1
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
2
|
Wang L, Khunsriraksakul C, Markus H, Chen D, Zhang F, Chen F, Zhan X, Carrel L, Liu DJ, Jiang B. Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes. Nat Commun 2024; 15:4260. [PMID: 38769300 PMCID: PMC11519974 DOI: 10.1038/s41467-024-48143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Transcriptome-wide association study (TWAS) is a popular approach to dissect the functional consequence of disease associated non-coding variants. Most existing TWAS use bulk tissues and may not have the resolution to reveal cell-type specific target genes. Single-cell expression quantitative trait loci (sc-eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most conveniently available as summary statistics, but have not been broadly utilized in TWAS. Here, we present a new method EXPRESSO (EXpression PREdiction with Summary Statistics Only), to analyze sc-eQTL summary statistics, which also integrates 3D genomic data and epigenomic annotation to prioritize causal variants. EXPRESSO substantially improves existing methods. We apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations, which is 26% more than the second-best method. Among them, 492 are unique to cell type level analysis and missed by TWAS using whole blood. We also develop a cell type aware drug repurposing pipeline, which leverages EXPRESSO results to identify drug compounds that can reverse disease gene expressions in relevant cell types. Our results point to multiple drugs with therapeutic potentials, including metformin for type 1 diabetes, and vitamin K for ulcerative colitis.
Collapse
Affiliation(s)
- Lida Wang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chachrit Khunsriraksakul
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Havell Markus
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dieyi Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Zhang
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fang Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xiaowei Zhan
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, US
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US.
| | - Bibo Jiang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
3
|
Peng X, Xu Z, Dentinger A, Kewalramani S, Jo J, Xu G, Chamberland D, Abdulaziz N, Gandikota G, Mills D, Wang X. Longitudinal volumetric assessment of inflammatory arthritis via photoacoustic imaging and Doppler ultrasound imaging. PHOTOACOUSTICS 2023; 31:100514. [PMID: 37255965 PMCID: PMC10225933 DOI: 10.1016/j.pacs.2023.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
Aiming at clinical translation, we developed an automatic 3D imaging system combining the emerging photoacoustic imaging with conventional Doppler ultrasound for detecting inflammatory arthritis. This system was built with a GE HealthCare (GEHC) Vivid™ E95 ultrasound system and a Universal Robot UR3 robotic arm. In this work, the performance of this system was examined with a longitudinal study utilizing a clinically relevant adjuvant induced arthritis (AIA) murine model. After adjuvant injection, daily imaging of the rat ankle joints was conducted until joint inflammation was obvious based on visual inspection. Processed imaging results and statistical analyses indicated that both the hyperemia (enhanced blood volume) detected by photoacoustic imaging and the enhanced blood flow detected by Doppler ultrasound reflected the progress of joint inflammation. However, photoacoustic imaging, by leveraging the highly sensitive optical contrast, detected inflammation earlier than Doppler ultrasound, and also showed changes that are more statistically significant. This side-by-side comparison between photoacoustic imaging and Doppler ultrasound using the same commercial grade GEHC ultrasound machine demonstrates the advantage and potential value of the emerging photoacoustic imaging for rheumatology clinical care of arthritis.
Collapse
Affiliation(s)
- Xiaorui Peng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Shivangi Kewalramani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - David Chamberland
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nada Abdulaziz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - David Mills
- General Electric Research, Niskayuna, NY, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
5
|
Avila A, Petrera M, Duenes M, Kingery MT, Song M, Jazrawi LM, Strauss EJ. RANTES Concentration at the Time of Surgery Is Associated With Postoperative Stiffness in Patients Undergoing ACL Reconstruction. Am J Sports Med 2022; 50:3838-3843. [PMID: 36349932 DOI: 10.1177/03635465221131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Patients undergoing anterior cruciate ligament (ACL) reconstruction have been shown to be at risk for postoperative arthrofibrosis. Diagnostic biomarkers associated with the development of postoperative stiffness are unknown. HYPOTHESIS Biomarkers found in the synovial fluid at the time of surgery are associated with the development of postoperative arthrofibrosis in a cohort of patients undergoing ACL reconstruction. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Patients undergoing ACL reconstruction were prospectively enrolled. Synovial fluid was collected before surgical incision. A cohort of patients with postoperative stiffness requiring manipulation under anesthesia (MUA) and/or lysis of adhesions (LOA) was retrospectively identified. Matching of cases to controls was performed using a 1:2 pair matching algorithm. Risk factor-adjusted single-biomarker and multivariable models were used to assess the association of synovial fluid biomarkers with postoperative stiffness requiring MUA/LOA. Stepwise logistic regression controlling for clinical risk factors was used to identify biomarkers that are possible predictors of postoperative stiffness. RESULTS A total of 11 cases (3 male, 8 female) were identified and matched with 21 controls (6 male, 15 female) with no significant differences in age, sex, smoking history, or days from injury to surgery. Concentrations of the biomarker regulated upon activation, normal T-cell expressed and presumably secreted (RANTES) were significantly higher in patients requiring MUA/LOA versus controls (694.20 pg/mL [interquartile range, 214.75-3428.79] vs 113.04 pg/mL [interquartile range, 32.81-517.91], respectively; P = .034). On single-biomarker models, RANTES (odds ratio, 2.28; 95% CI, 1.29-5.37; P = .019) and basic fibroblast growth factor (bFGF) (odds ratio, 1.91; 95% CI, 1.07-3.99; P = .047) were associated with increased risk of postoperative stiffness requiring MUA/LOA after ACL reconstruction. Stepwise logistic regression identified 3 biomarkers that are possible predictors of postoperative stiffness, which were included in the final model: Interleukin 1 receptor antagonist (IL-1RA) (P = .198), bFGF (P = .157), and RANTES (P = .046). CONCLUSION Higher concentrations of synovial fluid biomarkers bFGF and RANTES were associated with increased risk for stiffness requiring intervention after ACL reconstruction. Interleukin 6 (IL-6), vascular endothelial growth factor A (VEGF-A), tissue inhibitor of metalloproteinases 1 (TIMP-1), interleukin 1 receptor antagonist (IL-1RA), matrix metalloproteinase 3 (MMP-3), monocyte chemotactic protein 1 (MCP-1), and macrophage inflammatory protein 1B (MIP-1B) were not associated with the development of postoperative arthrofibrosis.
