1
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Wang Z, Luo R, Wen Q, Liang X, Zhao H, Zhao Y, Yin M, Wen Y, Hu X, Huang F. Screening and functional verification of drought resistance-related genes in castor bean seeds. BMC PLANT BIOLOGY 2024; 24:493. [PMID: 38831288 PMCID: PMC11145773 DOI: 10.1186/s12870-024-04997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/08/2024] [Indexed: 06/05/2024]
Abstract
Drought is one of the natural stresses that greatly impact plants. Castor bean (Ricinus communis L.) is an oil crop with high economic value. Drought is one of the factors limiting castor bean growth. The drought resistance mechanisms of castor bean have become a research focus. In this study, we used castor germinating embryos as experimental materials, and screened genes related to drought resistance through physiological measurements, proteomics and metabolomics joint analysis; castor drought-related genes were subjected to transient silencing expression analysis in castor leaves to validate their drought-resistant functions, and heterologous overexpression and backward complementary expression in Arabidopsis thaliana, and analysed the mechanism of the genes' response to the participation of Arabidopsis thaliana in drought-resistance.Three drought tolerance-related genes, RcECP 63, RcDDX 31 and RcA/HD1, were obtained by screening and analysis, and transient silencing of expression in castor leaves further verified that these three genes corresponded to drought stress, and heterologous overexpression and back-complementary expression of the three genes in Arabidopsis thaliana revealed that the function of these three genes in drought stress response.In this study, three drought tolerance related genes, RcECP 63, RcDDX 31 and RcA/HD1, were screened and analysed for gene function, which were found to be responsive to drought stress and to function in drought stress, laying the foundation for the study of drought tolerance mechanism in castor bean.
Collapse
Grants
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Rui Luo
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Qi Wen
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Xiaotian Liang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, 137000, China
| | - Huibo Zhao
- China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong Zhao
- School of Life Sciences, Laboratory of Genetics, Baicheng Normal University, Baicheng, 137000, China
| | - Mingda Yin
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Yanpeng Wen
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Xuemei Hu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Fenglan Huang
- Key Laboratory of Castor Breeding of the National Ethnic Affairs Commission of the People's Republic of China, Tongliao, 028000, Inner Mongolia, China.
- Inner Mongolia Key Laboratory of Castor Breeding and Comprehensive Utilization, Tongliao, 028000, Inner Mongolia, China.
| |
Collapse
|
3
|
Kong W, Huo R, Lu Y, Fan Z, Yue R, Ren A, Li L, Ding P, Ren Y, Gao Z, Sun M. Nitrogen Application Can Optimize Form of Selenium in Soil in Selenium-Rich Areas to Affect Selenium Absorption and Accumulation in Black Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:4160. [PMID: 38140488 PMCID: PMC10747177 DOI: 10.3390/plants12244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The composition and form of selenium in the soil have significant effects on the selenium content of crops. In this study, we investigated the selenium absorption pathway in plants by studying the interaction between nitrogen fertilizer and soil selenium. Our results showed that the selenium concentration enrichment factors (CEF) varied within the same region due to nitrogen fertilizer application, where they ranged from 1.33 to 5.02. The soil selenium flow coefficient (mobility factor, MF) increased with higher nitrogen application rates. The sum of the MF values for each soil layer treated with nitrogen application rates of 192 kg hm-2 and 240 kg hm-2 was 0.70, which was 64% higher than that for the control group with no nitrogen application. In the 0-20 cm soil layer, the highest summed water-soluble and exchangeable selenium and relative percentage of total selenium (12.45%) was observed at a nitrogen application rate of 240 kg hm-2. In the 20-40 cm soil layer, the highest relative percentage content of water-soluble and exchangeable selenium and total selenium (12.66%) was observed at a nitrogen application rate of 192 kg hm-2. Experimental treatment of black wheat with various concentrations of sodium selenite showed that selenium treatment at 50 μmol L-1 significantly increased the reduced glutathione (GSH) levels in the leaves and roots of seedlings, where the GSH contents increased by 155.4% in the leaves and by 91.5% in the roots. Further analysis of the soil-black wheat system showed that nitrogen application in selenium-rich areas affected the soil selenium flow coefficient and morphological composition, thereby changing the enrichment coefficient for leaves (0.823), transport capacity from leaves to grains (-0.530), and enrichment coefficient for roots (0.38). These changes ultimately affected the selenium concentration in the grains of black wheat.
