1
|
He X, Yan L, Wu Q, Zhang G, Zhou N. Ligand-dependent internalization of Bombyx mori tachykinin-related peptide receptor is regulated by PKC, GRK5 and β-arrestin2/BmKurtz. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118690. [PMID: 32112783 DOI: 10.1016/j.bbamcr.2020.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Tachykinin signaling system is present in both vertebrates and invertebrates, and functions as neuromodulator responsible for the regulation of various physiological processes. In human, the internalization of G protein-coupled receptors has been extensively characterized; however, the insect GPCR internalization has been rarely investigated. Here, we constructed two expression vectors of Bombyx tachykinin-related peptide receptor (BmTKRPR) fused with Enhanced Green Fluorescent Protein (EGFP) at the C-terminal end for direct visualization of receptor expression, localization, and trafficking in cultured mammalian HEK293 and insect Sf21 cells. Our results demonstrated that agonist-activated BmTKRPR underwent rapid internalization in a dose-and time-dependent manner via a clathrin-dependent pathway in both HEK293 and Sf21 cells. Further investigation via RNAi or specific inhibitors, or co-immunoprecipitation demonstrated that agonist-induced BmTKRPR internalization was mediated by PKC, GRK5 and β-arrestin2/BmKurtz. In addition, we also observed that most of the internalized BmTKRP receptors were recycled to the cell surface via early endosomes upon peptide ligand removal. Our study provides the first in-depth information on mechanisms underlying insect TKRP receptor internalization and perhaps aids in the interpretation of the signaling in the regulation of physiological processes.
Collapse
Affiliation(s)
- Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Guozheng Zhang
- Key Laboratory of Genetic Improvement of Sericulture, Ministry of Agriculture and Rural Affairs, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Dubos MP, Zels S, Schwartz J, Pasquier J, Schoofs L, Favrel P. Characterization of a tachykinin signalling system in the bivalve mollusc Crassostrea gigas. Gen Comp Endocrinol 2018; 266:110-118. [PMID: 29746853 DOI: 10.1016/j.ygcen.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.
Collapse
Affiliation(s)
- Marie-Pierre Dubos
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Sven Zels
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Julie Schwartz
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Jeremy Pasquier
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Pascal Favrel
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France.
| |
Collapse
|
3
|
Misu R, Yamamoto K, Yamada A, Noguchi T, Ohno H, Yamamura T, Okamura H, Matsuda F, Ohkura S, Oishi S, Fujii N. Structure–activity relationship study on senktide for development of novel potent neurokinin-3 receptor selective agonists. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00514g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A potent neurokinin-3 receptor (NK3R) selective agonist with resistance to proteolytic digestion was developed.
Collapse
Affiliation(s)
- Ryosuke Misu
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Koki Yamamoto
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Ai Yamada
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Taro Noguchi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Takashi Yamamura
- Animal Physiology Research Unit
- National Institute of Agrobiological Sciences
- Tsukuba 305-0901
- Japan
| | - Hiroaki Okamura
- Animal Physiology Research Unit
- National Institute of Agrobiological Sciences
- Tsukuba 305-0901
- Japan
| | - Fuko Matsuda
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Satoshi Ohkura
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
4
|
Brillet K, Pereira CA, Wagner R. Expression of membrane proteins in Drosophila Melanogaster S2 cells: Production and analysis of a EGFP-fused G protein-coupled receptor as a model. Methods Mol Biol 2010; 601:119-133. [PMID: 20099143 DOI: 10.1007/978-1-60761-344-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the process of selecting an appropriate host for the heterologous expression of functional eukaryotic membrane proteins, Drosophila S2 cells, although not yet fully explored, appear as a valuable alternative to mammalian cell lines or other virus-infected insect cell systems. This nonlytic, plasmid-based system actually combines several major physiological and bioprocess advantages that make it a highly potential and scalable cellular tool for the production of membrane proteins in a variety of applications, including functional characterization, pharmacological profiling, molecular simulations, structural analyses, or generation of vaccines. We present here a series of protocols and hints that would serve the successful expression of membrane proteins in S2 cells, using an enhanced green fluorescent protein (EGFP)/G protein-coupled receptor (EGFP-GPCR) as a model.