Collapse
Affiliation(s)
- Amanda Avila
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Massimo Petrera
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Matthew Duenes
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Matthew T Kingery
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Melissa Song
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Laith M Jazrawi
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| | - Eric J Strauss
- NYU Langone Medical Center, Orthopaedic Surgery Department, Division of Sports Medicine, New York, New York, USA
| |
Collapse
|
6
|
Yan J, Xu W, Lenahan C, Huang L, Ocak U, Wen J, Li G, He W, Le C, Zhang JH, Mo L, Tang J. Met-RANTES preserves the blood–brain barrier through inhibiting CCR1/SRC/Rac1 pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2022; 19:7. [PMID: 35062973 PMCID: PMC8781527 DOI: 10.1186/s12987-022-00305-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background C–C chemokine receptor type 1 (CCR1) and its endogenous ligand, CCL5, participate in the pathogenesis of neuroinflammatory diseases. However, much remains unknown regarding CCL5/CCR1 signaling in blood–brain barrier (BBB) permeability after intracerebral hemorrhage (ICH). Methods A total of 250 CD1 male mice were used and ICH was induced via autologous whole blood injection. Either Met-RANTES, a selective CCR1 antagonist, or Met-RANTES combined with a Rac1 CRISPR activator was administered to the mice 1 h after ICH. Post-ICH assessments included neurobehavioral tests, brain water content, BBB integrity, hematoma volume, Western blot, and immunofluorescence staining. The CCR1 ligand, rCCL5, and SRC CRISPR knockout in naïve mice were used to further elucidate detrimental CCL5/CCR1/SRC signaling. Results Brain endogenous CCR1 and CCL5 were upregulated after ICH in mice with a peak at 24 h, and CCR1 was expressed in endothelial cells, astrocytes, and neurons. Met-R treatment reduced brain edema and neurobehavioral impairment, as well as preserved BBB integrity and tight junction protein expression in ICH mice. Met-R treatment decreased expression of p-SRC, Rac1, albumin, and MMP9, but increased claudin-5, occludin, and ZO-1 tight junction proteins after ICH. These effects were regressed using the Rac1 CRISPR activator. Administration of rCCL5 in naïve mice increased expression of p-SRC, Rac1, albumin, and MMP9, but decreased levels of claudin-5, occludin, and ZO-1 tight junction proteins. These effects in naïve mice were reversed with SRC CRISPR (KO). Conclusions Our findings demonstrate that CCR5 inhibition by Met-R improves neurological deficits after ICH by preserving BBB integrity through inhibiting CCR1/SRC/Rac1 signaling pathway in mice. Thus, Met-R has therapeutic potential in the management of ICH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00305-3.
Collapse
|
7
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Comprehensive Bioinformatics Analysis Reveals Hub Genes and Inflammation State of Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6943103. [PMID: 32802866 PMCID: PMC7424395 DOI: 10.1155/2020/6943103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, which has not been thoroughly cured yet, and standardized treatment is helpful for alleviating clinical symptoms. Here, various bioinformatics analysis tools were comprehensively utilized, aiming to identify critical biomarkers and possible pathogenesis of RA. Three gene expression datasets profiled by microarray were obtained from GEO database. Dataset GSE55235 and GSE55457 were merged for subsequent analyses. We identified differentially expressed genes (DEGs) in RStudio with limma package, performing functional enrichment analysis based on GSEA software and clusterProfiler package. Next, protein-protein interaction (PPI) network was set up through STRING database and Cytoscape. Moreover, CIBERSORT website was used to assess the inflammatory state of RA. Finally, we validated the candidate hub genes with dataset GSE77298. As a result, we identified 106 DEGs (72 upregulated and 34 downregulated genes). Through GO, KEGG, and GSEA analysis, we found that DEGs were mainly involved in immune response and inflammatory signaling pathway. With the help of Cytoscape software and MCODE plug-in, the most prominent subnetwork was screened out, containing 14 genes and 45 edges. For ROC curve analysis, eight genes with AUC >0.80 were considered as hub genes of RA. In conclusion, compared with healthy controls, the DEGs and their closely related biological functions were analyzed, and we held that chemokines and immune cells infiltration promote the progression of rheumatoid arthritis. Targeting the eight biomarkers we identified may be useful for the diagnosis and treatment of rheumatoid arthritis.
Collapse
|
10
|
T Helper Cell Infiltration in Osteoarthritis-Related Knee Pain and Disability. J Clin Med 2020; 9:jcm9082423. [PMID: 32751139 PMCID: PMC7464429 DOI: 10.3390/jcm9082423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the growing body of literature demonstrating a crucial role of T helper cell (Th) responses in the pathogenesis of osteoarthritis (OA), only few clinical studies have assessed interactions between Th cells and OA—related symptoms. Yet, the inclusion of clinical data in the interpretation of cellular analyses of Th cell infiltration is essential to reveal the mechanisms underlying the complex pathophysiology of OA pain and disability. Thus, the aim of the study was to analyze the infiltration pattern of Th cells in systemic (peripheral blood) and joint-derived (synovial membrane and fluid) samples from patients with knee OA in relation to OA-induced pain and disability. Therefore, radiographic OA severity, knee pain and function of 47 OA patients undergoing knee arthroplasty were evaluated prior to surgery. In parallel, samples of peripheral blood (PB), synovial membrane (SM) and synovial fluid (SF) were harvested and analyzed for different Th subsets using flow cytometry. According to surface marker expression Th cells (CD3+ CD4+ CD8−) were assigned to the Th subsets Th1 (CXCR3+, CCR5+), Th2 (CCR3+, CCR4+) and Th17 (CD161+, CCR6+). Interestingly, infiltration of the SM with all Th subtypes (Th1, Th2, Th17) significantly correlated with OA-induced disability. Most importantly, synovial CCR5+ and CCR3+ Th cell infiltration was associated with OA-related knee pain and disability. Furthermore, higher percentage rates of CXCR3+ Th cells in all tissue samples (PB, SM, SF) showed significant associations with OA severity. In contrast, increasing percentage rates of CD161+ Th cells in SM samples corresponded to a better functional outcome. In conclusion, the current study provides an extensive profile of the Th cell infiltration pattern in PB, SF and SM from patients with clinically relevant knee OA. Th cell infiltration of the SM might play a crucial role not only in the pathogenesis of OA but also in the development of OA-related knee pain and disability.
Collapse
|
11
|
Liu SQ, Gao X, Xie Y, Wang Q, Zhu WY. Rabies viruses of different virulence regulates inflammatory responses both in vivo and in vitro via MAPK and NF-κB pathway. Mol Immunol 2020; 125:70-82. [PMID: 32652362 DOI: 10.1016/j.molimm.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Immune responses and central nervous system dysfunction are two main factors to be considered during rabies virus (RABV) infection. However, the mechanisms by which RABV strains of different virulence regulate with chemokine expression and the signaling pathways responsible for the immune responses in the terminal stage of infection both in vivo and in vitro have not been fully elucidated. In this study, we found low expression levels of proinflammatory chemokines in the mouse brain upon infection with street RABV strains (CXZ17 and HN10) at the late stage of infection. We also examined the difference in inflammatory response upon infection with RABV strains of different virulence in a mouse model. We found that the expression of proinflammatory chemokines increased to a varying degree upon infection with street RABV (CXZ17 and HN10) or laboratory-fixed RABV (CVS-11, aG, and CTN); CXCL10, CCL5, and CCL2 were the most significantly upregulated chemokines in brain tissue and microglial BV-2 cells in response to infection with RABV strains of different virulence. Our data also demonstrate significant activation of the MAPK and NF-κB pathways in mouse brain tissue at the late stage of RABV infection. We also found (i) low phosphorylation signals of MAPK and NF-κB p65 in neuronal cells upon infection with CXZ17 and HN10 in the mouse brain and (ii) strong phosphorylation signals in cerebrovascular endothelial cells and neuronal cells upon CTN or aG infection. Moreover, we quantified the nuclear localization status of MAPK signals and NF-κB p65 upon infection with CVS-11, aG, and CTN in BV-2 cells in vitro. We also found (i) that the activation of the p38, ERK1/2, and NF-κB p65 pathway, which stimulates CXCL10, CCL5, and CCL2 expression upon infection with RABV strains of different virulence (aG, CTN, and CVS-11), is triggered after virus entry into BV-2 cells and (ii) that the expression of CXCL10, CCL5, and CCL2 is required for the activation of NF-κB, p38, and ERK1/2, but not JNK. Overall, our study provides insight into the regulation of inflammatory responses mediated by MAPK and NF-κB in the mouse brain and in microglial cells upon RABV infection of different virulence.