Collapse
Affiliation(s)
- Weilin Kong
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Ruiwen Huo
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Yu Lu
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Zhenjie Fan
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Runqing Yue
- Yangquan Agricultural Technical Service Center, Yangquan 045000, China
| | - Aixia Ren
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Linghong Li
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Pengcheng Ding
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Yongkang Ren
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| |
Collapse
|
4
|
Zhang Q, Wang J, Wang J, Liu M, Ma X, Bai Y, Chen Q, Sheng S, Wang F. Nano-Silicon Triggers Rapid Transcriptomic Reprogramming and Biochemical Defenses in Brassica napus Challenged with Sclerotinia sclerotiorum. J Fungi (Basel) 2023; 9:1108. [PMID: 37998913 PMCID: PMC10672660 DOI: 10.3390/jof9111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Stem rot caused by Sclerotinia sclerotiorum poses a significant threat to global agriculture, leading to substantial economic losses. To explore innovative integrated pest management strategies and elucidate the underlying mechanisms, this study examined the impact of nano-silicon on enhancing resistance to Sclerotinia sclerotiorum in Brassica napus. Bacteriostatic assays revealed that nano-silicon effectively inhibited the mycelial growth of Sclerotinia sclerotiorum in a dose-dependent manner. Field trials corroborated the utility of nano-silicon as a fertilizer, substantially bolstering resistance in the Brassica napus cultivar Xiangyou 420. Specifically, the disease index was reduced by 39-52% across three distinct geographical locations when compared to untreated controls. This heightened resistance was attributed to nano-silicon's role in promoting the accumulation of essential elements such as silicon (Si), potassium (K), and calcium (Ca), while concurrently reducing sodium (Na) absorption. Furthermore, nano-silicon was found to elevate the levels of soluble sugars and lignin, while reducing cellulose content in both leaves and stems. It also enhanced the activity levels of antioxidant enzymes. Transcriptomic analysis revealed 22,546 differentially expressed genes in Si-treated Brassica napus post-Sclerotinia inoculation, with the most pronounced transcriptional changes observed one day post-inoculation. Weighted gene co-expression network analysis identified a module comprising 45 hub genes that are implicated in signaling, transcriptional regulation, metabolism, and defense mechanisms. In summary, nano-silicon confers resistance to Brassica napus against Sclerotinia sclerotiorum by modulating biochemical defenses, enhancing antioxidative activities, and rapidly reprogramming key resistance-associated genes. These findings contribute to our mechanistic understanding of Si-mediated resistance against necrotrophic fungi and offer valuable insights for the development of stem-rot-resistant Brassica napus cultivars.
Collapse
Affiliation(s)
- Qiuping Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jiaqi Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
| | - Jiajia Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
| | - Mulan Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
| | - Xiao Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
| | - Yang Bai
- Zhongshanshi Junyejiate Agricultural Technology Co., Ltd., Zhongshan 528400, China (Q.C.)
| | - Qiang Chen
- Zhongshanshi Junyejiate Agricultural Technology Co., Ltd., Zhongshan 528400, China (Q.C.)
| | - Song Sheng
- Yuelushan Laboratory, Changsha 410128, China
- College of Forest, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
5
|
Gao J, Meng P, Zhao Y, Zhang J, He C, Wang Q, Cai J. Light-Emitting Diodes Modify Medicinal Quality of Mown Rabdosia rubescens, with Changes in Growth, Physiology, and Antioxidant Activity, under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3189. [PMID: 37765353 PMCID: PMC10536318 DOI: 10.3390/plants12183189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Medicinal plants accommodated by understory habitats can easily suffer over-exploitation in the heavy harvest of natural products. It is necessary to develop a sustainable cultural protocol to provide high-quality stocks for efficient regeneration. Drought places stress on medicinal plants during their culture by limiting new sprout growth and reducing the quality of medicinal extracts. Artificial mediating approaches should be considered in a sustainable regime of medicinal plant culture to test the potential tradeoff between resistance to drought and production ability. In this study, Rabdosia rubescens seedlings were raised in three light-emitting diode (LED) spectra from red (71.7% red, 14.6% green, 13.7% blue), green (26.2% red, 17.4% green, 56.4% blue), and blue (17.8% red, 33.7% green, 48.5% blue) lights. Mown seedlings were subjected to a simulated drought event. Drought stressed the seedlings by reducing the growth, dry mass, nitrogen (N) uptake, and oridonin content. Mowing increased the oridonin content but decreased total C and N accumulation and the δ13C level. The red light benefitted starch accumulation only under the well-watered condition, and the green light induced an upregulation of δ13C but decreased antioxidant activity. Oridonin content was negatively associated with combined δ13C and catalase activity. Overall, either mowing or blue light can be recommended for the culture of R. rubescens to increase oridonin content, alleviating some of the negative consequences of drought.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.G.); (P.M.); (J.Z.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, Nanjing 210037, China;
- Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, Jiyuan 454650, China
| | - Ping Meng
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.G.); (P.M.); (J.Z.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, Nanjing 210037, China;
- Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, Jiyuan 454650, China
| | - Yan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
| | - Jinsong Zhang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.G.); (P.M.); (J.Z.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, Nanjing 210037, China;
- Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, Jiyuan 454650, China
| | - Chunxia He
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.G.); (P.M.); (J.Z.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, Nanjing 210037, China;
- Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, Jiyuan 454650, China
| | - Qirui Wang
- School of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinfeng Cai
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, Nanjing 210037, China;
| |
Collapse
|
6
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Zhang Q, Ruan J, Mumm R, de Vos RCH, Liu MY. Dynamic Changes in the Antioxidative Defense System in the Tea Plant Reveal the Photoprotection-Mediated Temporal Accumulation of Flavonoids under Full Sunlight Exposure. PLANT & CELL PHYSIOLOGY 2022; 63:1695-1708. [PMID: 36043695 DOI: 10.1093/pcp/pcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
To reveal the mechanisms underlying how light affects flavonoid metabolism and the potential role of flavonoids in protecting against photooxidative stress in tea leaves, tea plants adapted to low-light conditions were exposed to full sunlight over 48 h. There was an increase in the activities of catalase (CAT) and superoxide dismutase (SOD) as well as greater accumulation of reactive oxygen species, lutein, tocopherols, ascorbate and malondialdehyde, suggestive of a time-dependent response to photooxidative stress in tea leaves. Analysis of the time dependency of each element of the antioxidant system indicated that carotenoids and tocopherols exhibited the fastest response to light stress (within 3 h), followed by SOD, CAT and catechin, which peaked at 24 h. Meanwhile, flavonols, vitamin C and glutathione showed the slowest response. Subsequent identification of the main phytochemicals involved in protecting against oxidative stress using untargeted metabolomics revealed a fast and initial accumulation of nonesterified catechins that preceded the increase in flavonol glycosides and catechin esters. Gene expression analysis suggested that the light-induced accumulation of flavonoids was highly associated with the gene encoding flavonol synthase. Ultraviolet B (UV-B) irradiation further validated the time-dependent and collaborative effects of flavonoids in photoprotection in tea plants. Intriguingly, the dynamics of the metabolic response are highly distinct from those reported for Arabidopsis, suggesting that the response to light stress is not conserved across plants. This study additionally provides new insights into the functional role of flavonoids in preventing photooxidative stress and may contribute to further improving tea quality through the control of light intensity.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| | - Roland Mumm
- Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ric C H de Vos
- Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mei-Ya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| |
Collapse
|
8
|
Alleviation of salt stress and promotion of growth in peanut by Tsukamurella tyrosinosolvens and Burkholderia pyrrocinia. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Tong C, Yang G, AoenBolige, Terigen, Li H, Li B, Li Z, Zheng Q. Screening of Salt-Tolerant Thinopyrum ponticum Under Two Coastal Region Salinity Stress Levels. Front Genet 2022; 13:832013. [PMID: 35186046 PMCID: PMC8855210 DOI: 10.3389/fgene.2022.832013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
To accelerate the exploitation and use of marginal soils and develop salt-tolerant forage germplasm suitable for the coastal regions of China, seven lines of decaploid tall wheatgrass [Thinopyrum ponticum (Podp.) Barkworth and D. R. Dewey, 2n = 10x = 70] were transplanted under low (.3%) and high (.5%) salt conditions for a comprehensive analysis at the adult-plant stage. Differences were observed among these materials, especially in terms of grass yield, agronomic characteristics, and physiological and biochemical indices. Line C2 grew best with the highest shoot total fresh and dry weights under all conditions except for the milk-ripe stage in Dongying in 2019. The total membership value of C2 also reflected its excellent performance after transplanting. As superior germplasm, its relatively high antioxidant enzyme activities and chlorophyll a/b ratio suggested C2 may maintain normal metabolic and physiological functions under saline conditions. Furthermore, decaploid tall wheatgrass as a forage grass species has a high nutritive value beneficial for animal husbandry. Accordingly, line C2 may be used as excellent germplasm to develop salt-tolerant cultivars in the Circum-Bohai sea.
