1
|
Li H, Tang Y, Liu Z, Chen K, Zhang K, Hu S, Pan C, Yang H, Li B, Chen H. Lumbar instability remodels cartilage endplate to induce intervertebral disc degeneration by recruiting osteoclasts via Hippo-CCL3 signaling. Bone Res 2024; 12:34. [PMID: 38816384 PMCID: PMC11139958 DOI: 10.1038/s41413-024-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024] Open
Abstract
Degenerated endplate appears with cheese-like morphology and sensory innervation, contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However, the origin and development mechanism of the cheese-like morphology remain unclear. Here in this study, we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change. Transcriptome sequencing of the endplate chondrocytes under abnormal stress revealed that the Hippo signaling was key for this process. Activation of Hippo signaling or knockout of the key gene Yap1 in the cartilage endplate severed the cheese-like morphological change and disc degeneration after lumbar spine instability (LSI) surgery, while blocking the Hippo signaling reversed this process. Meanwhile, transcriptome sequencing data also showed osteoclast differentiation related gene set expression was up regulated in the endplate chondrocytes under abnormal mechanical stress, which was activated after the Hippo signaling. Among the discovered osteoclast differentiation gene set, CCL3 was found to be largely released from the chondrocytes under abnormal stress, which functioned to recruit and promote osteoclasts formation for cartilage endplate remodeling. Over-expression of Yap1 inhibited CCL3 transcription by blocking its promoter, which then reversed the endplate from remodeling to the cheese-like morphology. Finally, LSI-induced cartilage endplate remodeling was successfully rescued by local injection of an AAV5 wrapped Yap1 over-expression plasmid at the site. These findings suggest that the Hippo signaling induced osteoclast gene set activation in the cartilage endplate is a potential new target for the management of instability induced low back pain and lumbar degeneration.
Collapse
Affiliation(s)
- Hanwen Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, P.R. China
| | - Yingchuang Tang
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, P.R. China
| | - Zixiang Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Kangwu Chen
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Kai Zhang
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Sihan Hu
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, P.R. China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Huilin Yang
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, P.R. China.
| | - Bin Li
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, P.R. China.
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, P.R. China.
- Department of Orthopedic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.
| |
Collapse
|
2
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
3
|
Zhu L, Kamalathevan P, Koneva LA, Zarebska JM, Chanalaris A, Ismail H, Wiberg A, Ng M, Muhammad H, Walsby-Tickle J, McCullagh JSO, Watt FE, Sansom SN, Furniss D, Gardiner MD, Vincent TL, Riley N, Spiteri M, McNab I, Little C, Cogswell L, Critchley P, Giele H, Shirley R. Variants in ALDH1A2 reveal an anti-inflammatory role for retinoic acid and a new class of disease-modifying drugs in osteoarthritis. Sci Transl Med 2022; 14:eabm4054. [PMID: 36542696 DOI: 10.1126/scitranslmed.abm4054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.
Collapse
Affiliation(s)
- Linyi Zhu
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Pragash Kamalathevan
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Lada A Koneva
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Jadwiga Miotla Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anastasios Chanalaris
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Heba Ismail
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
- Healthy Lifespan Institute (HELSI) and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Akira Wiberg
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Michael Ng
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Hayat Muhammad
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - John Walsby-Tickle
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Matthew D Gardiner
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The Mechano-Ubiquitinome of Articular Cartilage: Differential Ubiquitination and Activation of a Group of ER-Associated DUBs and ER Stress Regulators. Mol Cell Proteomics 2022; 21:100419. [PMID: 36182100 PMCID: PMC9708921 DOI: 10.1016/j.mcpro.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023] Open
Abstract
Understanding how connective tissue cells respond to mechanical stimulation is important to human health and disease processes in musculoskeletal diseases. Injury to articular cartilage is a key risk factor in predisposition to tissue damage and degenerative osteoarthritis. Recently, we have discovered that mechanical injury to connective tissues including murine and porcine articular cartilage causes a significant increase in lysine-63 polyubiquitination. Here, we identified the ubiquitin signature that is unique to injured articular cartilage tissue upon mechanical injury (the "mechano-ubiquitinome"). A total of 463 ubiquitinated peptides were identified, with an enrichment of ubiquitinated peptides of proteins involved in protein processing in the endoplasmic reticulum (ER), also known as the ER-associated degradation response, including YOD1, BRCC3, ATXN3, and USP5 as well as the ER stress regulators, RAD23B, VCP/p97, and Ubiquilin 1. Enrichment of these proteins suggested an injury-induced ER stress response and, for instance, ER stress markers DDIT3/CHOP and BIP/GRP78 were upregulated following cartilage injury on the protein and gene expression levels. Similar ER stress induction was also observed in response to tail fin injury in zebrafish larvae, suggesting a generic response to tissue injury. Furthermore, a rapid increase in global DUB activity following injury and significant activity in human osteoarthritic cartilage was observed using DUB-specific activity probes. Combined, these results implicate the involvement of ubiquitination events and activation of a set of DUBs and ER stress regulators in cellular responses to cartilage tissue injury and in osteoarthritic cartilage tissues. This link through the ER-associated degradation pathway makes this protein set attractive for further investigation in in vivo models of tissue injury and for targeting in osteoarthritis and related musculoskeletal diseases.
Collapse
|
5
|
Jin Y, Liu Q, Chen P, Zhao S, Jiang W, Wang F, Li P, Zhang Y, Lu W, Zhong TP, Ma X, Wang X, Gartland A, Wang N, Shah KM, Zhang H, Cao X, Yang L, Liu M, Luo J. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov 2022; 8:24. [PMID: 35256606 PMCID: PMC8901748 DOI: 10.1038/s41421-022-00382-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
Articular cartilage repair and regeneration is an unmet clinical need because of the poor self-regeneration capacity of the tissue. In this study, we found that the expression of prostaglandin E receptor 4 (PTGER4 or EP4) was largely increased in the injured articular cartilage in both humans and mice. In microfracture (MF) surgery-induced cartilage defect (CD) and destabilization of the medial meniscus (DMM) surgery-induced CD mouse models, cartilage-specific deletion of EP4 remarkably promoted tissue regeneration by enhancing chondrogenesis and cartilage anabolism, and suppressing cartilage catabolism and hypertrophy. Importantly, knocking out EP4 in cartilage enhanced stable mature articular cartilage formation instead of fibrocartilage, and reduced joint pain. In addition, we identified a novel selective EP4 antagonist HL-43 for promoting chondrocyte differentiation and anabolism with low toxicity and desirable bioavailability. HL-43 enhanced cartilage anabolism, suppressed catabolism, prevented fibrocartilage formation, and reduced joint pain in multiple pre-clinical animal models including the MF surgery-induced CD rat model, the DMM surgery-induced CD mouse model, and an aging-induced CD mouse model. Furthermore, HL-43 promoted chondrocyte differentiation and extracellular matrix (ECM) generation, and inhibited matrix degradation in human articular cartilage explants. At the molecular level, we found that HL-43/EP4 regulated cartilage anabolism through the cAMP/PKA/CREB/Sox9 signaling. Together, our findings demonstrate that EP4 can act as a promising therapeutic target for cartilage regeneration and the novel EP4 antagonist HL-43 has the clinical potential to be used for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siyuan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Yang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.,Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
7
|
Maekawa A, Sawaji Y, Endo K, Kusakabe T, Konishi T, Tateiwa T, Masaoka T, Shishido T, Yamamoto K. Prostaglandin E 2 induces dual-specificity phosphatase-1, thereby attenuating inflammatory genes expression in human osteoarthritic synovial fibroblasts. Prostaglandins Other Lipid Mediat 2021; 154:106550. [PMID: 33857603 DOI: 10.1016/j.prostaglandins.2021.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/23/2023]
Abstract
Characteristic features of osteoarthritis (OA) are joint pain and cartilage degeneration. The degeneration is caused by excess induction of matrix metalloproteinases (MMPs) and the pain is caused by nerve growth factor (NGF)-dependent nerve invasion into synovial tissue in addition to nociceptive pain by prostaglandin (PG)E2. The objective of this study was to clarify the suppressive mechanism of PGE2 on the regulation of MMPs and NGF by focusing on mitogen-activated protein kinases (MAPKs) and their endogenous phosphatase, dual-specificity phosphatase (DUSP)-1 in human synovial fibroblasts. PGE2 strongly increased DUSP-1 and suppressed IL-1β-induced MAPKs phosphorylation. Inhibition of MAPKs by selective inhibitors differentially regulated the IL-1β-induced expression of MMPs and NGF expression. IL-1β-induced MAPKs phosphorylation was prolonged and enhanced in DUSP-1 knockdown cells and the expression of MMPs and NGF was also increased. This study revealed that PGE2 has novel biological activity that suppresses NGF and MMPs expression by inducing DUSP-1 expression.