Collapse
Affiliation(s)
- Karl Brillet
- Dpt Récepteurs et des Protéines Membranaires, Illkirch, France
| | | | | |
Collapse
|
5
|
Schetz JA, Shankar EPN. Protein expression in the Drosophila Schneider 2 cell system. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4.16. [PMID: 18428600 DOI: 10.1002/0471142301.ns0416s27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Schneider-2 (S2) Drosophila cell line is well suited for the stable overexpression of recombinant proteins using plasmid-based protein expression vectors. Following drug selection, a polyclonal S2 cell line can be induced to express on the order of 2 to 100 pmol/mg membrane protein for G-coupled protein receptors, 4000 to 100,000 sites/cell for other membrane receptors and 3 to 35 mg/liter for soluble and secreted proteins.
Collapse
Affiliation(s)
- John A Schetz
- University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | |
Collapse
|
6
|
Abstract
The tachykinins form one of the largest peptide families in nature. In this review, we describe the comparative features of the tachykinin peptides and their receptors, focusing particularly on amphibians. We also summarize our systematic studies of the localization, characteristics, and actions of bufokinin, a toad substance P-related peptide, in its species of origin. In addition, we discuss the establishment of multiple isoforms of the NK1-like receptor in the toad, and their structure, pharmacology and tissue distributions. We conclude that tachykinin peptides and receptors are well conserved in terms of their structures, physiological functions and coupling mechanisms during tetrapod evolution.
Collapse
Affiliation(s)
- Lu Liu
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
7
|
Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J. Insect Neuropeptide and Peptide Hormone Receptors: Current Knowledge and Future Directions. VITAMINS & HORMONES 2005; 73:217-82. [PMID: 16399412 DOI: 10.1016/s0083-6729(05)73007-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides form a very versatile class of extracellular messenger molecules that function as chemical communication signals between the cells of an organism. Molecular diversity is created at different levels of the peptide synthesis scheme. Peptide messengers exert their biological functions via specific signal-transducing membrane receptors. The evolutionary origin of several peptide precursor and receptor gene families precedes the divergence of the important animal Phyla. In this chapter, current knowledge is reviewed with respect to the analysis of peptide receptors from insects, incorporating many recent data that result from the sequencing of different insect genomes. Therefore, detailed information is provided on six different peptide receptor families belonging to two distinct receptor categories (i.e., the heptahelical and the single transmembrane receptors). In addition, the remaining problems, the emerging concepts, and the future prospects in this area of research are discussed.
Collapse
MESH Headings
- Animals
- Drosophila/genetics
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Forecasting
- Frizzled Receptors/genetics
- Frizzled Receptors/physiology
- Insecta/genetics
- Insecta/physiology
- Invertebrate Hormones/genetics
- Invertebrate Hormones/physiology
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/physiology
- Receptors, Guanylate Cyclase-Coupled/genetics
- Receptors, Guanylate Cyclase-Coupled/physiology
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/physiology
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Receptors, Tachykinin/genetics
- Receptors, Tachykinin/physiology
- Receptors, Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Ilse Claeys
- Laboratory for Developmental Physiology, Genomics and Proteomics Department of Animal Physiology and Neurobiology, Zoological Institute K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kwok R, Chung D, Brugge VT, Orchard I. The distribution and activity of tachykinin-related peptides in the blood-feeding bug, Rhodnius prolixus. Peptides 2005; 26:43-51. [PMID: 15626503 DOI: 10.1016/j.peptides.2004.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 08/31/2004] [Indexed: 11/29/2022]
Abstract
The invertebrate tachykinin-related peptides (TRPs) with the conserved C-terminal sequence FX1GX2Ramide shows sequence similarity to the vertebrate tachykinins after which they are named, and are hypothesized to be ancestrally related. In this study a polyclonal antiserum generated against a locust tachykinin (LomTK I), was used to demonstrate the presence and describe the distribution of LomTK-like immnoreactivity in the CNS and gut of Rhodnius prolixus. Reverse phase high performance liquid chromatography (RP-HPLC) was used in combination with a sensitive radioimmunoassay (RIA) to demonstrate picomolar amounts of immunoreactive material in the CNS, and femptomolar amounts associated with the hindgut. Furthermore, the results from CNS extracts separated by RP-HPLC, suggest that at least two tachykinin isoforms exist in R. prolixus. A hindgut contraction assay was developed to quantify the myotropic effects of selected LomTKs on R. prolixus hindgut contraction. Both LomTK I and II caused an increase in the frequency of hindgut contractions with EC50 values of 3.6x10(-8)M and 3.8x10(-8)M for LomTK I and II, respectively.