Collapse
Affiliation(s)
- Shu Qing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xin Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Pathogenic Microbiology Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yuan Xie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wu Yang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
12
|
Yan J, Zuo G, Sherchan P, Huang L, Ocak U, Xu W, Travis ZD, Wang W, Zhang JH, Tang J. CCR1 Activation Promotes Neuroinflammation Through CCR1/TPR1/ERK1/2 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics 2020; 17:1170-1183. [PMID: 31898284 PMCID: PMC7609528 DOI: 10.1007/s13311-019-00821-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activation of C-C chemokine receptor type 1 (CCR1) has been shown to be pro-inflammatory in several animal models of neurological diseases. The objective of this study was to investigate the activation of CCR1 on neuroinflammation in a mouse model of intracerebral hemorrhage (ICH) and the mechanism of CCR1/tetratricopeptide repeat 1 (TPR1)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway in CCR1-mediated neuroinflammation. Adult male CD1 mice (n = 210) were used in the study. The selective CCR1 antagonist Met-RANTES was administered intranasally at 1 h after autologous blood injection. To elucidate potential mechanism, a specific ERK1/2 activator (ceramide C6) was administered prior to Met-RANTES treatment; CCR1 activator (recombinant CCL5, rCCL5) and TPR1 CRISPR were administered in naïve mouse. Neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. The endogenous expressions of CCR1, CCL5, TPR1, and p-ERK1/2 were increased in the brain after ICH. CCR1 were expressed on microglia, neurons, and astrocytes. The inhibition of CCR1 with Met-RANTES improved neurologic function, decreased brain edema, and suppressed microglia/macrophage activations and neutrophil infiltration after ICH. Met-RANTES treatment decreased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β, which was reversed by ceramide C6. The brain CCR1 activation by rCCL5 injection in naïve mouse resulted in neurological deficits and increased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β. These detrimental effects of rCCL5 were reversed by TPR1 knockdown using TPR1 CRISPR. Our study demonstrated that CCR1 activation promoted neuroinflammation through CCR1/TPR1/ERK1/2 signaling pathway after ICH in mice. CCR1 inhibition with Met-RANTES attenuated neuroinflammation, thereby reducing brain edema and improving neurobehavioral functions. Targeting CCR1 activation may provide a promising therapeutic approach in the management of ICH patients.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, 215400, Jiangsu, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
13
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Tanner MR, Pennington MW, Chauhan SS, Laragione T, Gulko PS, Beeton C. KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis. Arthritis Res Ther 2019; 21:6. [PMID: 30612588 PMCID: PMC6322314 DOI: 10.1186/s13075-018-1783-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA. METHODS We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies. RESULTS We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA. CONCLUSIONS Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Michael W. Pennington
- Peptides International, Inc., Louisville, KY USA
- Present address: Ambiopharm, Inc., North Augusta, SC USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Pércio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Biology of Inflammation Center, Center for Drug Discovery, Cardiovascular Research Institute, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
15
|
Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 Induces Collagen Degradation by Activating MMP-1 and MMP-13 Expression in Human Rheumatoid Arthritis Synovial Fibroblasts. Front Immunol 2017; 8:1341. [PMID: 29093715 PMCID: PMC5651228 DOI: 10.3389/fimmu.2017.01341] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Regulated on activation, normal T expressed, and secreted (RANTES)/CC ligand 5 (CCL5) participates in rheumatoid arthritis (RA) pathogenesis by facilitating leukocyte infiltration, however, its other pathological functions are not fully defined in RA. In the present study, we evaluated the effect of RANTES/CCL5 on tissue degrading enzymes matrix metalloproteinase-1 (MMP-1) and MMP-13 expression and its contribution to the progressive joint damage by RA synovial fibroblasts (RASFs). Our results showed that RANTES/CCL5 dose dependently induced MMP-1 and MMP-13 expression in monolayers and three-dimensional (3D) micromass of human RASFs, which correlated with an increase in collagenase activity. This activation by RANTES/CCL5 was observed in RASF, but not in osteoarthritis SFs (OASFs). Evaluation of the signaling events showed that RANTES/CCL5 selectively activated PKCδ, JNK, and ERK proteins to induce MMP expression in human RASFs. Pretreatment with a functional antagonist (Met-RANTES) or heparinase III [an enzyme that selectively digests heparan sulfate proteoglycans (HSPGs)] completely abrogated RANTES/CCL5-induced MMP-1 and MMP-13 expression. Interestingly, the inhibition of RANTES/CCL5 using small-interfering RNA approach reduced the ability of interleukin-1β (IL-1β) to induce MMP-1 and MMP-13 expression, asserting its mediatory role in tissue remodeling. In the inhibitor study, only the selective inhibition of HSPGs or PKCδ, ERK, and JNK markedly inhibited RANTES/CCL5-induced MMP-1 and MMP-13 production. Circular dichroism spectroscopy results demonstrated the degradation of collagen triple-helical structure upon exposure to the conditioned media from RANTES/CCL5 stimulated RASFs, which was reverted by a broad-spectrum MMP inhibitor (GM6001). These findings suggest that RANTES/CCL5 not only upregulates MMP-1 and MMP-13 expression by partly utilizing HSPGs and/or PKCδ-JNK/ERK pathways but also mediates IL-1β-induced MMP-1 and MMP-13 expression.
Collapse
Affiliation(s)
- Solomon A Agere
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Nahid Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Jeffery M Watson
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
16
|
Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol 2017; 39:385-393. [PMID: 28497350 DOI: 10.1007/s00281-017-0631-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
The profound alterations in the structure, cellular composition, and function of synovial tissue in rheumatoid arthritis (RA) are the basis for the persistent inflammation and cumulative joint destruction that are hallmarks of this disease. In RA, the synovium develops characteristics of a tertiary lymphoid organ, with extensive infiltration of lymphocytes and myeloid cells. Concurrently, the fibroblast-like synoviocytes undergo massive hyperplasia and acquire a tissue-invasive phenotype. In this review, we summarize key components of these processes, focusing on recently-described roles of selected molecular markers of these cellular components of RA synovitis.
Collapse
|
17
|
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 2016; 17:776-88. [PMID: 26585233 PMCID: PMC4656811 DOI: 10.1016/j.neo.2015.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), we have previously demonstrated that microglia are essential for glioma formation and maintenance. To identify potential tumor-associated microglial factors that support glioma growth (gliomagens), we initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
Collapse
|
18
|
Wang Z, Guo A, Ma L, Yu H, Zhang L, Meng H, Cui Y, Yu F, Yang B. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism. Int J Mol Med 2016; 37:1542-50. [PMID: 27082436 PMCID: PMC4866951 DOI: 10.3892/ijmm.2016.2567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti‑inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin‑1β (IL‑1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant‑induced arthritis (AIA). The safe concentration range (0‑50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP‑13 mRNA and protein expression were confirmed by RT‑qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP‑13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP‑13 expression was partially attributed to the inactivation of the p38 mitogen‑activated protein kinases pathway by suppressing p‑p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Zhenzhong Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haomiao Yu
- Department of Surgery, Medical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hai Meng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yinpeng Cui
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fei Yu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bo Yang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
19
|
RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci Rep 2016; 6:18424. [PMID: 26725683 PMCID: PMC4698731 DOI: 10.1038/srep18424] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
RANTES (Regulated on activation, normal T-cell expressed and secreted), recruits circulating leukocytes and augments inflammatory responses in many clinical conditions. Inflammatory responses in ischemia-reperfusion injury (IRI) significantly affect the unfavorable outcomes of acute kidney injury (AKI), and that infiltrating immune cells are important mediators of AKI. However, the significance of RANTES in AKI and whether hypoxia-induced LncRNAs are involved in the regulatory process of AKI are not known. Here we show that, in the kidney IRI mice model, significant RANTES expression was observed in renal tubular cells of wild type mice. RANTES deficient (RANTES−/−) mice showed better renal function by reducing the acute tubular necrosis, serum creatinine levels, infiltration of inflammatory cells and cytokine expressions compared to wild type. In vitro, we found that RANTES expression was regulated by NF-κB. Further, renal tubular cells showed deregulated LncRNA expression under hypoxia. Among HIF-1α dependent LncRNAs, PRINS (Psoriasis susceptibility-related RNA Gene Induced by Stress) was significantly up regulated in hypoxic conditions and had specific interaction with RANTES as confirmed through reporter assay. These observations show first evidence for RANTES produced by renal tubular cells act as a key chemokine in AKI and HIF-1α regulated LncRNA-PRINS might be involved in RANTES production.