Collapse
Affiliation(s)
- Asato Maekawa
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yasunobu Sawaji
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Kenji Endo
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takuya Kusakabe
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takamitsu Konishi
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Toshiyuki Tateiwa
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Toshinori Masaoka
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takaaki Shishido
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kengo Yamamoto
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
8
|
Filor V, Petry M, Meißner J, Kietzmann M. Precision-cut bovine udder slices (PCBUS) as an in-vitro-model of an early phase of infection of bovine mastitis. BMC Vet Res 2021; 17:120. [PMID: 33726750 PMCID: PMC7962284 DOI: 10.1186/s12917-021-02817-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to establish precision-cut bovine udder slices (PCBUS) as an in-vitro-model to investigate pathophysiological processes in the early phase of mastitis in order to have the possibility to investigate new therapeutic approaches for the treatment of such udder inflammation in later studies. Furthermore, this model should contribute to substitute in-vivo-experiments. Bovine mastitis is one of the most common and costly infectious diseases in the dairy industry, which is largely associated with the use of antimicrobial agents. Given this problem of antimicrobial resistance, it is essential to step up research into bacterial infectious diseases. Thus, the transfer of the in-vitro-model of precision-cut tissue slices to the bovine udder enables broad research into new therapeutic approaches in this area and can also be used to address issues in basic research or the characterisation of complex pathophysiological processes. Results A stimulation with LPS, PGN or the combination of both substances (LPS:PGN) demonstrates the ability of the PCBUS to react with a significant secretion of IL-1ß, TNF-α and PGE2. Conclusion The slices represent an instrument for investigating pharmacological interactions with udder tissue, which can be useful for studies on pharmacological questions and the understanding of complex pathophysiological processes of infection and inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02817-w.
Collapse
Affiliation(s)
- Viviane Filor
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany. .,Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany.
| | - Monique Petry
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
9
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Current thinking in the study of posttraumatic osteoarthritis (PTOA) is overviewed: the osteoarthritis which follows acute joint injury. The review particularly highlights important publications in the last 18 months, also reflecting on key older literature, in terms of what have we have we learned and have yet to learn from PTOA, which can advance the osteoarthritis field as a whole. RECENT FINDINGS PTOA is a mechanically driven disease, giving insight into mechanical drivers for osteoarthritis. A mechanosensitive molecular tissue injury response (which includes activation of pain, degradative and also repair pathways) is triggered by acute joint injury and seen in osteoarthritis. Imaging features of PTOA are highly similar to osteoarthritis, arguing against it being a different phenotype. The inflammatory pathways activated by injury contribute to early joint symptoms. However, later structural changes appear to be dissociated from traditional measures of synovial inflammation. SUMMARY PTOA remains an important niche in which to understand processes underlying osteoarthritis and seek interventional targets. Whether PTOA has true molecular or clinical differences to osteoarthritis as a whole remains to be understood. This knowledge is important for a field where animal modelling of the disease relies heavily on the link between injury and osteoarthritis.
Collapse
Affiliation(s)
- Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Southan J, McHugh E, Walker H, Ismail HM. Metabolic Signature of Articular Cartilage Following Mechanical Injury: An Integrated Transcriptomics and Metabolomics Analysis. Front Mol Biosci 2020; 7:592905. [PMID: 33392255 PMCID: PMC7773849 DOI: 10.3389/fmolb.2020.592905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical injury to the articular cartilage is a key risk factor in joint damage and predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable tool to understand tissue behavior in response to mechanical injury insult and help to identify key pathways linking injury to tissue damage. Global or untargeted metabolomics provides a comprehensive characterization of the metabolite content of biological samples. In this study, we aimed to identify the metabolic signature of cartilage tissue post injury. We employed an integrative analysis of transcriptomics and global metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics analysis showed a significant enrichment of gene sets involved in regulation of metabolic processes including carbon metabolism, biosynthesis of amino acids, and steroid biosynthesis. Integrative analysis of enriched genes with putatively identified metabolite features post injury showed a significant enrichment for carbohydrate metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine, threonine, and arginine and proline metabolism). We then performed a cross analysis of global metabolomics profiles of murine and porcine ex vivo cartilage injury models. The top commonly modulated metabolic pathways post injury included arginine and proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6 metabolic pathways. These results highlight the significant modulation of metabolic responses following mechanical injury to articular cartilage. Further investigation of these pathways would provide new insights into the role of the early metabolic state of articular cartilage post injury in promoting tissue damage and its link to disease progression of osteoarthritis.
Collapse
Affiliation(s)
- Jennifer Southan
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Emily McHugh
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Heather Walker
- biOMICS Mass Spectrometry Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Eldridge SE, Barawi A, Wang H, Roelofs AJ, Kaneva M, Guan Z, Lydon H, Thomas BL, Thorup AS, Fernandez BF, Caxaria S, Strachan D, Ali A, Shanmuganathan K, Pitzalis C, Whiteford JR, Henson F, McCaskie AW, De Bari C, Dell'Accio F. Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Sci Transl Med 2020; 12:12/559/eaax9086. [PMID: 32878982 DOI: 10.1126/scitranslmed.aax9086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/03/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Cartilage loss leads to osteoarthritis, the most common cause of disability for which there is no cure. Cartilage regeneration, therefore, is a priority in medicine. We report that agrin is a potent chondrogenic factor and that a single intraarticular administration of agrin induced long-lasting regeneration of critical-size osteochondral defects in mice, with restoration of tissue architecture and bone-cartilage interface. Agrin attracted joint resident progenitor cells to the site of injury and, through simultaneous activation of CREB and suppression of canonical WNT signaling downstream of β-catenin, induced expression of the chondrogenic stem cell marker GDF5 and differentiation into stable articular chondrocytes, forming stable articular cartilage. In sheep, an agrin-containing collagen gel resulted in long-lasting regeneration of bone and cartilage, which promoted increased ambulatory activity. Our findings support the therapeutic use of agrin for joint surface regeneration.
Collapse
Affiliation(s)
- Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Aida Barawi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Magdalena Kaneva
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Zeyu Guan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen Lydon
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Bethan L Thomas
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Beatriz F Fernandez
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Danielle Strachan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ahmed Ali
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kanatheepan Shanmuganathan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - James R Whiteford
- Comparative Musculoskeletal Biology Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Frances Henson
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrew W McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
The Effects of Age and Cell Isolation on Collagen II Synthesis by Articular Chondrocytes: Evidence for Transcriptional and Posttranscriptional Regulation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4060135. [PMID: 32461985 PMCID: PMC7212282 DOI: 10.1155/2020/4060135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage synthesises very little type II collagen in comparison to young cartilage. The age-related difference in collagen II synthesis is poorly understood. This is the first systematic investigation of age-related differences in extracellular matrix synthesis in fresh articular cartilage and following isolation of chondrocytes. A histological comparison of 3-year-old skeletally mature and 6-month-old juvenile porcine cartilage was made. Differences in collagen II, aggrecan, and Sox5, 6, and 9 mRNA and protein expression and mRNA stability were measured. Adult cartilage was found to be thinner than juvenile cartilage but with similar chondrocyte density. Procollagen α1(II) and Sox9 mRNA levels were 10-fold and 3-fold reduced in adult cartilage. Sox9 protein was halved and collagen II protein synthesis was almost undetectable and calculated to be at least 30-fold reduced. Aggrecan expression did not differ. Isolation of chondrocytes caused a drop in procollagen α1(II) and Sox9 mRNA in both adult and juvenile cells along with a marked reduction in Sox9 mRNA stability. Interestingly, juvenile chondrocytes continued to synthesise collagen II protein with mRNA levels similar to those seen in adult articular cartilage. Age-related differences in collagen II protein synthesis are due to both transcriptional and posttranscription regulation. A better understanding of these regulatory mechanisms would be an important step in improving current cartilage regeneration techniques.
Collapse
|
15
|
McCulloch K, Huesa C, Dunning L, Litherland GJ, Van 't Hof RJ, Lockhart JC, Goodyear CS. Accelerated post traumatic osteoarthritis in a dual injury murine model. Osteoarthritis Cartilage 2019; 27:1800-1810. [PMID: 31283983 DOI: 10.1016/j.joca.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury involving destabilisation of the joint and damage to the articular cartilage (e.g., sports-related injury) can result in accelerated post-traumatic osteoarthritis (PTOA). Destabilised medial meniscotibial ligament (DMM) surgery is one of the most commonly used murine models and whilst it recapitulates Osteoarthritis (OA) pathology, it does not necessarily result in multi-tissue injury, as occurs in PTOA. We hypothesised that simultaneous cartilage damage and joint destabilisation would accelerate the onset of OA pathology. METHODS OA was induced in C57BL/6 mice via (a) DMM, (b) microblade scratches of articular cartilage (CS) or (c) combined DMM and cartilage scratch (DCS). Mice were culled 7, 14 and 28 days post-surgery. Microcomputed tomography (μCT) and histology were used to monitor bone changes and inflammation. Dynamic weight bearing, an indirect measure of pain, was assessed on day 14. RESULTS Osteophytogenesis analysis via μCT revealed that osteophytes were present in all groups at days 7 and 14 post-surgery. However, in DCS, osteophytes were visually larger and more numerous when compared with DMM and cartilage scratch (CS). Histological assessment of cartilage at day 14 and 28, revealed significantly greater damage in DCS compared with DMM and CS. Furthermore, a significant increase in synovitis was observed in DCS. Finally, at day 14 osteophyte numbers correlated with changes in dynamic weight bearing. CONCLUSION Joint destabilisation when combined with simultaneous cartilage injury accelerates joint deterioration, as seen in PTOA. Thus, DCS provides a novel and robust model for investigating multiple pathological hallmarks, including osteophytogenesis, cartilage damage, synovitis and OA-related pain.