Collapse
Affiliation(s)
- Rodney Kwok
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada, L5L 1C6.
| | | | | | | |
Collapse
|
9
|
Liu L, Markus I, Vandenberg RJ, Neilan BA, Murray M, Burcher E. Molecular identification and characterization of three isoforms of tachykinin NK1-like receptors in the cane toadBufo marinus. Am J Physiol Regul Integr Comp Physiol 2004; 287:R575-85. [PMID: 15155274 DOI: 10.1152/ajpregu.00051.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tachykinin peptide bufokinin, isolated from the cane toad intestine, is important in intestinal and cardiovascular regulation in the toad. In this study, three tachykinin NK1-like receptor isoforms, bNK1-A, bNK1-B, and bNK1-C, encoding proteins of 309, 390, and 371 amino acids, respectively, were cloned from the toad brain and intestine. These isoforms differ only at the intracellular COOH terminus. The bNK1-A and bNK1-B isoforms are similar to the truncated and full-length forms of the mammalian NK1receptor, whereas bNK1-C is unique and does not correspond to any previously described receptor. RT-PCR studies demonstrated that three isoform transcripts are widely distributed in the toad with high expression in gut, spinal cord, brain, lung, and skeletal muscle. When expressed in COS-7 cells, bufokinin showed similar high affinity (IC500.6–0.8 nM) in competing for125I-labeled Bolton-Hunter bufokinin binding at all receptors, but the binding affinities of substance P (SP) and neurokinin A (NKA) were very different at each isoform. When expressed in Xenopus oocytes, the truncated isoform, bNK1-A, was inactive, whereas bNK1-B and bNK1-C produced changes in chloride current when stimulated by tachykinins (minimum concentrations: bufokinin, 0.1 nM; SP, 1 nM; and NKA, 10 nM). A marked desensitization of the response was seen to subsequent applications of tachykinins, as experienced by the mammalian NK1receptor. In summary, our study describing three isoforms of NK1-like receptor from the toad suggests that the alternative splicing of NK1receptor is a physiologically conserved mechanism and raises a fundamental question as to the physiological role of each isoform.
Collapse
Affiliation(s)
- Lu Liu
- School of Medical Sciences, Univ. of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Silverstein AM, Mumby MC. Analysis of protein phosphatase function in Drosophila cells using RNA interference. Methods Enzymol 2004; 366:361-72. [PMID: 14674261 DOI: 10.1016/s0076-6879(03)66027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double stranded RNA-mediated RNA interference is an effective method to downregulate the levels of protein phosphatases in Drosophila S2 cells. In many cases, nearly complete ablation of the targeted protein can be achieved. RNAi-mediated knockdown of protein phosphatases is akin to pharmacological inhibition with drugs and can be used to determine the roles of specific protein phosphatases in intact cells. RNAi can avoid the problems associated with less than adequate specificity of phosphatase inhibitors. Although information about the signaling pathways present in Drosophila S2 cells is not as well developed as many mammalian cell lines, the Drosophila system is particularly attractive for the study of oligomeric phosphatases like PP2A. Drosophila has far fewer isoforms for the phosphatases we have examined. This is especially true of the genes for PP2A regulatory subunits where over 50 isoforms are present in mammals but only four are present in Drosophila. Once hypotheses regarding phosphatase function have been generated from RNAi experiments in S2 cells, they can potentially be tested utilizing recent advances in the use of siRNAs to conduct RNAi experiments in mammalian cell lines. RNAi in Drosophila S2 cells has proven to be a powerful technique for identifying physiological functions of signaling proteins. The RNAi method is straightforward and works routinely with almost all proteins. RNAi in S2 cells can be used to assess the role of signaling proteins in specific pathways and as a screening tool to identify new roles for signaling molecules. For example, results from RNAi analysis of PP2A show that regulation of MAP kinase signaling involves the R2/B regulatory subunit and that the R5/B56 subunits play a previously unidentified role in apoptosis. While RNAi in Drosophila S2 cells is a powerful tool for analyzing protein function, the method does have limitations. Foremost, cells may exhibit an RNAi response to any nonspecific dsRNA, even in the absence of interferon. Therefore, physiological processes that respond to nonspecific dsRNA will be difficult to study. A second limitation is the need to produce antibodies that react with Drosophila isoforms. We have found that many antibodies to mammalian protein phosphatases do not cross-react with the corresponding Drosophila proteins. Finally, the physiology and signaling pathways of S2 cells have not been extensively studied. This lack of information limits the number of available readouts that can be used when assessing the effects of protein knockdowns.