Collapse
|
10
|
Yu L, Iqbal S, Zhang Y, Zhang G, Ali U, Lu S, Yao X, Guo L. Proteome-wide identification of S-sulphenylated cysteines in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3571-3582. [PMID: 34347306 DOI: 10.1111/pce.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Deregulation of reduction-oxidation (redox) metabolism under environmental stresses results in enhanced production of intracellular reactive oxygen species (ROS), which ultimately leads to post-translational modifications (PTMs) of responsive proteins. Redox PTMs play an important role in regulation of protein function and cellular signalling. By means of large-scale redox proteomics, we studied reversible cysteine modification during the response to short-term salt stress in Brassica napus (B. napus). We applied an iodoacetyl tandem mass tags (iodoTMT)-based proteomic approach to analyse the redox proteome of B. napus seedlings under control and salt-stressed conditions. We identified 1,821 sulphenylated sites in 912 proteins from all samples. A great number of sulphenylated proteins were predicted to localize to chloroplasts and cytoplasm and GO enrichment analysis of differentially sulphenylated proteins revealed that metabolic processes such as photosynthesis and glycolysis are enriched and enzymes are overrepresented. Redox-sensitive sites in two enzymes were validated in vitro on recombinant proteins and they might affect the enzyme activity. This targeted approach contributes to the identification of the sulphenylated sites and proteins in B. napus subjected to salt stress and our study will improve our understanding of the molecular mechanisms underlying the redox regulation in response to salt stress.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Role of Suillus placidus in Improving the Drought Tolerance of Masson Pine (Pinus massoniana Lamb.) Seedlings. FORESTS 2021. [DOI: 10.3390/f12030332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.
Collapse
|
12
|
Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in the winter ant (Prenolepis imparis). PLoS One 2020; 15:e0239558. [PMID: 33002025 PMCID: PMC7529264 DOI: 10.1371/journal.pone.0239558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Climate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis). We quantified gene expression during heat and cold stress relative to a control temperature. From each of our conditions, we sequenced the transcriptome of three individuals. Our de novo assembly included 13,324 contigs that were annotated against the nr and SwissProt databases. We performed gene ontology and enrichment analyses to gain insight into the physiological processes involved in the stress response. We identified a total of 643 differentially expressed genes across both treatments. Of these, only seven genes were differentially expressed in the cold-stressed ants, which could indicate that the temperature we chose for trials did not induce a strong stress response, perhaps due to the cold adaptations of this species. Conversely, we found a strong response to heat: 426 upregulated genes and 210 downregulated genes. Of these, ten were expressed at a greater than ten-fold change relative to the control. The transcripts we could identify included those encoding for protein folding genes, heat shock proteins, histones, and Ca2+ ion transport. One of these transcripts, hsc70-4L was found to be under positive selection. We also characterized the functional categories of differentially expressed genes. These candidate genes may be functionally conserved and relevant for related species that will deal with rapid climate change.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, United States of America.,Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
13
|
Xiong Q, Zhong L, Du J, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, Zhou D, Cai Y, Fu H, He H, Chen X. Ribosome profiling reveals the effects of nitrogen application translational regulation of yield recovery after abrupt drought-flood alternation in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:42-58. [PMID: 32738581 DOI: 10.1016/j.plaphy.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 05/03/2023]
Abstract
Abrupt drought-flood alternation is a frequent meteorological disaster during the summer in Southern China. The study of physiological and translation mechanisms of rice yield recovery after abrupt drought-flood alternation has great potential benefits in field production. Our results showed that yield recovery upon nitrogen (N) application after abrupt drought-flood alternation was due to the increase in effective panicle numbers per plant. The N application resulted in the regulation of physiological and biochemical as well as growth development processes, which led to a rapid growth recovery effect after abrupt drought-flood alternation stress in rice. Using ribosome profiling combined with RNA sequencing (RNA-seq) technology, the interactions between transcription and translation for N application after abrupt drought-flood alternation were analyzed. It was found that a small proportion of response genes were shared at the transcriptional and translational levels, that is, 14% of the expressed genes were upregulated and 6.6% downregulated. Further analysis revealed that the translation efficiency (TE) of the genes was influenced by their sequence characteristics, including their GC content, coding sequence length and normalized minimal free energy. Compared with the number of untranslated upstream open reading frames (uORFs), the increased number of translated uORFs promoted the improvement of TE. The TE of the uORFs for N application was lower than the control without N application after abrupt drought-flood alternation. This study characterizes the translational regulatory pattern in response to N application after abrupt drought-flood alternation stress.