Collapse
Affiliation(s)
- K McCulloch
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - C Huesa
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - L Dunning
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - G J Litherland
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - R J Van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - J C Lockhart
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - C S Goodyear
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
16
|
The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019; 15:612-632. [DOI: 10.1038/s41584-019-0277-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
17
|
Abstract
The concept of interleukin-1 (IL-1) as a target in osteoarthritis (OA) has been an attractive one for many years. It is a highly potent inducer of cartilage degradation, causing the induction of mRNA and controlling the bioavailability of disease-relevant proteases such as ADAMTS5 and MMP13. It drives synovitis and can induce other disease-relevant genes such as nerve growth factor, a key pain sensitiser in OA. However, the quality of evidence for its involvement in disease is modest. Descriptive studies have demonstrated expression of IL-1α and β in OA cartilage and elevated levels in the synovial fluid of some patients. Agnostic transcriptomic and genomic analyses do not identify IL-1 as a key pathway.
In vivo models show a conflicting role for this molecule; early studies using therapeutic approaches in large animal models show a benefit, but most murine studies fail to demonstrate protection where the ligands (IL-1α/β), the cytokine activator (IL-1–converting enzyme), or the receptor (IL-1R) have been knocked out. Recently, a number of large double-blind randomised controlled clinical studies targeting IL-1 have failed. Enthusiasm for IL-1 as a target in OA is rapidly dwindling.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| |
Collapse
|
18
|
Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019. [DOI: https://doi.org/10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019; 110:878-886. [PMID: 30562713 DOI: 10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023] Open
|
20
|
Watt FE, Corp N, Kingsbury SR, Frobell R, Englund M, Felson DT, Levesque M, Majumdar S, Wilson C, Beard DJ, Lohmander LS, Kraus VB, Roemer F, Conaghan PG, Mason DJ. Towards prevention of post-traumatic osteoarthritis: report from an international expert working group on considerations for the design and conduct of interventional studies following acute knee injury. Osteoarthritis Cartilage 2019; 27:23-33. [PMID: 30125638 PMCID: PMC6323612 DOI: 10.1016/j.joca.2018.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There are few guidelines for clinical trials of interventions for prevention of post-traumatic osteoarthritis (PTOA), reflecting challenges in this area. An international multi-disciplinary expert group including patients was convened to generate points to consider for the design and conduct of interventional studies following acute knee injury. DESIGN An evidence review on acute knee injury interventional studies to prevent PTOA was presented to the group, alongside overviews of challenges in this area, including potential targets, biomarkers and imaging. Working groups considered pre-identified key areas: eligibility criteria and outcomes, biomarkers, injury definition and intervention timing including multi-modality interventions. Consensus agreement within the group on points to consider was generated and is reported here after iterative review by all contributors. RESULTS The evidence review identified 37 studies. Study duration and outcomes varied widely and 70% examined surgical interventions. Considerations were grouped into three areas: justification of inclusion criteria including the classification of injury and participant age (as people over 35 may have pre-existing OA); careful consideration in the selection and timing of outcomes or biomarkers; definition of the intervention(s)/comparator(s) and the appropriate time-window for intervention (considerations may be particular to intervention type). Areas for further research included demonstrating the utility of patient-reported outcomes, biomarkers and imaging outcomes from ancillary/cohort studies in this area, and development of surrogate clinical trial endpoints that shorten the duration of clinical trials and are acceptable to regulatory agencies. CONCLUSIONS These considerations represent the first international consensus on the conduct of interventional studies following acute knee joint trauma.
Collapse
Affiliation(s)
- F E Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom.
| | - N Corp
- Arthritis Research UK Primary Care Centre, Institute for Primary Care & Health Sciences, Keele University, Keele, UK.
| | - S R Kingsbury
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK.
| | - R Frobell
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - M Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - D T Felson
- Clinical Epidemiology Research & Training Unit, Boston University School of Medicine, Boston, MA, USA; NIHR Biomedical Research Centre, University of Manchester, Manchester, UK.
| | - M Levesque
- Immunology Development, Abbvie Bioresearch Center, Worcester, MA, USA.
| | - S Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, USA.
| | - C Wilson
- Dept of Trauma and Orthopaedics, University Health Board, Cardiff, UK.
| | - D J Beard
- Surgical Intervention Trials Unit (SITU), Nuffield Department of Orthopaedics, Rheumatology and Musculokeletal Sciences, University of Oxford, Oxford, UK.
| | - L S Lohmander
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - V B Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Duke University School of Medicine, Durham, USA.
| | - F Roemer
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany; Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK.
| | - D J Mason
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
21
|
Deng Y, Lu J, Li W, Wu A, Zhang X, Tong W, Ho KK, Qin L, Song H, Mak KK. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun 2018; 9:4564. [PMID: 30385786 PMCID: PMC6212432 DOI: 10.1038/s41467-018-07022-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is one of the leading causes of pain and disability in the aged population due to articular cartilage damage. This warrants investigation of signaling mechanisms that could protect cartilage from degeneration and degradation. Here we show in a murine model of experimental osteoarthritis that YAP activation by transgenic overexpression or by deletion of its upstream inhibitory kinases Mst1/2 preserves articular cartilage integrity, whereas deletion of YAP in chondrocytes promotes cartilage disruption. Our work shows that YAP is both necessary and sufficient for the maintenance of cartilage homeostasis in osteoarthritis. Mechanistically, inflammatory cytokines, such as TNFα or IL-1β, trigger YAP/TAZ degradation through TAK1-mediated phosphorylation. Furthermore, YAP directly interacts with TAK1 and attenuates NF-κB signaling by inhibiting substrate accessibility of TAK1. Our study establishes a reciprocal antagonism between Hippo-YAP/TAZ and NF-κB signaling in regulating the induction of matrix-degrading enzyme expression and cartilage degradation during osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Yujie Deng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.,Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Wenling Li
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Xu Zhang
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kiwai Kevin Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Kinglun Kingston Mak
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
22
|
Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. J Physiol 2018; 597:1271-1281. [PMID: 29917242 DOI: 10.1113/jp275451] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
The articular cartilage is exquisitely sensitive to mechanical load. Its structure is largely defined by the mechanical environment and destruction in osteoarthritis is the pathophysiological consequence of abnormal mechanics. It is often overlooked that disuse of joints causes profound loss of volume in the articular cartilage, a clinical observation first described in polio patients and stroke victims. Through the 1980s, the results of studies exploiting experimental joint immobilisation supported this. Importantly, this substantial body of work was also the first to describe metabolic changes that resulted in decreased synthesis of matrix molecules, especially sulfated proteoglycans. The molecular mechanisms that underlie disuse atrophy are poorly understood despite the identification of multiple mechanosensing mechanisms in cartilage. Moreover, there has been a tendency to equate cartilage loss with osteoarthritic degeneration. Here, we review the historic literature and clarify the structural, metabolic and clinical features that clearly distinguish cartilage loss due to disuse atrophy and those due to osteoarthritis. We speculate on the molecular sensing pathways in cartilage that may be responsible for cartilage mechanoadaptation.
Collapse
Affiliation(s)
- Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Angus K T Wann
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Lin YC, Hall AC, Simpson AHRW. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018; 7:205-212. [PMID: 29922437 PMCID: PMC5987700 DOI: 10.1302/2046-3758.73.bjr-2017-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage. METHODS The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively. RESULTS Chondrocyte viability in the static model decreased significantly from 89.9% (sd 2.5%) (Day 0) to 66.5% (sd 13.1%) (Day 28), 94.7% (sd 1.1%) to 80. 9% (sd 5.8%) and 80.1% (sd 3.0%) to 46.9% (sd 8.5%) in the superficial quarter, central half and deep quarter of cartilage, respectively (p < 0.001 in each zone; one-way analysis of variance). The GAG content decreased significantly from 6.01 μg/mg (sd 0.06) (Day 0) to 4.71 μg/mg (sd 0.06) (Day 28) (p < 0.001; one-way analysis of variance). However, with dynamic movement, chondrocyte viability and GAG content were maintained at the Day 0 level over the four-week period without a significant change (chondrocyte viability: 92.0% (sd 4.0%) (Day 0) to 89.9% (sd 0.2%) (Day 28), 93.1% (sd 1.5%) to 93.8% (sd 0.9%) and 85.6% (sd 0.8%) to 84.0% (sd 2.9%) in the three corresponding zones; GAG content: 6.18 μg/mg (sd 0.15) (Day 0) to 6.06 μg/mg (sd 0.09) (Day 28)). CONCLUSION Dynamic joint movement maintained chondrocyte viability and cartilage GAG content. This long-term whole joint culture model could be of value in providing a more natural and controlled platform for investigating the influence of joint movement on articular cartilage, and for evaluating novel therapies for cartilage repair.Cite this article: Y-C. Lin, A. C. Hall, A. H. R. W. Simpson. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018;7:205-212. DOI: 10.1302/2046-3758.73.BJR-2017-0320.