Collapse
|
20
|
Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 2015; 12:5-13. [PMID: 26607389 DOI: 10.1038/nrrheum.2015.157] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines and chemokine receptors are involved in leukocyte recruitment and angiogenesis underlying the pathogenesis of rheumatoid arthritis (RA) and other inflammatory rheumatic diseases. Numerous chemokines, along with both conventional and atypical cell-surface chemokine receptors, are found in inflamed synovia. Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors have yielded promising results. However, most human trials of treatment of RA with antibodies and synthetic compounds targeting chemokine signalling have failed to show clinical improvements. Chemokines can have overlapping actions, and their activities can be altered by chemical modification or proteolytic degradation. Effective targeting of chemokine pathways must take acount of these properties, and can also require high levels of receptor occupancy by therapeutic agents to prevent signalling. CCR1 is a promising target for chemokine-receptor blockade.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen, H-4004, Hungary
| | - Alisa E Koch
- University of Michigan Health System, Department of Internal Medicine, Division of Rheumatology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
21
|
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18:433-48. [PMID: 26198292 PMCID: PMC4879881 DOI: 10.1007/s10456-015-9477-2] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vasculature, which plays a critical role in the pathogenesis of several inflammatory autoimmune diseases such as rheumatoid arthritis (RA), spondyloarthropathies, psoriasis, systemic lupus erythematosus, systemic sclerosis, and atherosclerosis. In RA, excessive migration of circulating leukocytes into the inflamed joint necessitates formation of new blood vessels to provide nutrients and oxygen to the hypertrophic joint. The dominance of the pro-angiogenic factors over the endogenous angiostatic mediators triggers angiogenesis. In this review article, we highlight the underlying mechanisms by which cells present in the RA synovial tissue are modulated to secrete pro-angiogenic factors. We focus on the significance of pro-angiogenic factors such as growth factors, hypoxia-inducible factors, cytokines, chemokines, matrix metalloproteinases, and adhesion molecules on RA pathogenesis. As pro-angiogenic factors are primarily produced from RA synovial tissue macrophages and fibroblasts, we emphasize the key role of RA synovial tissue lining layer in maintaining synovitis through neovascularization. Lastly, we summarize the specific approaches utilized to target angiogenesis. We conclude that the formation of new blood vessels plays an indispensable role in RA progression. However, since the function of several pro-angiogenic mediators is cross regulated, discovering novel approaches to target multiple cascades or selecting an upstream cascade that impairs the activity of a number of pro-angiogenic factors may provide a promising strategy for RA therapy.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shalini Ravella
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shanti Virupannavar
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis. Tumour Biol 2015; 37:2461-71. [DOI: 10.1007/s13277-015-4089-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/13/2015] [Indexed: 12/13/2022] Open
|
23
|
Venkatesha SH, Dudics S, Weingartner E, So EC, Pedra J, Moudgil KD. Altered Th17/Treg balance and dysregulated IL-1β response influence susceptibility/resistance to experimental autoimmune arthritis. Int J Immunopathol Pharmacol 2015; 28:318-28. [PMID: 26227656 DOI: 10.1177/0394632015595757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022] Open
Abstract
This study was aimed at gaining an insight into immune mechanisms of differential susceptibility to autoimmunity of individuals sharing the same major histocompatibility complex by studying arthritis-susceptible Lewis (LEW) and arthritis-resistant Wistar Kyoto (WKY) rats (both RT.1(l)) using the adjuvant arthritis (AA) model of rheumatoid arthritis (RA). Lymph node cells (LNC) and synovium-infiltrating cells (SIC) of LEW and WKY rat subjected to an arthritogenic challenge were tested. The frequency of T helper 17 (Th17) and T regulatory (Treg) cells was determined by flow cytometry, whereas serum and spleen adherent cell (SAC)-derived supernatant were analyzed for specific cytokines and chemokines. We observed that WKY rats are not deficient in generating a Th17 response to the arthritogenic challenge in LNC (periphery); however, the Th17/Treg ratio is markedly reduced in the joint (target organ) of WKY versus LEW rats because of reduced Th17 levels therein in WKY rats. These results suggest differential and selective decrease in Th17 cell migration into the joints of WKY rats. Interestingly, serum levels of chemokines RANTES and MCP-1 were reduced in WKY rats. Furthermore, WKY rats showed reduced serum IL-1β level in vivo but no defect in IL-1β production by SAC in vitro, suggesting an effective in vivo regulation of IL-1β response. We also unraveled the role of interferon-γ (IFNγ), which we have previously reported to be increased in WKY versus LEW rats, in regulation of IL-1β. Thus, reduced Th17/Treg ratio in the target organ (joints) and decreased systemic IL-1β might contribute to the AA-resistance of WKY rats; whereas the converse factors render LEW more vulnerable to AA.
Collapse
Affiliation(s)
- S H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Weingartner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E C So
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jhf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Choriodecidual Group B Streptococcal Infection Induces miR-155-5p in the Fetal Lung in Macaca nemestrina. Infect Immun 2015. [PMID: 26195546 DOI: 10.1128/iai.00695-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying fetal lung injury remain poorly defined. MicroRNAs (miRNAs) are small noncoding, endogenous RNAs that regulate gene expression and have been implicated in the pathogenesis of lung disease. Using a nonhuman primate model of choriodecidual infection, we sought to determine if differentially expressed miRNAs were associated with acute fetal lung injury. After inoculating 10 chronically catheterized pregnant monkeys (Macaca nemestrina) with either group B streptococcus (GBS) at 1 × 10(6) CFU (n = 5) or saline (n = 5) in the choriodecidual space, we extracted fetal lung mRNA and miRNA and profiled the changes in expression by microarray analysis. We identified 9 differentially expressed miRNAs in GBS-exposed fetal lungs, but of these, only miR-155-5p was validated by quantitative reverse transcription-PCR (P = 0.02). Significantly elevated miR-155-5p expression was also observed when immortalized human fetal airway epithelial (FeAE) cells were exposed to proinflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]). Overexpression of miR-155-5p in FeAE cells in turn increased the production of IL-6 and CXCL10/gamma interferon-induced protein 10, which are implicated in leukocyte recruitment but also in protection from lung injury. Interestingly, while miR-155-5p decreased fibroblast growth factor 9 (FGF9) expression in a luciferase reporter assay, FGF9 levels were actually increased in GBS-exposed fetal lungs in vivo. FGF9 overexpression is associated with abnormal lung development. Thus, upregulation of miR-155-5p may serve as a compensatory mechanism to lessen the increase in FGF9 and prevent aberrant lung development. Understanding the complicated networks regulating lung development in the setting of infection is a key step in identifying how to prevent fetal lung injury leading to bronchopulmonary dysplasia.