Collapse
Affiliation(s)
- Qiangqiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Xiong QQ, Shen TH, Zhong L, Zhu CL, Peng XS, He XP, Fu JR, Ouyang LJ, Bian JM, Hu LF, Sun XT, Xu J, Zhou HY, He HH, Chen XR. Comprehensive metabolomic, proteomic and physiological analyses of grain yield reduction in rice under abrupt drought-flood alternation stress. PHYSIOLOGIA PLANTARUM 2019; 167:564-584. [PMID: 30561011 DOI: 10.1111/ppl.12901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Abrupt drought-flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought-flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought-flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought-flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought-flood alteration stress, which are factors that leads to the rice grain yield reduction.
Collapse
Affiliation(s)
- Qiang-Qiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Tian-Hua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Chang-Lan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Song Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Peng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jun-Ru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Lin-Juan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jian-Min Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Li-Fang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Tang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Hui-Ying Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Hao-Hua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Rong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| |
Collapse
|
15
|
Yu C, Qiao G, Qiu W, Yu D, Zhou S, Shen Y, Yu G, Jiang J, Han X, Liu M, Zhang L, Chen F, Chen Y, Zhuo R. Molecular breeding of water lily: engineering cold stress tolerance into tropical water lily. HORTICULTURE RESEARCH 2018; 5:73. [PMID: 30564371 PMCID: PMC6265338 DOI: 10.1038/s41438-018-0086-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 08/26/2018] [Accepted: 08/30/2018] [Indexed: 05/14/2023]
Abstract
Water lilies (order Nymphaeales) are rich in both economic and cultural values. They grow into aquatic herbs, and are divided into two ecological types: tropical and hardy. Although tropical water lilies have more ornamental and medicinal values compared to the hardy water lily, the study and utilization of tropical water lilies in both landscaping and pharmaceutical use is greatly hindered due to their limited planting area. Tropical water lilies cannot survive the winter in areas beyond 24.3°N latitude. Here, the transgenic pipeline through the pollen-tube pathway was generated for water lily for the first time. To improve cold stress tolerance of tropical water lilies, a gene encoding choline oxidase (CodA) driven by a cold stress-inducible promoter was transformed into a tropical water lily through the pollen-tube transformation. Six independent transgenic lines were tested for survival rate during two winter seasons from 2015 to 2017 in Hangzhou (30.3°N latitude). PCR and southern blot detection revealed that the CodA gene had been integrated into the genome. Reverse transcription PCR showed that CodA gene was induced after cold stress treatment, and further quantitative real-time PCR revealed different expressions among six 4 lines and line 3 had the highest expression. Multiple physiological experiments showed that after cold stress treatment, both the conductivity and malondialdehyde (MDA) levels from transgenic plants were significantly lower than those of non-transgenic plants, whereas the content of betaine and the activity of superoxide dismutase, catalase, and peroxidase were higher than those from non-transgenic plants. These results suggest that expression of exogenous CodA gene significantly improved the cold stress tolerance of tropical water lilies through a wide range of physiological alterations. Our results currently expanded a six-latitude cultivating area of the tropical water lilies. These results not only illuminate the bright future for water lily breeding but will also facilitate the functional genomic studies.
Collapse
Affiliation(s)
- Cuiwei Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Dongbei Yu
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
| | - Shirong Zhou
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
| | - Yan Shen
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
| | - Guanchun Yu
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yuchu Chen
- Zhejiang Humanities Landscape Co., Ltd., Hangzhou Tianjing Aquatic Botanical Garden, 310000 Hangzhou, Zhejiang China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical forestry, Chinese Academy of Forestry, 311400 Hangzhou, Zhejiang China
| |
Collapse
|
16
|
Zhao LC, Hou YS, Sima YH. Changes in glutathione redox cycle during diapause determination and termination in the bivoltine silkworm, Bombyx mori. INSECT SCIENCE 2014; 21:39-46. [PMID: 23956095 DOI: 10.1111/1744-7917.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Abstract
To explore whether glutathione regulates diapause determination and termination in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapause- and nondiapause-egg producers, as well as those in diapause eggs incubated at different temperatures. The activity of thioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapause-egg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cycle during diapause determination. Compared with the 25°C-treated diapause eggs, the 5°C-treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.
Collapse
Affiliation(s)
- Lin-Chuan Zhao
- College of Biological and Basic Medicine Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | | | | |
Collapse
|