Collapse
Affiliation(s)
- Y-C. Lin
- Department of Orthopaedic Surgery, University of Edinburgh, The Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK and Taipei Medical University-Shuang Ho Hospital, Zhonghe District, New Taipei City, 23561, Taiwan
| | - A. C. Hall
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - A. H. R. W. Simpson
- Department of Orthopaedics, University of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA, UK
| |
Collapse
|
24
|
Ismail HM, Didangelos A, Vincent TL, Saklatvala J. Rapid Activation of Transforming Growth Factor β-Activated Kinase 1 in Chondrocytes by Phosphorylation and K 63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol 2017; 69:565-575. [PMID: 27768832 PMCID: PMC5347887 DOI: 10.1002/art.39965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Objective Mechanical injury to cartilage predisposes to osteoarthritis (OA). Wounding of the articular cartilage surface causes rapid activation of MAP kinases and NF‐κB, mimicking the response to inflammatory cytokines. This study was undertaken to identify the upstream signaling mechanisms involved. Methods Cartilage was injured by dissecting it from the articular surface of porcine metacarpophalangeal (MCP) joints or by avulsing murine proximal femoral epiphyses. Protein phosphorylation was assayed by Western blotting of cartilage lysates. Immunolocalization of phosphorylated activating transcription factor 2 (ATF‐2) and NF‐κB/p65 was detected by confocal microscopy. Messenger RNA (mRNA) was measured by quantitative reverse transcriptase–polymerase chain reaction (qRT‐PCR). Receptor associated protein 80 (RAP‐80) ubiquitin interacting motif agarose was used in a pull‐down assay to obtain K63‐polyubiquitinated proteins. Ubiquitin linkages on immunoprecipitated transforming growth factor β–activated kinase 1 (TAK‐1) were analyzed with deubiquitinases. Results Sharp injury to porcine cartilage caused rapid activation of JNK and NF‐κB pathways and the upstream kinases MKK‐4, IKK, and TAK‐1. Pharmacologic inhibition of TAK‐1 in porcine cartilage abolished JNK and NF‐κB activation and reduced the injury‐dependent inflammatory gene response. High molecular weight species of phosphorylated TAK‐1 were induced by injury, indicating its ubiquitination. An overall increase in K63‐linked polyubiquitination was detected upon injury, and TAK‐1 was specifically linked to K63‐ but not K48‐polyubiquitin chains. In mice, avulsion of wild‐type femoral epiphyses caused similar intracellular signaling that was reduced in cartilage‐specific TAK‐1–null mice. Epiphyseal cartilage of MyD88‐null and TRAF‐6–null mice responded to injury, suggesting the involvement of a ubiquitin E3 ligase other than TRAF‐6. Conclusion Activation of TAK‐1 by phosphorylation and K63‐linked polyubiquitination by injury indicates its role in driving cell activation. Further studies are needed to identify the upstream ubiquitination mechanisms, including the E3 ligase involved.
Collapse
|
25
|
Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochem Funct 2017; 35:3-11. [DOI: 10.1002/cbf.3246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/06/2016] [Accepted: 12/04/2016] [Indexed: 01/05/2023]
|
26
|
Driscoll C, Chanalaris A, Knights C, Ismail H, Sacitharan PK, Gentry C, Bevan S, Vincent TL. Nociceptive Sensitizers Are Regulated in Damaged Joint Tissues, Including Articular Cartilage, When Osteoarthritic Mice Display Pain Behavior. Arthritis Rheumatol 2016; 68:857-67. [PMID: 26605536 PMCID: PMC4979655 DOI: 10.1002/art.39523] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/12/2015] [Indexed: 01/15/2023]
Abstract
Objective Pain is the most common symptom of osteoarthritis (OA), yet where it originates in the joint and how it is driven are unknown. The aim of this study was to identify pain‐sensitizing molecules that are regulated in the joint when mice subjected to surgical joint destabilization develop OA‐related pain behavior, the tissues in which these molecules are being regulated, and the factors that control their regulation. Methods Ten‐week‐old mice underwent sham surgery, partial meniscectomy, or surgical destabilization of the medial meniscus (DMM). Pain‐related behavior as determined by a variety of methods (testing of responses to von Frey filaments, cold plate testing for cold sensitivity, analgesiometry, incapacitance testing, and forced flexion testing) was assessed weekly. Once pain‐related behavior was established, RNA was extracted from either whole joints or microdissected tissue samples (articular cartilage, meniscus, and bone). Reverse transcription–polymerase chain reaction analysis was performed to analyze the expression of 54 genes known to regulate pain sensitization. Cartilage injury assays were performed using avulsed immature hips from wild‐type or genetically modified mice or by explanting articular cartilage from porcine joints preinjected with pharmacologic inhibitors. Levels of nerve growth factor (NGF) protein were measured by enzyme‐linked immunosorbent assay. Results Mice developed pain‐related behavior 8 weeks after undergoing partial meniscectomy or 12 weeks after undergoing DMM. NGF, bradykinin receptors B1 and B2, tachykinin, and tachykinin receptor 1 were significantly regulated in the joints of mice displaying pain‐related behavior. Little regulation of inflammatory cytokines, leukocyte activation markers, or chemokines was observed. When tissue samples from articular cartilage, meniscus, and bone were analyzed separately, NGF was consistently regulated in the articular cartilage. The other pain sensitizers were also largely regulated in the articular cartilage, although there were some differences between the 2 models. NGF and tachykinin were strongly regulated by simple mechanical injury of cartilage in vitro in a transforming growth factor β–activated kinase 1–, fibroblast growth factor 2–, and Src kinase–dependent manner. Conclusion Damaged joint tissues produce proalgesic molecules, including NGF, in murine OA.
Collapse
Affiliation(s)
- Clare Driscoll
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | - Heba Ismail
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | | | - Tonia L Vincent
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Snelling SJB, Davidson RK, Swingler TE, Le LTT, Barter MJ, Culley KL, Price A, Carr AJ, Clark IM. Dickkopf-3 is upregulated in osteoarthritis and has a chondroprotective role. Osteoarthritis Cartilage 2016; 24:883-91. [PMID: 26687825 PMCID: PMC4863878 DOI: 10.1016/j.joca.2015.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Dickkopf-3 (Dkk3) is a non-canonical member of the Dkk family of Wnt antagonists and its upregulation has been reported in microarray analysis of cartilage from mouse models of osteoarthritis (OA). In this study we assessed Dkk3 expression in human OA cartilage to ascertain its potential role in chondrocyte signaling and cartilage maintenance. METHODS Dkk3 expression was analysed in human adult OA cartilage and synovial tissues and during chondrogenesis of ATDC5 and human mesenchymal stem cells. The role of Dkk3 in cartilage maintenance was analysed by incubation of bovine and human cartilage explants with interleukin-1β (IL1β) and oncostatin-M (OSM). Dkk3 gene expression was measured in cartilage following murine hip avulsion. Whether Dkk3 influenced Wnt, TGFβ and activin cell signaling was assessed in primary human chondrocytes and SW1353 chondrosarcoma cells using qRT-PCR and luminescence assays. RESULTS Increased gene and protein levels of Dkk3 were detected in human OA cartilage, synovial tissue and synovial fluid. DKK3 gene expression was decreased during chondrogenesis of both ATDC5 cells and humans MSCs. Dkk3 inhibited IL1β and OSM-mediated proteoglycan loss from human and bovine cartilage explants and collagen loss from bovine cartilage explants. Cartilage DKK3 expression was decreased following hip avulsion injury. TGFβ signaling was enhanced by Dkk3 whilst Wnt3a and activin signaling were inhibited. CONCLUSIONS We provide evidence that Dkk3 is upregulated in OA and may have a protective effect on cartilage integrity by preventing proteoglycan loss and helping to restore OA-relevant signaling pathway activity. Targeting Dkk3 may be a novel approach in the treatment of OA.
Collapse
Affiliation(s)
- S J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - R K Davidson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - T E Swingler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - L T T Le
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - M J Barter
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - K L Culley
- Hospital for Special Surgery and Weill Cornell Medical College, New York, NY, USA
| | - A Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - A J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - I M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
28
|
Malek Mahdavi A, Mahdavi R, Kolahi S. Effects of l-Carnitine Supplementation on Serum Inflammatory Factors and Matrix Metalloproteinase Enzymes in Females with Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. J Am Coll Nutr 2016; 35:597-603. [PMID: 26933897 DOI: 10.1080/07315724.2015.1068139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Considering the importance of inflammation in the pathogenesis of osteoarthritis (OA) and induction of pain, this study was aimed to investigate the effect of L-carnitine supplementation on serum inflammatory mediators and OA-associated pain in females with knee OA. METHODS In this clinical trial, 72 females with mild to moderate knee osteoarthritis started the study, divided into 2 groups to receive 750 mg/day L-carnitine (n = 36) or placebo (n = 36) for 8 weeks. Serum levels of Interleukine-1β (IL-1β), high-sensitivity C-reactive protein (hs-CRP), matrix metalloproteinases (MMPs)-1 and -13, and visual analog scale (VAS) for pain were assessed before and after supplementation. Data were analyzed by t test, Wilcoxon signed rank test, Mann-Whitney U test, and analysis of covariance. RESULTS Only 69 patients (33 in the L-carnitine group and 36 in the placebo group) completed the study. L-Carnitine supplementation decreased serum IL-1β and MMP-1 levels significantly (p = 0.001 and p = 0.021, respectively); however, serum hs-CRP and MMP-13 levels did not change significantly (p > 0.05). In the placebo group, serum IL-1β levels increased significantly (p = 0.011), whereas other studied biomarkers did not change significantly. The mean VAS score decreased significantly in the L-carnitine and placebo groups by 52.67% and 21.82%, respectively (p < 0.001). Significant differences were only observed between the 2 groups in serum IL-1β (p < 0.001) and MMP-1 (p = 0.006) levels and mean VAS score (p = 0.002) after adjusting for baseline values and covariates. CONCLUSION Despite observed beneficial effects of short-term supplementation of L-carnitine in decreasing serum inflammatory mediators and improving pain in knee OA patients, further studies are needed to achieve concise conclusions.