Collapse
Affiliation(s)
- Adam M Silverstein
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
11
|
Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH. Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 2003; 278:52172-8. [PMID: 14555656 DOI: 10.1074/jbc.m306756200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors.
Collapse
Affiliation(s)
- Erik C Johnson
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Johard HAD, Coast GM, Mordue W, Nässel DR. Diuretic action of the peptide locustatachykinin I: cellular localisation and effects on fluid secretion in Malpighian tubules of locusts. Peptides 2003; 24:1571-9. [PMID: 14706536 DOI: 10.1016/j.peptides.2003.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In insects primary urine is produced by the Malpighian tubules under hormonal control. Here we have analysed the effects of the peptide locustatachykinin I (Lom-TK-I) on secretion in isolated Malphigian tubules. We also mapped the distribution of Lom-TK immunoreactivity in the gut in comparison with Locusta diuretic hormone (Lom-DH) and serotonin, two other factors that are active on locust tubules. Lom-TK-I produces an immediate, potent and long-lasting stimulation of fluid secretion. Furthermore, we show that Lom-TK-I acts synergistically with Lom-DH on fluid secretion and demonstrate that Lom-TKs are co-localised with Lom-DH in endocrine cells of the midgut ampullae. Thus, the two peptides might be released together to act synergistically on fluid secretion. Also serotonin and Lom-DH act synergistically and we can demonstrate a plexus of serotonin-containing axon processes over the midgut.
Collapse
Affiliation(s)
- Helena A D Johard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 14, SE-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Oeh U, Antonicek H, Nauen R. Myotropic effect of helicokinins, tachykinin-related peptides and Manduca sexta allatotropin on the gut of Heliothis virescens (Lepidoptera: Noctuidae). JOURNAL OF INSECT PHYSIOLOGY 2003; 49:323-337. [PMID: 12769986 DOI: 10.1016/s0022-1910(03)00017-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Different insect neuropeptides (helicokinins, tachykinin-related and allatoregulating peptides) were investigated with regard to their myostimulatory effects using whole-gut preparations isolated from fifth instar Heliothis virescens larvae. The experiments demonstrated that representatives of all three peptide families are able to induce and amplify gut contractions in this species in a dose-dependent manner. Structure-activity studies (alanine scan, D-amino acid scan and truncated analogues) with the helicokinin Hez-K1 supported the finding, that the core sequence for biological activity of kinins is the amidated C-terminal pentapeptide (FSPWG-amide). Similar investigations with insect tachykinin isolated from Leucophaea madera (Lem-TRP1) revealed that the minimum sequence evoking a physiological gut response in H. virescens is the amidated hexapeptide (GFLGVR-amide), which represents the conserved amino acid sequence for Leucophaea TRPs in general. The peptide concentration causing a half-maximal gut contraction (EC(50)) for Lem-TRP1 was about 26 nM. Although the potency of Lem-TRP1 was 9-fold lower compared with Hez-KI (EC(50): 3 nM), the maximal tension of the gut obtained with Lem-TRP1 was 1.7-fold higher compared with Hez-KI. The EC(50) of Manduca sexta allatotropin (Mas-AT; 79 nM) was of lowest potency among all three peptides tested. In a pharmacological study, co-incubation experiments with Lem-TRP1, Hez-KI or Mas-AT and compounds interfering with signal transduction pathways were employed to investigate the mode of action of the myotropic effects of these peptides. Cadmium and the protein kinase C (PKC) inhibitor tamoxifen attenuated the contractile effects of all three peptides tested. The data suggest that in the gut muscle of H. virescens the myotropic peptides bind to G-protein-coupled receptors that cause contraction by promoting the entry of extracellular calcium mediated by a PKC involved pathway.