Collapse
|
25
|
Marques RE, Guabiraba R, Del Sarto JL, Rocha RF, Queiroz AL, Cisalpino D, Marques PE, Pacca CC, Fagundes CT, Menezes GB, Nogueira ML, Souza DG, Teixeira MM. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 2015; 145:583-96. [PMID: 25939314 DOI: 10.1111/imm.12476] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/26/2023] Open
Abstract
Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.
Collapse
Affiliation(s)
- Rafael E Marques
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana L Del Sarto
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebeca F Rocha
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luiza Queiroz
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Cisalpino
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro E Marques
- Immunobiophotonics, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina C Pacca
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Caio T Fagundes
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo B Menezes
- Immunobiophotonics, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maurício L Nogueira
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Danielle G Souza
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Ramadan G, El-Beih NM, Talaat RM, Abd El-Ghffar EA. Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis. Int J Rheum Dis 2015; 20:203-213. [PMID: 25964045 DOI: 10.1111/1756-185x.12666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Recently, there has been an increasing interest in tea (Camellia sinensis) as a protective agent against inflammatory diseases. Here, we evaluated/compared the anti-inflammatory activity of two different doses (0.5 and 1.0 g/kg body weight) of green tea aqueous extract (GTE, rich in catechins) and black tea aqueous extract (BTE, rich in theaflavins and thearubigins) in rat adjuvant-induced arthritis (AIA). METHODS Adjuvant-induced arthritis rat model received orally/daily distilled water as vehicle, indomethacin (1.0 mg/kg body weight; a non-steroidal/anti-inflammatory drug), or tea aqueous extracts (for 28 or 14 consecutive days starting from day 0 or 14 of arthritis induction, respectively). RESULTS The present study showed that only the high dose of GTE (from day 0) significantly alleviated (P < 0.05-0.001) all complications shown in arthritic rats, including synovial joint inflammation, elevation in erythrocyte sedimentation rate, blood leukocytosis (due to lymphocytosis and neutrocytosis), and changes in weight/cellularity of lymphoid organs. The anti-arthritic activity of the high dose of GTE (from day 0) was comparable (P > 0.05) with that of indomethacin (12.9-53.8 vs. 9.5-48.4%, respectively) and mediated by significantly decreasing and down-regulating (P < 0.001) the systemic production of pro-inflammatory cytokines and the expression of chemokine receptor-5 in synovial tissues, respectively. Moreover, the anti-arthritic activity of tea aqueous extracts was in the following order: high dose of GTE > low dose of GTE ≥ high dose of BTE > low dose of BTE. CONCLUSION The present study proved the anti-inflammatory activity of GTE over BTE and equal to that of indomethacin in AIA rat model.
Collapse
Affiliation(s)
- Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nadia M El-Beih
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University, Sadat City, Egypt
| | | |
Collapse
|
27
|
Takebe K, Rai M, Schmidt E, Sandell L. The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone. Osteoarthritis Cartilage 2015; 23:454-61. [PMID: 25498590 PMCID: PMC4341917 DOI: 10.1016/j.joca.2014.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE C-C chemokine receptor type 5 (CCR5) has been implicated in rheumatoid arthritis and several inflammatory diseases, where its blockade resulted in reduced joint destruction. However, its role in modulating cartilage and bone changes in post-traumatic osteoarthritis (OA) has not yet been investigated. In this study, we investigated changes in articular cartilage, synovium and bone in a post-traumatic OA model using CCR5-deficient (CCR5(-/-)) mice. METHOD Destabilization of the medial meniscus (DMM) was performed on the right knee of 10-week old CCR5(-/-) and C57BL/6J wild-type (WT) mice to induce post-traumatic OA. The contralateral left knee served as sham-operated control. Knee joints were analyzed at 4-, 8- and 12-weeks after surgery to evaluate cartilage degeneration and synovitis by histology, and bone changes via micro-CT. RESULTS Our findings showed that CCR5(-/-) mice exhibited significantly less cartilage degeneration than WT mice at 8- and 12-weeks post-surgery. CCR5(-/-) mice showed some altered bone parameters 18- and 22-weeks of age, but body size and weight were not affected. The effect of CCR5-ablation was insignificant at all time points post-surgery for synovitis and for bone parameters such as bone volume/total volume, connectivity density index (CDI), structure model index (SMI), subchondral bone plate thickness, and trabecular bone number, thickness and spacing. CONCLUSION These findings suggest that CCR5(-/-) mice developed less cartilage degeneration, which may indicate a potential protective role of CCR5-ablation in cartilage homeostasis. There were no differences in bone or synovial response to surgery suggesting that CCR5 functions primarily in cartilage during the development of post-traumatic OA.
Collapse
Affiliation(s)
- K. Takebe
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - M.F. Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - E.J. Schmidt
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - L.J. Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States,Address correspondence and reprint requests to: L.J. Sandell, Department of Orthopaedic Surgery, Musculoskeletal Research Center Washington University School of Medicine at Barnes-Jewish Hospital, 425 S. Euclid Ave. Campus Box 8233, St. Louis MO, 63110, United States. Tel: 1-314-454-7800; Fax: 1-314-454-5900
| |
Collapse
|
28
|
Huang Y, Jiao S, Tao X, Tang Q, Jiao W, Xiao J, Xu X, Zhang Y, Liang G, Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. J Neuroinflammation 2014; 11:146. [PMID: 25182681 PMCID: PMC4243955 DOI: 10.1186/s12974-014-0146-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Infection of rabies virus (RABV) causes central nervous system (CNS) dysfunction and results in high mortality in human and animals. However, it is still unclear whether and how CNS inflammation and immune response contribute to RABV infection. Methods Suckling mice were intracerebrally infected with attenuated RABV aG and CTN strains, followed by examination of chemokine or cytokine production, inflammatory cell infiltration and neuron apoptosis in the brain. Furthermore, the suckling mice and adult mice that were intracerebrally infected with aG and the adult mice that were intramuscularly infected with street RABV HN10 were treated with CCL5 antagonist (Met-CCL5) daily beginning on day 2 postinfection. The survival rates and inflammation responses in the CNS of these mice were analyzed. Results Excessive CCL5 in the CNS was associated with CNS dysfunction, inflammation, and macrophage or lymphocyte infiltration after attenuated or street RABV infection. Administration of exogenous CCL5 induced excessive infiltration of immune cells into the CNS and enhanced inflammatory chemokine and cytokine production. Met-CCL5 treatment significantly prolonged survival time of the suckling mice inoculated with aG and adult mice infected with aG and HN10. Conclusions These results suggest that CCL5 in the CNS is a key regulator involved in inducing rabies encephalomyelitis. Furthermore, treatment with the CCL5 antagonist Met-CCL5 prolongs survival time of the mice infected with attenuated or street RABVs, which might represent a novel therapeutic strategy to ameliorate RABV infection.