Collapse
Affiliation(s)
- Aida Malek Mahdavi
- a Students' Research Committee , Tabriz University of Medical Sciences , Tabriz , IRAN
| | - Reza Mahdavi
- b Nutrition Research Center , Tabriz University of Medical Sciences , Tabriz , IRAN
| | - Sousan Kolahi
- c Connective Tissue Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , IRAN
| |
Collapse
|
29
|
Svala E, Jin C, Rüetschi U, Ekman S, Lindahl A, Karlsson NG, Skiöldebrand E. Characterisation of lubricin in synovial fluid from horses with osteoarthritis. Equine Vet J 2015; 49:116-123. [PMID: 26507102 DOI: 10.1111/evj.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
REASON FOR PERFORMING STUDY The glycoprotein lubricin contributes to the boundary lubrication of the articular cartilage surface. The early events of osteoarthritis involve the superficial layer where lubricin is synthesised. OBJECTIVES To characterise the glycosylation profile of lubricin in synovial fluid from horses with osteoarthritis and study secretion and degradation of lubricin in an in vitro inflammation cartilage model. STUDY DESIGN In vitro study. METHODS Synovial fluid samples collected from horses with joints with normal articular cartilage and structural osteoarthritic lesions; with and without osteochondral fragments, were analysed for the lubricin glycosylation profiles. Articular cartilage explants were stimulated with or without interleukin-1β for 25 days. Media samples collected at 3-day intervals were analysed by quantitative proteomics, western blot and enzyme-linked immunosorbent assay. RESULTS O-glycosylation profiles in synovial fluid revealed both Core 1 and 2 O-glycans, with Core 1 O-glycans predominating. Synovial fluid from normal joints (49.5 ± 1.9%) contained significantly lower amounts of monosialylated Core 1 O-glycans compared with joints with osteoarthritis (53.8 ± 7.8%, P = 0.03) or joints with osteochondral fragments (57.3 ± 8.8%, P = 0.001). Additionally, synovial fluid from normal joints (26.7 ± 6.7%) showed higher amounts of disialylated Core 1 O-glycan than from joints with osteochondral fragments (21.2 ± 4.9%, P = 0.03). A C-terminal proteolytic cleavage site in lubricin was found in synovial fluid from normal and osteochondral fragment joints and in media from interleukin-1β stimulated and unstimulated articular cartilage explants. CONCLUSIONS This is the first demonstration of a change in the glycosylation profile of lubricin in synovial fluid from diseased equine joints compared with that from normal joints. We demonstrate an identical proteolytic cleavage site of lubricin both in vitro and in vivo. The reduced sialation of lubricin in synovial fluid from diseased joints may affect the boundary lubricating ability of the superficial layer of articular cartilage and could be one of the early events in the progression of osteoarthritis.
Collapse
Affiliation(s)
- E Svala
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C Jin
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - S Ekman
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - N G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - E Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Zhang Y, Pizzute T, Li J, He F, Pei M. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment - A feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015; 64:88-97. [PMID: 26122165 DOI: 10.1016/j.biomaterials.2015.06.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
Abstract
Autologous stem cells are a promising cell source for cartilage regeneration; however, cell replicative senescence and joint posttraumatic inflammation provide challenges in bringing this treatment modality to fruition. In this study, we hypothesized that preconditioning with p38 MAPK inhibitor (sb203580) would recharge decellularized extracellular matrix (dECM) expanded human synovium-derived stem cell (hSDSC) chondrogenesis in an inflammatory environment. We found that preconditioning with sb203580 greatly enhanced dECM expanded hSDSC proliferation and chondrogenic potential while supplementation with sb203580 in an induction medium dramatically retarded hSDSC chondrogenic differentiation, even for dECM expanded cells. We also found that sb203580 preconditioning enhanced matrix-expanded hSDSC chondrogenic capacity even in an interleukin-1 (IL-1) induced inflammatory environment. Non-detectable expression of HLA-DR in the hSDSCs grown on allogeneic dECM indicates the feasibility of commercial preparation of these dECMs from healthy, young donors for patients who need autologous transplantation. Our study indicated that p38 MAPK inhibitor has a distinctive priming effect on dECM mediated stem cell cartilage regeneration. Combined rejuvenation with sb203580 and dECM expansion can precondition hSDSCs' resurfacing capacity for osteoarthritic patients with cartilage defects.
Collapse
Affiliation(s)
- Ying Zhang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Tyler Pizzute
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Jingting Li
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Fan He
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA; Orthopaedic Institute, Soochow University, Suzhou 215007, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
31
|
Svala E, Löfgren M, Sihlbom C, Rüetschi U, Lindahl A, Ekman S, Skiöldebrand E. An inflammatory equine model demonstrates dynamic changes of immune response and cartilage matrix molecule degradation in vitro. Connect Tissue Res 2015; 56:315-25. [PMID: 25803623 DOI: 10.3109/03008207.2015.1027340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The molecular aspects of inflammation were investigated in equine articular cartilage explants using quantitative proteomics. Articular cartilage explants were stimulated with interleukin (IL)-1β in vitro for 25 days, and proteins released into cell culture media were chemically labeled with isobaric mass tags and analyzed by liquid chromatography-tandem mass spectrometry. A total of 127 proteins were identified and quantified in media from explants. IL-1β-stimulation resulted in an abundance of proteins related to inflammation, including matrix metalloproteinases, acute phase proteins, complement components and IL-6. Extracellular matrix (ECM) molecules were released at different time points, and fragmentation of aggrecan and cartilage oligomeric matrix protein was observed at days 3 and 6, similar to early-stage OA in vivo. Degradation products of the collagenous network were observed at days 18 and 22, similar to late-stage OA. This model displays a longitudinal quantification of released molecules from the ECM of articular cartilage. Identification of dynamic changes of extracellular matrix molecules in the secretome of equine explants stimulated with IL-1β over time may be useful for identifying components released at different time points during the spontaneous OA process.
Collapse
Affiliation(s)
- Emilia Svala
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Sherwood JC, Bertrand J, Eldridge SE, Dell'Accio F. Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today 2014; 19:1172-7. [PMID: 24880104 DOI: 10.1016/j.drudis.2014.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Cartilage breakdown is the disabling outcome of rheumatic diseases, whether prevalently inflammatory such as rheumatoid arthritis or prevalently mechanical such as osteoarthritis (OA). Despite the differences between immune-mediated arthritides and OA, common mechanisms drive cartilage breakdown. Inflammation, chondrocyte phenotype and homeostatic mechanisms have recently been the focus of research and will be summarised in this review.
Collapse
Affiliation(s)
- Joanna C Sherwood
- Barts and The London, Queen Mary University of London School of Medicine and Dentistry, William Harvey Research Institute, London, UK
| | - Jessica Bertrand
- Barts and The London, Queen Mary University of London School of Medicine and Dentistry, William Harvey Research Institute, London, UK
| | - Suzanne E Eldridge
- Barts and The London, Queen Mary University of London School of Medicine and Dentistry, William Harvey Research Institute, London, UK
| | - Francesco Dell'Accio
- Barts and The London, Queen Mary University of London School of Medicine and Dentistry, William Harvey Research Institute, London, UK.
| |
Collapse
|
33
|
Proctor CJ, Macdonald C, Milner JM, Rowan AD, Cawston TE. A computer simulation approach to assessing therapeutic intervention points for the prevention of cytokine-induced cartilage breakdown. Arthritis Rheumatol 2014; 66:979-89. [PMID: 24757149 PMCID: PMC4033570 DOI: 10.1002/art.38297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
Abstract
Objective To use a novel computational approach to examine the molecular pathways involved in cartilage breakdown and to use computer simulation to test possible interventions for reducing collagen release. Methods We constructed a computational model of the relevant molecular pathways using the Systems Biology Markup Language, a computer-readable format of a biochemical network. The model was constructed using our experimental data showing that interleukin-1 (IL-1) and oncostatin M (OSM) act synergistically to up-regulate collagenase protein levels and activity and initiate cartilage collagen breakdown. Simulations were performed using the COPASI software package. Results The model predicted that simulated inhibition of JNK or p38 MAPK, and overexpression of tissue inhibitor of metalloproteinases 3 (TIMP-3) led to a reduction in collagen release. Overexpression of TIMP-1 was much less effective than that of TIMP-3 and led to a delay, rather than a reduction, in collagen release. Simulated interventions of receptor antagonists and inhibition of JAK-1, the first kinase in the OSM pathway, were ineffective. So, importantly, the model predicts that it is more effective to intervene at targets that are downstream, such as the JNK pathway, rather than those that are close to the cytokine signal. In vitro experiments confirmed the effectiveness of JNK inhibition. Conclusion Our study shows the value of computer modeling as a tool for examining possible interventions by which to reduce cartilage collagen breakdown. The model predicts that interventions that either prevent transcription or inhibit the activity of collagenases are promising strategies and should be investigated further in an experimental setting.