Collapse
Affiliation(s)
- U Oeh
- Bayer AG, Bayer CropScience, Global Biology Insecticides, Building 6220, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | | | | |
Collapse
|
14
|
Holmes SP, Barhoumi R, Nachman RJ, Pietrantonio PV. Functional analysis of a G protein-coupled receptor from the southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor. INSECT MOLECULAR BIOLOGY 2003; 12:27-38. [PMID: 12542633 DOI: 10.1046/j.1365-2583.2003.00384.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The myokinins are invertebrate neuropeptides with myotropic and diuretic activity. The lymnokinin receptor from the snail Lymnaea stagnalis (Mollusca) has been the only previously identified myokinin receptor. We had cloned a G protein-coupled receptor (AF228521) from the tick Boophilus microplus (Arthropoda: Acari), 40% identical to the lymnokinin receptor, that we have now expressed in CHO-K1 cells. Myokinins at nanomolar concentrations induced intracellular calcium release, as measured by fluorescent cytometry and the receptor coupled to a pertussis toxin-insensitive G protein. Absence of extracellular calcium did not inhibit the fluorescence response, indicating that intracellular stores were sufficient for the initial response. Control cells only transfected with vector did not respond. We conclude that the tick receptor is the first myokinin receptor to be cloned from an arthropod.
Collapse
Affiliation(s)
- S P Holmes
- Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, USA
| | | | | | | |
Collapse
|
15
|
Meeusen T, Mertens I, De Loof A, Schoofs L. G Protein-Coupled Receptors in Invertebrates: A State of the Art. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 230:189-261. [PMID: 14692683 DOI: 10.1016/s0074-7696(03)30004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest and most ancient superfamilies of membrane-spanning proteins. We focus on neuropeptide GPCRs, in particular on those of invertebrates. In general, such receptors mediate the responses of signaling molecules that constitute the highest hierarchical position in the regulation of physiological processes. Until recently, only a few of these receptors were identified in invertebrates. However, the availability of a plethora of genomic information has boosted the discovery of novel members in several invertebrate species, such as Drosophila, in which 18 neuropeptide GPCRs have been characterized. The finalization of genomic projects in other invertebrates will lead to a similar expansion of GPCR understanding. Many new insights regarding neuropeptide regulation have followed from the discovery of their cognate receptors. Furthermore, information on GPCR signaling is still fragmentary and the elucidation of these pathways in model insects such as Drosophila will lead to further insights in other species, including mammals. In this review we present the current status of what is known about invertebrate GPCRs, discuss some novel perceptions that follow from the identified members, and, finally, present some future prospects.
