oocytes for use during embryogenesis. Ecdysteroid biosynthesis and its hormonal regulation are demonstrated for insect gonads, but not for the gonads of other arthropods. The Y-organ in the cephalothorax of crustaceans and the integument of ticks are sources of secreted ecdysteroids in adults, as in earlier stages, but the tissue source is not known for adults in many arthropod groups. Ecdysteroid metabolism occurs in several tissues of adult arthropods. This review summarizes the evidence for ecdysteroid biosynthesis by gonads and its metabolism in adult arthropods and considers the apparent uniqueness of ecdysteroid hormones in arthropods, given the predominance of vertebrate-type steroids in sister invertebrate groups and vertebrates.
Collapse
Affiliation(s)
- Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
11
|
Wang F, Zhang G, Wen R, He G. Ecdysteroids in the pupae of Opogona sacchari (Bojer), a new invasive alien pest. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-1324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Vafopoulou X, Steel CGH. Testis ecdysiotropic peptides in Rhodnius prolixus: biological activity and distribution in the nervous system and testis. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1227-39. [PMID: 16139295 DOI: 10.1016/j.jinsphys.2005.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 06/26/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
In Rhodnius prolixus, testes from both pharate adult and adult males are shown to produce and release ecdysteroids in vitro. Proteinaceous brain extracts from these stages caused stimulation of ecdysteroid production by testes of unfed adults. Therefore, the brain of Rhodnius contains peptides with testis ecdysiotropic activity. The Lymantria testis ecdysiotropin (LTE) also stimulated the in vitro production of ecdysteroids by unfed adult testis but had no stimulatory effect on prothoracic glands. Western blot analysis of brain peptides using anti-LTE revealed the presence of several medium to small size immunoreactive peptides. Two of these peptides with sizes of 16.8 and 11.0 kDa were present only during pharate adult development and the adult stage. Immunohistochemical analysis using confocal laser scanning microscopy revealed abundant LTE-immunoreactive material in cytoplasmic granules of specific neurosecretory cells in the brain and suboesophageal ganglion and the epithelium of the testis sheath. Clusters of two cytologically distinct cell types were seen within the medial neurosecretory cells (MNC) and also a pair of neurons in the posterior protocerebrum. Feeding in both larvae and adult males resulted in massive release of LTE-immunoreactive material from the MNC cells, suggesting a role of LTE-related peptides in both larval-adult development and in male reproductive development. Release from the MNC cells of LTE-immunoreactive material exhibited a clear daily cycling during larval-adult development, which was synchronous with the rhythms of release of prothoracicotropic hormone and bombyxin reported previously. The testis sheath exhibited intense immunofluorescence in pharate adults and unfed adults, which disappeared following a blood meal. It is concluded that LTE-related peptides are developmentally regulated in several locations and may act as ecdysiotropins in Rhodnius. Those in the MNC cells are very probably classical hormones, i.e. are transported to their target sites via the insect haemolymph.
Collapse
Affiliation(s)
- Xanthe Vafopoulou
- Biology Department, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
13
|
Abstract
SUMMARY
Female receptivity in butterflies and moths is influenced by a multitude of factors that vary between virgin and mated females, and is often affected by the quality and persistence of courting males. Mated females of polyandrous species frequently display a period of non-receptivity following mating, often resulting from factors transferred by the male at mating. Some of these compounds have a transient effect (e.g. anti-aphrodisiacs and mating plugs),whereas others induce long-term suppression of receptivity (i.e. sperm and seminal factors). Sperm appear to generally induce long-term suppression of female receptivity in both butterflies and moths. In some species, production of non-fertile sperm may function to fill the female's sperm storage organ and switch off receptivity, although whether this is a general phenomenon across the Lepidoptera has not yet been examined. Examination of seminal fluids suppressing female receptivity in moths suggests that more than one factor is implicated, but frequently the transfer or stimulation of Juvenile Hormone production is involved. Surprisingly, potential seminal factors influencing female receptivity in butterflies remain largely unexplored. In this review, I summarize the various factors that are known to affect female receptivity in the Lepidoptera to date, and briefly compare the function and similarity of the Pheromone Suppressing Peptide (HezPSP) in moths to that of the Sex Peptide in Drosophila melanogaster (DrmSP). The exciting possibility that seminal peptides in the Lepidoptera and Diptera (e.g. Drosophila melanogaster) may have shared functionality is discussed.
Collapse
Affiliation(s)
- Nina Wedell
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Tremough Campus, Penryn TR10 9EZ, UK.
| |
Collapse
|
14
|
Sieglaff DH, Duncan KA, Brown MR. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:471-490. [PMID: 15804580 DOI: 10.1016/j.ibmb.2005.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 05/24/2023]
Abstract
A blood meal induces the ovaries of female Aedes aegypti mosquitoes to produce ecdysteroid hormones that regulate many processes required for egg maturation. Various proteins involved in the intracellular transport and biosynthesis of ecdysteroid precursors have been identified by analysis of Drosophila melanogaster mutants and by biochemical and molecular techniques in other insects. To begin examining these processes in mosquito ovaries, complete cDNAs were cloned for putative orthologs of diazepam-binding inhibitor (DBI), StAR-related lipid transfer domain containing protein (Start1), aldo/keto reductase (A/KR), adrenodoxin reductase (AR), and the cytochrome P450 enzymes, CYP302a1 (22-hydroxylase), CYP315a1 (2-hydroxylase) and CYP314a1 (20-hydroxylase). As shown by RT-PCR, transcripts for all seven genes were present in ovaries and other tissues both before and following a blood meal. Expression of these genes likely supports the low level of ecdysteroids produced in vitro (7-10 pg /tissue/6 h) by tissues other than ovaries. Ovaries from females not blood fed and up to 6 h post blood meal (PBM) also produced low amounts of ecdysteroids in vitro, but by 18 and 30 h PBM, ecdysteroid production was greatly increased (75-106 pg/ovary pair/6h) and thereafter (48 and 72 h PBM) returned to low levels. As determined by real-time PCR analysis, gene transcript abundance for AedaeCYP302 and AedaeCYP315a1 was significantly greater (9 and 12 fold, respectively) in ovaries during peak ecdysteroid production relative to that in ovaries from females not blood fed or 2 h PBM. AedaeStart1, AedaeA/KR and AedaeAR also had high transcript levels in ovaries during peak ecdysteroid production, and AedaeDBI transcripts had the greatest increase at 48 h PBM. In contrast, gene transcript abundance of AedaeCYP314a1 decreased PBM. This study shows for the first time that transcription of a few key genes for proteins involved in ecdysteroid biosynthesis is positively correlated with the rise in ecdysteroid production by ovaries of a female insect.
Collapse
|
15
|
|