Collapse
Affiliation(s)
- C J Proctor
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing and Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
34
|
Drexler S, Wann A, Vincent TL. Are cellular mechanosensors potential therapeutic targets in osteoarthritis? ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Chong KW, Chanalaris A, Burleigh A, Jin H, Watt FE, Saklatvala J, Vincent TL. Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and in vivo. ACTA ACUST UNITED AC 2013; 65:2346-55. [PMID: 23740825 PMCID: PMC3992838 DOI: 10.1002/art.38039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The articular cartilage is known to be highly mechanosensitive, and a number of mechanosensing mechanisms have been proposed as mediators of the cellular responses to altered mechanical load. These pathways are likely to be important in tissue homeostasis as well as in the pathogenesis of osteoarthritis. One important injury-activated pathway involves the release of pericellular fibroblast growth factor 2 (FGF-2) from the articular cartilage. Using a novel model of murine cartilage injury and surgically destabilized joints in mice, we examined the extent to which FGF-2 contributes to the cellular gene response to injury. METHODS Femoral epiphyses from 5-week-old wild-type mice were avulsed and cultured in serum-free medium. Explant lysates were Western blotted for phospho-JNK, phospho-p38, and phospho-ERK or were fixed for immunohistochemical analysis of the nuclear translocation of p65 (indicative of NF-κB activation). RNA was extracted from injured explants, rested explants that had been stimulated with recombinant FGF-2 or FGF-18, or whole joints from either wild-type mice or FGF-2(-/-) mice. Reverse transcription-polymerase chain reaction was performed to examine a number of inflammatory response genes that had previously been identified in a microarray analysis. RESULTS Murine cartilage avulsion injury resulted in rapid activation of the 3 MAP kinase pathways as well as NF-κB. Almost all genes identified in murine joints following surgical destabilization were also regulated in cartilage explants upon injury. Many of these genes, including those for activin A (Inhba), tumor necrosis factor-stimulated gene 6 (Tnfaip6), matrix metalloproteinase 19 (Mmp19), tissue inhibitor of metalloproteinases 1 (Timp1), and podoplanin (Pdpn), were significantly FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo. CONCLUSION FGF-2-dependent gene expression occurs in vitro and in vivo in response to cartilage/joint injury in mice.
Collapse
Affiliation(s)
- Ka-Wing Chong
- Kennedy Institute of Rheumatology and University of Oxford, London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Watt FE, Ismail HM, Didangelos A, Peirce M, Vincent TL, Wait R, Saklatvala J. Src and fibroblast growth factor 2 independently regulate signaling and gene expression induced by experimental injury to intact articular cartilage. ACTA ACUST UNITED AC 2013; 65:397-407. [PMID: 23124605 DOI: 10.1002/art.37765] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/18/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether cartilage injury activates protein tyrosine kinases distinct from fibroblast growth factor (FGF)-related signaling, and whether they contribute to injury-induced gene responses. METHODS Phosphokinases and protein tyrosine phosphorylation were assayed by Western blotting of cartilage lysates. Immunoprecipitation and Western blotting with 4G10 antibody and immunoprecipitation kinase assay were carried out. Tyrosine-phosphorylated proteins on silver-stained gels of injured cartilage lysates were identified by mass spectrometry. Messenger RNA induction in cartilage explants was assessed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS Protein tyrosine phosphorylation occurred within seconds of injury to the surface of intact articular cartilage, as did activation of MAPKs and IKK. Activation did not reoccur upon reinjury of cultured explants. The prominent tyrosine-phosphorylated proteins focal adhesion kinase, paxillin, and cortactin were identified as substrates of Src family kinases. The Src family kinase inhibitor PP2 blocked injury-induced tyrosine phosphorylation. It did not prevent activation of the MAPKs and IKK but differentially inhibited 8 of 10 inflammatory response genes that were induced by injury. In contrast, FGF signaling blockade with PD173074 reduced all MAPK and IKK activation by ∼50% and inhibited a different subset of genes but had no effect on Src-like signaling. CONCLUSION Injury to the surface of intact articular cartilage activates Src-like kinases as well as MAPKs and IKK (implying NF-κB activation). FGF-2 contributes to MAPK/IKK activation but not to Src-like signaling, suggesting that the latter is a parallel pathway that also regulates the injury-induced inflammatory gene response.
Collapse
Affiliation(s)
- Fiona E Watt
- Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, London W6 8LH, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sofat N, Robertson SD, Wait R. Fibronectin III 13-14 domains induce joint damage via Toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J Innate Immun 2011; 4:69-79. [PMID: 21997473 PMCID: PMC3250657 DOI: 10.1159/000329632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022] Open
Abstract
Cartilage loss is a feature of chronic arthritis. It results from degradation of the extracellular matrix which is composed predominantly of aggrecan and type II collagen. Extracellular matrix degradation is mediated by aggrecanases and matrix metalloproteinases (MMPs). Recently, a number of endogenous matrix molecules, including fibronectin (FN), have been implicated in mediating cartilage degradation. We were interested in studying the C-terminal heparin-binding region of FN since it mediates aggrecan and type II collagen breakdown in cartilage, but the specific FN domains responsible for proteolytic enzyme activity and their receptors in cartilage are unknown. In this study, the ability of recombinant FN domains to induce cartilage breakdown was tested. We found that the FN III 13-14 domains in the C-terminal heparin-binding region of FN are potent inducers of aggrecanase activity in articular cartilage. In murine studies, the FN III 13-14-induced aggrecanase activity was inhibited in Toll-like receptor 4 (TLR4) knockout mice but not wild-type mice. FN III 13-14 domains also synergized with the known catabolic cytokines interleukin-1α and tumour necrosis factor and induced secretion of MMP-1, MMP-3, gp38 and serum amyloid-like protein A in chondrocytes. Our studies provide a mechanistic link between the innate immune receptor TLR4 and sterile arthritis induced by the FN III 13-14 domains of the endogenous matrix molecule FN.
Collapse
Affiliation(s)
- Nidhi Sofat
- Department of Biomedical Sciences, St George's, University of London, London, UK.
| | | | | |
Collapse
|
38
|
Abstract
Osteoarthritis (OA) involves all the structures of the joint. How the disease is initiated and what factors trigger the disease process remain unclear, although the mechanical environment seems to have a role. Our understanding of the biology of the disease has been hampered by the lack of access to tissue samples from patients with early stage disease, because clinically recognizable symptoms appear late in the osteoarthritic process. However, new data about the early processes in articular cartilage and new tools to identify the early stages of OA are providing fresh insights into the pathological sequence of events. The progressive destruction of cartilage involves degradation of matrix constituents, and rather active, yet inefficient, repair attempts. The release of fragmented molecules provides opportunities to monitor the disease process in patients, and to investigate whether these fragments are involved in propagating OA, for example, by inducing inflammation. The role of bone has not been fully elucidated, but changes in bone seem to be secondary to alterations in articular cartilage, which change the mechanical environment of the bone cells and induce them, in turn, to modulate tissue structure.
Collapse
|
39
|
Sommaggio R, Máñez R, Costa C. TNF, Pig CD86, and VCAM-1 Identified as Potential Targets for Intervention in Xenotransplantation of Pig Chondrocytes. Cell Transplant 2009; 18:1381-93. [DOI: 10.3727/096368909x474249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenotransplantation of genetically engineered porcine chondrocytes may benefit many patients who suffer cartilage defects. In this work, we sought to elucidate the molecular bases of the cellular response to xenogeneic cartilage. To this end, we isolated pig costal chondrocytes (PCC) and conducted a series of functional studies. First, we determined by flow cytometry the cell surface expression of multiple immunoregulatory proteins in resting conditions or after treatment with human TNF-α, IL-1α, or IL-1β, which did not induce apoptosis. TNF-α and to a lesser extent IL-1α led to a marked upregulation of SLA I, VCAM-1, and ICAM-1 on PCC. SLA II and E-selectin remained undetectable in all the conditions assayed. Notably, CD86 was constitutively expressed at moderate levels, whereas CD80 and CD40 were barely detected. To assess their function, we next studied the interaction of PCC with human monoblastic U937 and Jurkat T cells. U937 cells adhered to resting and in a greater proportion to cytokine-stimulated PCC. Consistent with its expression pattern, pig VCAM-1 was key, mediating the increased adhesion after cytokine stimulation. We also conducted coculture experiments with U937 and PCC and measured the release of pig and human cytokines. Stimulated PCC secreted IL-6 and IL-8, whereas U937 secreted IL-8 in response to PCC. Finally, coculture of PCC with Jurkat in the presence of PHA led to a marked Jurkat activation as determined by the increase in IL-2 secretion. This process was dramatically reduced by blocking pig CD86. In summary, CD86 and VCAM-1 on pig chondrocytes may be important triggers of the xenogeneic cellular immune response. These molecules together with TNF could be considered potential targets for intervention in order to develop xenogeneic therapies for cartilage repair.