Collapse
|
29
|
Physical exercise reduces the expression of RANTES and its CCR5 receptor in the adipose tissue of obese humans. Mediators Inflamm 2014; 2014:627150. [PMID: 24895488 PMCID: PMC4016945 DOI: 10.1155/2014/627150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/30/2014] [Indexed: 02/02/2023] Open
Abstract
RANTES and its CCR5 receptor trigger inflammation and its progression to insulin resistance in obese. In the present study, we investigated for the first time the effect of physical exercise on the expression of RANTES and CCR5 in obese humans. Fifty-seven adult nondiabetic subjects (17 lean and 40 obese) were enrolled in a 3-month supervised physical exercise. RANTES and CCR5 expressions were measured in PBMCs and subcutaneous adipose tissue before and after exercise. Circulating plasma levels of RANTES were also investigated. There was a significant increase in RANTES and CCR5 expression in the subcutaneous adipose tissue of obese compared to lean. In PBMCs, however, while the levels of RANTES mRNA and protein were comparable between both groups, CCR5 mRNA was downregulated in obese subjects (P < 0.05). Physical exercise significantly reduced the expression of both RANTES and CCR5 (P < 0.05) in the adipose tissue of obese individuals with a concomitant decrease in the levels of the inflammatory markers TNF-α, IL-6, and P-JNK. Circulating RANTES correlated negatively with anti-inflammatory IL-1ra (P = 0.001) and positively with proinflammatory IP-10 and TBARS levels (P < 0.05). Therefore, physical exercise may provide an effective approach for combating the deleterious effects associated with obesity through RANTES signaling in the adipose tissue.
Collapse
|
30
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
31
|
Shao X, Wang X, English SJ, Desmond T, Sherman PS, Quesada CA, Piert MR. Imaging of carrageenan-induced local inflammation and adjuvant-induced systemic arthritis with [(11)C]PBR28 PET. Nucl Med Biol 2013; 40:906-11. [PMID: 23891203 DOI: 10.1016/j.nucmedbio.2013.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 01/23/2023]
Abstract
INTRODUCTION [(11)C] PBR28 binding to translocator protein (TSPO) was evaluated for imaging of acute and chronic inflammation using two established rat models. METHODS Acute inflammation was induced by local carrageenan injection into the paw of Fisher 344 rats (model A). T-cell mediated adjuvant arthritis was induced by heat-inactivated Mycobacterium butyricum injection in Lewis rats (model B). Micro-PET scan was performed after injection of approximately 35 MBq [(11)C]PBR28. In model A, volumes of interest (VOIs) were defined in the paw of Fisher 344 rats (n=6) with contralateral sham treatment as control. For model B, VOIs were defined in the tail, sacroiliac joints, hips, knees and thigh muscles of M. butyricum treated animals (n=8) and compared with sham-treated controls (n=4). The peak (11)C-PBR28 SUV (SUVpeak) and area under the curve (AUCSUV) of 60-minute time-activity data were calculated. Immunohistochemistry for CD68, a macrophage stain, was performed from paw tissues. In addition, the [(11)C]PBR28 cell uptake was measured in lipopolysaccharide (LPS)-stimulated and non-stimulated macrophage cultures. RESULTS LPS-stimulated macrophages displayed dose-dependent increased [(11)C]PBR28 uptake, which was blocked by non-labeled PBR28. In both models, radiotracer uptake of treated lesions increased rapidly within minutes and displayed overall accumulative kinetics. The SUVpeak and AUCSUV of carrageenan-treated paws was significantly increased compared to controls. Also, the [(11)C]PBR28 uptake ratio of carrageenan-treated vs. sham-treated paw correlated significantly with CD68 staining ratios of the same animals. In adjuvant arthritis, significantly increased [(11)C]PBR28 SUVpeak and AUCSUV values were identified at the tail, knees, and sacroiliac joints, while no significant differences were identified in the lumbar spine and hips. CONCLUSIONS Based on our initial data, [(11)C]PBR28 PET appears to have potential for imaging of various inflammatory processes involving macrophage activation.
Collapse
Affiliation(s)
- Xia Shao
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Rajian JR, Shao X, Chamberland DL, Wang X. Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model. BIOMEDICAL OPTICS EXPRESS 2013; 4:900-8. [PMID: 23761851 PMCID: PMC3675868 DOI: 10.1364/boe.4.000900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/22/2013] [Accepted: 05/07/2013] [Indexed: 05/05/2023]
Abstract
Neovascularity also known as angiogenesis is an early feature of inflammatory arthritis disease. Therefore, identifying the development of neovascularity is one way to potentially detect and characterize arthritis. Laser-based photoacoustic imaging (PAI) is an emerging biomedical imaging modality which may aid in the detection of both early and continued development of neovascularity. In this work, we investigated the feasibility of PAI to measure angiogenesis, for the purpose of evaluating and monitoring inflammatory arthritis and responses to treatment. The imaging results on an arthritis rat model demonstrate that 1) there is noticeable enhancement in image intensities in the arthritic ankle joints when compared to the normal joints, and 2) there is noticeable decrease in image intensities in the arthritic ankle joints after treatment when compared to the untreated arthritic joints. In order to validate the findings from PAI, we performed positron emission tomography (PET) and histology on the same joints. The diameters of the ankle joints, as a clinical score of the arthritis, were also measured at each time point.
Collapse
Affiliation(s)
- Justin R. Rajian
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - David L. Chamberland
- Division of Rheumatology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S. Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 63:2884-93. [PMID: 21647866 DOI: 10.1002/art.30493] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the expression of interleukin-7 (IL-7) and IL-7 receptor (IL-7R) in rheumatoid arthritis (RA) synovial tissue and to examine their regulation and pathogenic role in macrophages, endothelial cells, and synovial tissue fibroblasts in RA. METHODS Expression of IL-7 and IL-7R in RA and normal synovial tissue was demonstrated by immunohistochemistry. Expression and regulation of IL-7 and IL-7R in RA peripheral blood in vitro-differentiated macrophages, RA synovial tissue fibroblasts, and human microvascular endothelial cells (HMVECs) were determined by real-time reverse transcription-polymerase chain reaction and/or flow cytometry. Enzyme-linked immunosorbent assay was used to examine production of proangiogenic factors by IL-7-activated macrophages, RA fibroblasts, and endothelial cells. RESULTS IL-7 and IL-7R were coexpressed on RA synovial tissue lining and sublining macrophages and endothelial cells. Expression of IL-7 and its receptor was significantly elevated in RA synovial fluid and peripheral blood macrophages as well as RA fibroblasts, compared to normal cells. Toll-like receptor 4 ligation (with lipopolysaccharide) and tumor necrosis factor α (TNFα) stimulation modulated expression of IL-7 and IL-7R on RA macrophages and HMVECs. However, in RA fibroblasts, lipopolysaccharide and TNFα activation increased expression of IL-7R only. IL-7 also mediated RA pathogenesis by inducing production of potent proangiogenic factors from macrophages and endothelial cells. CONCLUSION We have identified, for the first time, regulators of IL-7 and IL-7R expression in RA fibroblasts, RA peripheral blood in vitro-differentiated macrophages, and endothelial cells. Our results document a novel role of IL-7 in RA angiogenesis.