Collapse
Affiliation(s)
- Tom Meeusen
- Laboratory of Developmental Physiology, Genomics, and Proteomics, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
16
|
Torfs H, Akerman KE, Nachman RJ, Oonk HB, Detheux M, Poels J, Loy TV, Loof AD, Meloen RH, Vassart G, Parmentier M, Broeck JV. Functional analysis of synthetic insectatachykinin analogs on recombinant neurokinin receptor expressing cell lines. Peptides 2002; 23:1999-2005. [PMID: 12431738 DOI: 10.1016/s0196-9781(02)00187-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of a series of synthetic tachykinin-like peptide analogs was studied by means of microscopic calcium imaging on recombinant neurokinin receptor expressing cell lines. A C-terminal pentapeptide (FTGMRa) is sufficient for activation of the stomoxytachykinin receptor (STKR) expressed in Schneider 2 cells. Replacement of amino acid residues at the position of the conserved phenylalanine (F) or arginine (R) residues by alanine (A) results in inactive peptides (when tested at 1microM), whereas A-replacements at other positions do not abolish the biological activity of the resulting insectatachykinin-like analogs. Calcium imaging was also employed to compare the activity of C-terminally substituted tachykinin analogs on three different neurokinin receptors. The results indicate that the major pharmacological and evolutionary difference between tachykinin-related agonists for insect (STKR) and human (NK1 and NK2) receptors resides in the C-terminal amino acid residues (R versus M). A single C-terminal amino acid change can turn an STKR-agonist into an NK-agonist and vice versa.
Collapse
Affiliation(s)
- Herbert Torfs
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute K.U. Leuven, Naamsestraat 59, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kawada T, Furukawa Y, Shimizu Y, Minakata H, Nomoto K, Satake H. A novel tachykinin-related peptide receptor. Sequence, genomic organization, and functional analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4238-46. [PMID: 12199702 DOI: 10.1046/j.1432-1033.2002.03106.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structurally tachykinin-related peptides have been isolated from various invertebrate species and shown to exhibit their biological activities through a G-protein-coupled receptor (GPCR) for a tachykinin-related peptide. In this paper, we report the identification of a novel tachykinin-related peptide receptor, the urechistachykinin receptor (UTKR) from the echiuroid worm, Urechis unitinctus. The deduced UTKR precursor includes seven transmembrane domains and typical sites for mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors. A functional analysis of the UTKR expressed in Xenopus oocytes demonstrated that UTKR, like tachykinin receptors and tachykinin-related peptide receptors, activates calcium-dependent signal transduction upon binding to its endogenous ligands, urechistachykinins (Uru-TKs) I-V and VII, which were isolated as Urechis tachykinin-related peptides from the nervous tissue of the Urechis unitinctus in our previous study. UTKR responded to all Uru-TKs equivalently, showing that UTKR possesses no selective affinity with Uru-TKs. In contrast, UTKR was not activated by substance P or an Uru-TK analog containing a C-terminal Met-NH2 instead of Arg-NH2. Furthermore, the genomic analysis revealed that the UTKR gene, like mammalian tachykinin receptor genes, consists of five exons interrupted by four introns, and all the intron-inserted positions are completely compatible with those of mammalian tachykinin receptor genes. These results suggest that mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors were evolved from a common ancestral GPCR gene. This is the first identification of an invertebrate tachykinin-related peptide receptor from other species than insects and also of the genomic structure of a tachykinin-related peptide receptor gene.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, Wakayamadai 1-1-1, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1-84. [PMID: 12427481 DOI: 10.1016/s0301-0082(02)00057-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropeptides in insects act as neuromodulators in the central and peripheral nervous system and as regulatory hormones released into the circulation. The functional roles of insect neuropeptides encompass regulation of homeostasis, organization of behaviors, initiation and coordination of developmental processes and modulation of neuronal and muscular activity. With the completion of the sequencing of the Drosophila genome we have obtained a fairly good estimate of the total number of genes encoding neuropeptide precursors and thus the total number of neuropeptides in an insect. At present there are 23 identified genes that encode predicted neuropeptides and an additional seven encoding insulin-like peptides in Drosophila. Since the number of G-protein-coupled neuropeptide receptors in Drosophila is estimated to be around 40, the total number of neuropeptide genes in this insect will probably not exceed three dozen. The neuropeptides can be grouped into families, and it is suggested here that related peptides encoded on a Drosophila gene constitute a family and that