Collapse
Affiliation(s)
- Roberta Sommaggio
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Máñez
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
40
|
Chia SL, Sawaji Y, Burleigh A, McLean C, Inglis J, Saklatvala J, Vincent T. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. ACTA ACUST UNITED AC 2009; 60:2019-27. [PMID: 19565481 DOI: 10.1002/art.24654] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We have previously identified in articular cartilage an abundant pool of the heparin-binding growth factor, fibroblast growth factor 2 (FGF-2), which is bound to the pericellular matrix heparan sulfate proteoglycan, perlecan. This pool of FGF-2 activates chondrocytes upon tissue loading and is released following mechanical injury. In vitro, FGF-2 suppresses interleukin-1-driven aggrecanase activity in human cartilage explants, suggesting a chondroprotective role in vivo. We undertook this study to investigate the in vivo role of FGF-2 in murine cartilage. METHODS Basal characteristics of the articular cartilage of Fgf2(-/-) and Fgf2(+/+) mice were determined by histomorphometry, nanoindentation, and quantitative reverse transcriptase-polymerase chain reaction. The articular cartilage was graded histologically in aged mice as well as in mice in which osteoarthritis (OA) had been induced by surgical destabilization of the medial meniscus. RNA was extracted from the joints of Fgf2(-/-) and Fgf2(+/+) mice following surgery and quantitatively assessed for key regulatory molecules. The effect of subcutaneous administration of recombinant FGF-2 on OA progression was assessed in Fgf2(-/-) mice. RESULTS Fgf2(-/-) mice were morphologically indistinguishable from wild-type (WT) animals up to age 12 weeks; the cartilage thickness and proteoglycan staining were equivalent, as was the mechanical integrity of the matrix. However, Fgf2(-/-) mice exhibited accelerated spontaneous and surgically induced OA. Surgically induced OA in Fgf2(-/-) mice was suppressed to levels in WT mice by subcutaneous administration of recombinant FGF-2. Increased disease in Fgf2(-/-) mice was associated with increased expression of messenger RNA of Adamts5, the key murine aggrecanase. CONCLUSION These data identify FGF-2 as a novel endogenous chondroprotective agent in articular cartilage.
Collapse
|
41
|
Ryan JA, Eisner EA, DuRaine G, You Z, Reddi AH. Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med 2009; 3:107-16. [PMID: 19177463 DOI: 10.1002/term.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Articular cartilage is recalcitrant to endogenous repair and regeneration and is thus a focus of tissue engineering and regenerative medicine strategies. A prerequisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1/s for 5 s. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: (a) no load, without inhibitor; (b) no load, with the inhibitor PD98059; (c) loaded, without the inhibitor; and (d) loaded, with the inhibitor PD98059. The explants were cultured for varying durations from 5 min to 5 days and were then analysed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose-dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression.
Collapse
Affiliation(s)
- James A Ryan
- Center for Tissue Regeneration and Repair, Lawrence Ellison Musculoskeletal Research Center, Department of Orthopedic Surgery, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
42
|
Eltawil N, De Bari C, Achan P, Pitzalis C, Dell'Accio F. A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage 2009; 17:695-704. [PMID: 19070514 PMCID: PMC2706394 DOI: 10.1016/j.joca.2008.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/04/2008] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To generate and validate a murine model of joint surface repair following acute mechanical injury. METHODS Full thickness defects were generated in the patellar groove of C57BL/6 and DBA/1 mice by microsurgery. Control knees were either sham-operated or non-operated. Outcome was evaluated by histological scoring systems. Apoptosis and proliferation were studied using TUNEL and Phospho-Histone H3 staining, respectively. Type II collagen neo-deposition and degradation were evaluated by immunostaining using antibodies to the CPII telopeptide and C1,2C (Col2-3/4Cshort), respectively. Aggrecanases and matrix metalloproteinases (MMPs) activity were assessed by immunostaining for TEGE(373) and VDIPEN neo-epitopes. RESULTS Young 8-week-old DBA/1 mice displayed consistent and superior healing of the articular cartilage defect. Age-matched C57BL/6 mice repaired poorly and developed features of osteoarthritis (OA). Compared to C57BL/6, DBA/1 mice displayed a progressive decline of chondrocyte apoptosis, cell proliferation within the repair tissue, persistent type II collagen neo-deposition, less type II collagen degradation, less aggrecanases and more MMP-induced aggrecan degradation. Eight-month-old DBA/1 mice failed to repair, but, in contrast to age-matched C57BL/6 mice, developed no signs of OA. CONCLUSION We have generated and validated a murine model of cartilage regeneration in which the outcome of joint surface injury is strain and age dependent. This model will allow, for the first time, the dissection of different pathways involved in joint surface regeneration in adult mammals using the powerful technology of mouse genetics.
Collapse
Affiliation(s)
- N.M. Eltawil
- William Harvey Research Institute, Barts and the London Queen Mary's School of Medicine and Dentistry, Centre for Experimental Medicine and Rheumatology, London, UK
| | - C. De Bari
- University of Aberdeen, School of Medicine, Department of Medicine and Therapeutics, Aberdeen, UK
| | - P. Achan
- Barts and The Royal London Hospitals, London, UK
| | - C. Pitzalis
- William Harvey Research Institute, Barts and the London Queen Mary's School of Medicine and Dentistry, Centre for Experimental Medicine and Rheumatology, London, UK
| | - F. Dell'Accio
- William Harvey Research Institute, Barts and the London Queen Mary's School of Medicine and Dentistry, Centre for Experimental Medicine and Rheumatology, London, UK
- Address correspondence and reprint requests to: Francesco Dell'Accio, Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, II Floor, John Vane Building, Charterhouse Square, London EC1M 6BQ, UK. Tel: 44-(0)-20-7882-8204.
| |
Collapse
|
43
|
Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR. Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol Cell Proteomics 2009; 8:1475-89. [PMID: 19196708 DOI: 10.1074/mcp.m800181-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objectives of this study were to perform a quantitative comparison of proteins released from cartilage explants in response to treatment with IL-1beta, TNF-alpha, or mechanical compression injury in vitro and to interpret this release in the context of anabolic-catabolic shifts known to occur in cartilage in response to these insults in vitro and their implications in vivo. Bovine calf cartilage explants from 6-12 animals were subjected to injurious compression, TNF-alpha (100 ng/ml), IL-1beta (10 ng/ml), or no treatment and cultured for 5 days in equal volumes of medium. The pooled medium from each of these four conditions was labeled with one of four iTRAQ labels and subjected to nano-2D-LC/MS/MS on a quadrupole time-of-flight instrument. Data were analysed by ProQuant for peptide identification and quantitation. k-means clustering and biological pathways analysis were used to identify proteins that may correlate with known cartilage phenotypic responses to such treatments. IL-1beta and TNF-alpha treatment caused a decrease in the synthesis of collagen subunits (p < 0.05) as well as increased release of aggrecan G2 and G3 domains to the medium (p < 0.05). MMP-1, MMP-3, MMP-9, and MMP-13 were significantly increased by all treatments compared with untreated samples (p < 0.10). Increased release of proteins involved in innate immunity and immune cell recruitment were noted following IL-1beta and TNF-alpha treatment, whereas increased release of intracellular proteins was seen most dramatically with mechanical compression injury. Proteins involved in insulin-like growth factor and TGF-beta superfamily pathway modulation showed changes in pro-anabolic pathways that may represent early repair signals. At the systems level, two principal components were sufficient to describe 97% of the covariance in the data. A strong correlation was noted between the proteins released in response to IL-1beta and TNF-alpha; in contrast, mechanical injury resulted in both similarities and unique differences in the groups of proteins released compared with cytokine treatment.
Collapse
Affiliation(s)
- Anna L Stevens
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
44
|
Sawaji Y, Hynes J, Vincent T, Saklatvala J. Fibroblast growth factor 2 inhibits induction of aggrecanase activity in human articular cartilage. ACTA ACUST UNITED AC 2009; 58:3498-509. [PMID: 18975307 DOI: 10.1002/art.24025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Articular chondrocytes are surrounded by an extracellular pool of fibroblast growth factor 2 (FGF-2). We undertook this study to investigate the possible role of FGF-2 in aggrecan catabolism by aggrecanase in human articular cartilage. METHODS Aggrecan catabolism was induced by interleukin-1alpha (IL-1alpha) in normal human articular cartilage and assessed by measuring the release of glycosaminoglycan (GAG) and aggrecanase-dependent fragments by Western blotting with antibodies against neoepitopes. ADAMTS-4 and ADAMTS-5 messenger RNA (mRNA) expression was measured by quantitative real-time reverse transcriptase-polymerase chain reaction. Production of matrix metalloproteinases (MMPs) 1, 3, and 13 and tissue inhibitors of metalloproteinases (TIMPs) 1 and 3 was measured by Western blotting. IL-6 and IL-8 were measured by enzyme-linked immunosorbent assay. Proteoglycan synthesis was monitored by 35S-sulfate incorporation. RESULTS IL-1alpha caused cleavage of aggrecan in cultured human articular cartilage explants, with release of GAG and aggrecan fragments containing ARGS and AGEG neoepitopes. This was inhibited by FGF-2 (1-100 ng/ml). Tumor necrosis factor alpha and retinoic acid also stimulated release of neoepitope, and this was also suppressed by FGF-2. IL-1alpha induced ADAMTS-4 and ADAMTS-5 mRNA in primary human chondrocytes, and this was inhibited by FGF-2. IL-1alpha-induced aggrecan breakdown was inhibited by TIMP-1 or by the N-terminal portion of TIMP-3, although FGF-2 did not affect production of the inhibitors TIMP-1 and TIMP-3 when IL-1alpha was present. FGF-2 did not prevent IL-1alpha suppression of proteoglycan synthesis and did not negate its ability to stimulate the production of IL-6, IL-8, and MMPs 1, 3, and 13. CONCLUSION Our findings suggest that FGF-2 may play a chondroprotective role in human articular cartilage by controlling the expression and activity of the aggrecanases ADAMTS-4 and ADAMTS-5.