Collapse
Affiliation(s)
- Sarah R Pickens
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
35
|
Taddei SRDA, Queiroz-Junior CM, Moura AP, Andrade I, Garlet GP, Proudfoot AEI, Teixeira MM, da Silva TA. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone 2013; 52:259-67. [PMID: 23059626 DOI: 10.1016/j.bone.2012.09.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 01/02/2023]
Abstract
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C-C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C-C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3(-/-) and CCR1(-/-) mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3(-/-) mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3(-/-) and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Collapse
Affiliation(s)
- Silvana R de Albuquerque Taddei
- Laboratory Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. ACTA ACUST UNITED AC 2012; 64:2471-81. [PMID: 22392503 DOI: 10.1002/art.34452] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To determine the role of CCL21 and its receptor CCR7 in the pathogenesis of rheumatoid arthritis (RA). METHODS Histologic studies were performed to compare the expression of CCR7 and CCL21 in RA synovial tissue. Next, the role of CCL21 and/or CCR7 in angiogenesis was examined using in vitro chemotaxis, tube formation, and in vivo Matrigel plug assays. Finally, the mechanism by which CCL21 mediates angiogenesis was determined by Western blot analysis and endothelial cell chemotaxis and tube formation assays. RESULTS CCL21, but not CCL19, at concentrations present in the RA joint, induced human microvascular endothelial cell (HMVEC) migration that was mediated through CCR7 ligation. Suppression of the phosphatidylinositol 3-kinase pathway markedly reduced CCL21-induced HMVEC chemotaxis and tube formation; however, suppression of the ERK and JNK pathways had no effect on these processes. Neutralization of either CCL21 in RA synovial fluid or CCR7 in HMVECs significantly reduced the induction of HMVEC migration and/or tube formation by RA synovial fluid. We further demonstrated that CCL21 is angiogenic, by showing its ability to promote blood vessel growth in Matrigel plugs in vivo at concentrations that are present in RA joints. CONCLUSION Angiogenesis is dependent on endothelial cell activation, migration, and proliferation, and inhibition of angiogenesis may provide a novel therapeutic approach in RA. This study identified a novel function of CCL21 as a mediator of RA angiogenesis, supporting CCL21/CCR7 as a therapeutic target in RA.
Collapse
|
37
|
Andrade I, Taddei SR, Souza PE. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2012.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Systemic inflammation associated with mechanical ventilation among extremely preterm infants. Cytokine 2012; 61:315-22. [PMID: 23148992 DOI: 10.1016/j.cyto.2012.10.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/24/2012] [Accepted: 10/19/2012] [Indexed: 12/25/2022]
Abstract
Little evidence is available to document that mechanical ventilation is an antecedent of systemic inflammation in preterm humans. We obtained blood on postnatal day 14 from 726 infants born before the 28th week of gestation and measured the concentrations of 25 inflammation-related proteins. We created multivariable models to assess the relationship between duration of ventilation and protein concentrations in the top quartile. Compared to newborns ventilated for fewer than 7 days (N=247), those ventilated for 14 days (N=330) were more likely to have elevated blood concentrations of pro-inflammatory cytokines (IL-1β, TNF-α), chemokines (IL-8, MCP-1), an adhesion molecule (ICAM-1), and a matrix metalloprotease (MMP-9), and less likely to have elevated blood concentrations of two chemokines (RANTES, MIP-1β), a matrix metalloproteinase (MMP-1), and a growth factor (VEGF). Newborns ventilated for 7-13 days (N=149) had systemic inflammation that approximated the pattern of newborns ventilated for 14 days. These relationships were not confounded by chorioamnionitis or antenatal corticosteroid exposure, and were not altered appreciably among infants with and without bacteremia. These findings suggest that 2 weeks of ventilation are more likely than shorter durations of ventilation to be accompanied by high blood concentrations of pro-inflammatory proteins indicative of systemic inflammation, and by low concentrations of proteins that might protect from inflammation-mediated organ injury.
Collapse
|
39
|
Allegretti M, Cesta MC, Garin A, Proudfoot AE. Current status of chemokine receptor inhibitors in development. Immunol Lett 2012; 145:68-78. [DOI: 10.1016/j.imlet.2012.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/13/2012] [Indexed: 01/24/2023]
|
40
|
Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, Mandelin AM, Shahrara S. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. THE JOURNAL OF IMMUNOLOGY 2012; 189:475-83. [PMID: 22661088 DOI: 10.4049/jimmunol.1102977] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The innate immune system plays an important role in rheumatoid arthritis (RA) pathogenesis. Previous studies support the role of TLR2 and 4 in RA and experimental arthritis models; however, the regulation and pathogenic effect of TLR5 is undefined in RA. In this study, we show that TLR5 is elevated in RA and osteoarthritis ST lining and sublining macrophages and endothelial cells compared with normal individuals. Furthermore, expression of TLR5 is elevated in RA synovial fluid macrophages and RA peripheral blood monocytes compared with RA and normal peripheral blood in vitro-differentiated macrophages. We also found that TLR5 on RA monocytes is an important modulator of TNF-α in RA synovial fluid and that TLR5 expression on these cells strongly correlates with RA disease activity and TNF-α levels. Interestingly, TNF-α has a feedback regulation with TLR5 expression in RA monocytes, whereas expression of this receptor is regulated by IL-17 and IL-8 in RA macrophages and fibroblasts. We show that RA monocytes and macrophages are more responsive to TLR5 ligation compared with fibroblasts despite the proinflammatory response being mediated through the same signaling pathways in macrophages and fibroblasts. In conclusion, we document the potential role of TLR5 ligation in modulating transcription of TNF-α from RA synovial fluid and the strong correlation of TLR5 and TNF-α with each other and with disease activity score in RA monocytes. Our results suggest that expression of TLR5 may be a predictor for RA disease progression and that targeting TLR5 may suppress RA.
Collapse
Affiliation(s)
- Nathan D Chamberlain
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee YR, Hwang JK, Koh HW, Jang KY, Lee JH, Park JW, Park BH. Sulfuretin, a major flavonoid isolated from Rhus verniciflua, ameliorates experimental arthritis in mice. Life Sci 2012; 90:799-807. [DOI: 10.1016/j.lfs.2012.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
42
|
Nanjundaiah SM, Venkatesha SH, Yu H, Tong L, Stains JP, Moudgil KD. Celastrus and its bioactive celastrol protect against bone damage in autoimmune arthritis by modulating osteoimmune cross-talk. J Biol Chem 2012; 287:22216-26. [PMID: 22549786 DOI: 10.1074/jbc.m112.356816] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by bone erosion and cartilage destruction in the joints. Many of the conventional antiarthritic drugs are effective in suppressing inflammation, but they do not offer protection against bone damage. Furthermore, the prolonged use of these drugs is associated with severe adverse reactions. Thus, new therapeutic agents that can control both inflammation and bone damage but with minimal side effects are sought. Celastrus is a Chinese herb that has been used for centuries in folk medicine for the treatment of various inflammatory diseases. However, its utility for protection against inflammation-induced bone damage in arthritis and the mechanisms involved therein have not been examined. We tested celastrus and its bioactive component celastrol for this attribute in the adjuvant-induced arthritis model of RA. The treatment of arthritic rats with celastrus/celastrol suppressed inflammatory arthritis and reduced bone and cartilage damage in the joints as demonstrated by histology and bone histomorphometry. The protective effects against bone damage are mediated primarily via the inhibition of defined mediators of osteoclastic bone remodeling (e.g. receptor activator of nuclear factor-κB ligand (RANKL)), the deviation of RANKL/osteoprotegerin ratio in favor of antiosteoclastic activity, and the reduction in osteoclast numbers. Furthermore, both the upstream inducers (proinflammatory cytokines) and the downstream effectors (MMP-9) of the osteoclastogenic mediators were altered. Thus, celastrus and celastrol controlled inflammation-induced bone damage by modulating the osteoimmune cross-talk. These natural products deserve further consideration and evaluation as adjuncts to conventional therapy for RA.