peptides from related genes (orthologs) in other species belong to the same family. Some peptides are encoded as multiple related isoforms on a precursor and it is possible that many of these isoforms are functionally redundant. The distribution and possible functions of members of the 23 neuropeptide families and the insulin-like peptides are discussed. It is clear that each of the distinct neuropeptides are present in specific small sets of neurons and/or neurosecretory cells and in some cases in cells of the intestine or certain peripheral sites. The distribution patterns vary extensively between types of neuropeptides. Another feature emerging for many insect neuropeptides is that they appear to be multifunctional. One and the same peptide may act both in the CNS and as a circulating hormone and play different functional roles at different central and peripheral targets. A neuropeptide can, for instance, act as a coreleased signal that modulates the action of a classical transmitter and the peptide action depends on the cotransmitter and the specific circuit where it is released. Some peptides, however, may work as molecular switches and trigger specific global responses at a given time. Drosophila, in spite of its small size, is now emerging as a very favorable organism for the studies of neuropeptide function due to the arsenal of molecular genetics methods available.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
19
|
Torfs H, Detheux M, Oonk HB, Akerman KE, Poels J, Van Loy T, De Loof A, Vassart G, Parmentier M, Vanden Broeck J. Analysis of C-terminally substituted tachykinin-like peptide agonists by means of aequorin-based luminescent assays for human and insect neurokinin receptors. Biochem Pharmacol 2002; 63:1675-82. [PMID: 12007570 DOI: 10.1016/s0006-2952(02)00914-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aequorin-based assays for stable fly, Stomoxys calcitrans, (STKR) and human (neurokinin receptor 1 (NK1), neurokinin receptor 2 (NK2)) neurokinin-like receptors were employed to investigate the impact of a C-terminal amino acid exchange in synthetic vertebrate ('FXGLMa') and invertebrate ('FX1GX2Ra') tachykinin-like peptides. C-terminally (Arg to Met) substituted analogs of the insect tachykinin-related peptide, Lom-TK I, displayed increased agonistic potencies in luminescent assays for human NK1 and NK2 receptors, whereas they showed reduced potencies in the STKR-assay. The opposite effects were observed when C-terminally (Met to Arg) substituted analogs of substance P were analysed. These substance P analogs proved to be very potent STKR-agonists, being more potent than Lom-TK I. On the other hand, Lom-TK-LMa, was shown to be a very potent NK1-agonist and was suggested to have more substance-P-mimetic than neurokinin-A-mimetic properties. NK1 and NK2 receptor agonists appeared to be more sensitive to changes at the penultimate amino acid position than STKR-agonists. This is also reflected in the sequence conservation that is observed in the naturally occurring tachykinin subgroups ('FXGLMa' vs. 'FX1GX2Ra'). The differential Arg-Met preference appears to be a major coevolutionary change between insect and human peptide-receptor couples. With regard to the peptide agonists, this change can theoretically be based on a single point mutation.
Collapse
Affiliation(s)
- Herbert Torfs
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute K.U.Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Broeck JV. Insect G protein-coupled receptors and signal transduction. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:1-12. [PMID: 11519072 DOI: 10.1002/arch.1054] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins (7-TM) that transduce extracellular signals into cellular physiological responses through the activation of heterotrimeric guanine nucleotide binding proteins (alpha beta gamma subunits). Their general properties are remarkably well conserved during evolution. Despite this general resemblance, a large variety of different signals are mediated via this category of receptors. Several GPCR-(sub)families have an ancient origin that is situated before the divergence of Protostomian and Deuterostomian animals. Nevertheless, an enormous diversification has occurred since then. The availability of novel sequence information is growing very rapidly as a result of molecular cloning experiments and of metazoan genome (Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens) and EST (expressed sequence tags) sequencing projects. The Drosophila Genome Sequencing Project will certainly have an important impact on insect signal transduction and receptor research. In parallel, convenient expression systems and functional assay procedures will be needed to investigate insect receptor properties and to monitor the effects of natural and artificial ligands. The study of the evolutionary aspects of G protein-coupled receptors and of their signaling pathways will probably reveal insect-specific features. More insight into these features may result in novel methods and practical applications. Arch.
Collapse
Affiliation(s)
- J V Broeck
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, K.U. Leuven, Leuven, Belgium.
| |
Collapse
|