Collapse
|
45
|
Wilson R, Belluoccio D, Little CB, Fosang AJ, Bateman JF. Proteomic characterization of mouse cartilage degradation in vitro. ACTA ACUST UNITED AC 2008; 58:3120-31. [PMID: 18821673 DOI: 10.1002/art.23789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To develop proteomics to analyze mouse cartilage degradation and correlate transcriptional and translational responses to catabolic stimuli. METHODS Proteomic techniques were used to analyze catabolism in mouse femoral head cartilage. Using specific methods to prepare cartilage extracts and conditioned media for 2-dimensional polyacrylamide gel electrophoresis and subsequent tandem mass spectrometry, we identified novel proteins and fragments released into the media of control, interleukin-1alpha (IL-1alpha)-treated, and all-trans-retinoic acid (RetA)-treated explants. Fluorescence 2-dimensional difference gel electrophoresis was used to quantify protein expression changes. We also measured changes in messenger RNA (mRNA) expression to distinguish transcriptional and posttranslational regulation of released proteins. RESULTS Differentially abundant proteins in the media of control and treated explants included fragments of thrombospondin 1 and connective tissue growth factor. IL-1alpha stimulated release of the cartilage degeneration marker matrix metalloproteinase 3, as well as proteins with uncharacterized roles in cartilage pathology, such as neutrophil gelatinase-associated lipocalin. RetA stimulated release of the extracellular matrix proteins cartilage oligomeric matrix protein, link protein, and matrilin-3 into the media, which was accompanied by a dramatic reduction in the corresponding mRNA transcript levels. Gelsolin, which has been implicated in cytoskeletal reorganization in arthritis synovial fibroblasts but has not been previously associated with cartilage pathology, was regulated by IL-1alpha and RetA. CONCLUSION In this first analysis of mouse cartilage degradation and protein release using proteomics, we identified proteins and fragments, some of which represent novel candidate biomarkers for cartilage degradation. Applying these proteomic techniques to wild-type and genetically modified mouse cartilage will provide insights into the mechanisms of cartilage degeneration.
Collapse
Affiliation(s)
- Richard Wilson
- University of Melbourne, Murdoch Children's Research Institute, and Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Vincent TL, Saklatvala J. Is the response of cartilage to injury relevant to osteoarthritis? ACTA ACUST UNITED AC 2008; 58:1207-10. [PMID: 18438834 DOI: 10.1002/art.23443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Dell'accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. ACTA ACUST UNITED AC 2008; 58:1410-21. [PMID: 18438861 DOI: 10.1002/art.23444] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize the molecular response of adult human articular cartilage to acute mechanical injury. METHODS An established ex vivo model was used to compare gene expression of adult human articular cartilage explants 24 hours after mechanical injury with that of uninjured controls by microarray analysis of gene expression. Confirmation for selected genes was obtained by real-time polymerase chain reaction and immunohistochemical analysis. Expression of selected genes was also investigated in preserved and osteoarthritic (OA) cartilage. RESULTS Six hundred ninety genes were significantly regulated at least 2-fold following mechanical injury. They included genes previously reported to be differentially expressed in OA versus normal cartilage or having allelic variants genetically linked to OA. Significant functional clusters included genes associated with wound healing, developmental processes, and skeletal development. The transforming growth factor beta, fibroblast growth factor, and Wnt pathways were modulated. A systematic analysis of the Wnt signaling pathway revealed up-regulation of Wnt-16, down-regulation of FRZB, up-regulation of Wnt target genes, and nuclear localization of beta-catenin in injured cartilage. In addition, in OA, Wnt-16 and beta-catenin were barely detectable in preserved cartilage areas, but were dramatically up-regulated in areas of the same joint with moderate to severe OA damage. CONCLUSION Our findings indicate that mechanical injury to adult human articular cartilage results in the activation of a signaling response, with reactivation of morphogenetic pathways. Therapeutic targeting of such pathways may improve current protocols of joint surface defect repair and/or prevent the evolution of such lesions into posttraumatic OA.
Collapse
|
48
|
Stevens AL, Wishnok JS, Chai DH, Grodzinsky AJ, Tannenbaum SR. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis-liquid chromatography tandem mass spectrometry analysis of bovine cartilage tissue response to mechanical compression injury and the inflammatory cytokines tumor necrosis factor alpha and interleukin-1beta. ACTA ACUST UNITED AC 2008; 58:489-500. [PMID: 18240213 DOI: 10.1002/art.23120] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To compare the response of chondrocytes and cartilage matrix to injurious mechanical compression and treatment with interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha), by characterizing proteins lost to the medium from cartilage explant culture. METHODS Cartilage explants from young bovine stifle joints were treated with 10 ng/ml of IL-1beta or 100 ng/ml of TNFalpha or were subjected to uniaxial, radially-unconfined injurious compression (50% strain; 100%/second strain rate) and were then cultured for 5 days. Pooled media were subjected to gel-based separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and analysis by liquid chromatography tandem mass spectrometry, and the data were analyzed by Spectrum Mill proteomics software, focusing on protein identification, expression levels, and matrix protein proteolysis. RESULTS More than 250 proteins were detected, including extracellular matrix (ECM) structural proteins, pericellular matrix proteins important in cell-cell interactions, and novel cartilage proteins CD109, platelet-derived growth factor receptor-like, angiopoietin-like 7, and adipocyte enhancer binding protein 1. IL-1beta and TNFalpha caused increased release of chitinase 3-like protein 1 (CHI3L1), CHI3L2, complement factor B, matrix metalloproteinase 3, ECM-1, haptoglobin, serum amyloid A3, and clusterin. Injurious compression caused the release of intracellular proteins, including Grp58, Grp78, alpha4-actinin, pyruvate kinase, and vimentin. Injurious compression also caused increased release and evidence of proteolysis of type VI collagen subunits, cartilage oligomeric matrix protein, and fibronectin. CONCLUSION Overload compression injury caused a loss of cartilage integrity, including matrix damage and cell membrane disruption, which likely occurred through strain-induced mechanical disruption of cells and matrix. IL-1beta and TNFalpha caused the release of proteins associated with an innate immune and stress response by the chondrocytes, which may play a role in host defense against pathogens or may protect cells against stress-induced damage.
Collapse
Affiliation(s)
- Anna L Stevens
- Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
49
|
PEARSON W, ORTH MW, LINDINGER MI. Differential anti-inflammatory and chondroprotective effects of simulated digests of indomethacin and an herbal composite (MobilityTM) in a cartilage explant model of articular inflammation. J Vet Pharmacol Ther 2007; 30:523-33. [DOI: 10.1111/j.1365-2885.2007.00905.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Ahmad R, Sylvester J, Zafarullah M. MyD88, IRAK1 and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation. Cell Signal 2007; 19:2549-57. [PMID: 17905570 DOI: 10.1016/j.cellsig.2007.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 08/06/2007] [Indexed: 01/29/2023]
Abstract
Interleukin-1 (IL-1) is the major prototypic proinflammatory cytokine that stimulates degradation of cartilage in arthritis by inducing prominent collagen II-degrading matrix metalloproteinase-13 (MMP-13). Nothing is known about the involvement of adaptor proteins, MyD88, IRAK1 and TRAF6 in MMP-13 regulation. Here we investigated for the first time the role of these proteins in IL-1-regulated MMP-13 expression in chondrocytes. MyD88 homodimerization inhibitory peptide diminished the expression of MMP-13 gene, promoter activity, phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun and activating protein 1 (AP-1) activity. Knockdown of MyD88, IRAK1 and TRAF6 by RNA interference (RNAi) drastically down-regulated the expression of IL-1-induced MMP-13 mRNA and protein levels and MMP-13 promoter-driven luciferase activity. Non-specific control siRNA had no effect. Mechanisms of MMP-13 inhibition involved reduced phosphorylation of ERK, p38, JNK and c-Jun as well as AP-1 transcription factor binding activity. The genetic evidence presented here demonstrates that MyD88, IRAK1 and TRAF6 proteins are crucial early mediators for the IL-1-induced MMP-13 regulation through MAPK pathways and AP-1 activity. These proteins could constitute important therapeutic targets for arthritis-associated cartilage loss by MMP-13.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Department of Medicine, University of Montreal and Research Centre of CHUM Notre-Dame Hospital, Montreal, Quebec, Canada H2L 4M1
| | | | | |
Collapse
|