Collapse
Affiliation(s)
- Siddaraju M Nanjundaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
43
|
Paquet J, Goebel JC, Delaunay C, Pinzano A, Grossin L, Cournil-Henrionnet C, Gillet P, Netter P, Jouzeau JY, Moulin D. Cytokines profiling by multiplex analysis in experimental arthritis: which pathophysiological relevance for articular versus systemic mediators? Arthritis Res Ther 2012; 14:R60. [PMID: 22414623 PMCID: PMC3446427 DOI: 10.1186/ar3774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/23/2011] [Accepted: 03/13/2012] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION We have taken advantage of the large screening capacity of a multiplex immunoassay to better define the respective contribution of articular versus systemic cytokines in experimental arthritis. METHODS We performed a follow up (from 7 hours to 14 days) multiplex analysis of 24 cytokines in synovial fluid and sera of rats developing Antigen-Induced Arthritis (AIA) and confronted their protein level changes with molecular, biochemical, histological and clinical events occurring in the course of the disease. RESULTS The time-scheduled findings in arthritic joints correlated with time-dependent changes of cytokine amounts in joint effusions but not with their blood levels. From seven hours after sensitization, high levels of chemokines (MCP-1, MIP1α, GRO/KC, RANTES, eotaxin) were found in synovial fluid of arthritic knees whereas perivascular infiltration occurred in the synovium; local release of inflammatory cytokines (IFNγ, IL-1β, IL-6) preceded the spreading of inflammation and resulted in progressive degradation of cartilage and bone. Finally a local overexpression of several cytokines/adipocytokines poorly described in arthritis (IL-13, IL-18, leptin) was observed. CONCLUSIONS Distinct panels of cytokines were found in arthritic fluid during AIA, and the expected effect of mediators correlated well with changes occurring in joint tissues. Moreover, multiplex analysis could be helpful to identify new pathogenic mediators and to elucidate the mechanisms supporting the efficacy of putative targeted therapies.
Collapse
Affiliation(s)
- Joseph Paquet
- Physiopathologie, Pharmacologie et Ingénierie Articulaire - PPIA-UMR 7561 CNRS UHP, Université de Lorraine, Faculté de Médecine, BP 184, 54505 Vandoeuvre Les Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fleishaker DL, Garcia Meijide JA, Petrov A, Kohen MD, Wang X, Menon S, Stock TC, Mebus CA, Goodrich JM, Mayer HB, Zeiher BG. Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, double-blind placebo-controlled trial. Arthritis Res Ther 2012; 14:R11. [PMID: 22251436 PMCID: PMC3392799 DOI: 10.1186/ar3685] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/13/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The purpose of this study was to determine whether maraviroc, a human CC chemokine receptor 5 (CCR5) antagonist, is safe and effective in the treatment of active rheumatoid arthritis (RA) in patients on background methotrexate (MTX). METHODS This phase IIa study comprised two distinct components: an open-label safety study of the pharmacokinetics (PK) of MTX in the presence of maraviroc, and a randomized, double-blind, placebo-controlled, proof-of-concept (POC) component. In the PK component, patients were randomized 1:1 to receive maraviroc 150 or 300 mg twice daily (BID) for four weeks. In the POC component, patients were randomized 2:1 to receive maraviroc 300 mg BID or placebo for 12 weeks. Patients were not eligible for inclusion in both components. RESULTS Sixteen patients were treated in the safety/PK component. Maraviroc was well tolerated and there was no evidence of drug-drug interaction with MTX. One hundred ten patients were treated in the POC component. The study was terminated after the planned interim futility analysis due to lack of efficacy, at which time 59 patients (38 maraviroc; 21 placebo) had completed their week 12 visit. There was no significant difference in the number of ACR20 responders between the maraviroc (23.7%) and placebo (23.8%) groups (treatment difference -0.13%; 90% CI -20.45, 17.70; P = 0.504). The most common all-causality treatment-emergent adverse events in the maraviroc group were constipation (7.8%), nausea (5.2%), and fatigue (3.9%). CONCLUSIONS Maraviroc was generally well tolerated over 12 weeks; however, selective antagonism of CCR5 with maraviroc 300 mg BID failed to improve signs and symptoms in patients with active RA on background MTX. TRIAL REGISTRATION ClinicalTrials.gov: NCT00427934.
Collapse
Affiliation(s)
- Dona L Fleishaker
- Pfizer Inc, 700 Chesterfield Parkway, St, Louis, MO, 63017, and Eastern Point Road, Groton, CT, 06340 USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chevigné A, Fievez V, Schmit JC, Deroo S. Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 2011; 82:1438-56. [DOI: 10.1016/j.bcp.2011.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/21/2023]
|
46
|
Pickens SR, Chamberlain ND, Volin MV, Mandelin AM, Agrawal H, Matsui M, Yoshimoto T, Shahrara S. Local expression of interleukin-27 ameliorates collagen-induced arthritis. ACTA ACUST UNITED AC 2011; 63:2289-98. [PMID: 21384333 DOI: 10.1002/art.30324] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the mechanism of action of interleukin-27 (IL-27) against rheumatoid arthritis (RA). METHODS Adenovirus containing IL-27 transcript was constructed and was locally delivered into the ankles of mice with collagen-induced arthritis (CIA). Progression of arthritis was determined in treated and untreated mice by measuring ankle circumference and through histologic analysis. IL-17 and its downstream targets as well as cytokines promoting Th17 cell differentiation were quantified by enzyme-linked immunosorbent assay in CIA mouse ankles locally expressing adenoviral IL-27 as well as in control-treated mouse ankles. Ankles from both treatment groups were immunostained for neutrophil and monocyte migration (macrophages in the tissue). Finally, vascularization was quantified by histology and by determining ankle hemoglobin levels. RESULTS Ectopic expression of IL-27 in CIA mice ameliorated inflammation, lining hypertrophy, and bone erosion as compared with control-treated CIA mice. Serum and joint levels of IL-17 were significantly reduced in the IL-27-treated group compared with the control-treated group. Two of the main cytokines that induce Th17 cell differentiation and IL-17 downstream target molecules were greatly down-regulated in CIA mouse ankles receiving forced expression of IL-27. The control mice had higher levels of vascularization and monocyte trafficking than did mice ectopically expressing IL-27. CONCLUSION Our results suggest that increased levels of IL-27 relieve arthritis in CIA mouse ankles. This amelioration of arthritis involves a reduction in CIA mouse serum and joint levels of IL-17 and results in decreased IL-17-mediated monocyte recruitment and angiogenesis. Hence, the use of IL-27 may be a strategy for treatment of patients with RA.
Collapse
Affiliation(s)
- Sarah R Pickens
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Koelink PJ, Overbeek SA, Braber S, de Kruijf P, Folkerts G, Smit MJ, Kraneveld AD. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 2011; 133:1-18. [PMID: 21839114 DOI: 10.1016/j.pharmthera.2011.06.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/30/2011] [Indexed: 02/01/2023]
Abstract
The traffic of the different types of immune cells is an important aspect in the immune response. Chemokines are soluble peptides that are able to attract cells by interaction with chemokine receptors on their target cells. Several different chemokines and receptors exist enabling the specific trafficking of different immune cells. In chronic inflammatory disorders there is abundance of immune cells present at the inflammatory site. This review focuses on the role of chemokine receptors in chronic inflammatory disorders of the lungs, intestine, joints, skin and nervous system and the potential of targeting these receptors as therapeutic intervention in these disorders.
Collapse
Affiliation(s)
- Pim J Koelink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis 2011; 14:443-55. [PMID: 21779896 DOI: 10.1007/s10456-011-9227-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-α was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-κB pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Collapse
|
49
|
Repeke CE, Ferreira SB, Vieira AE, Silveira EM, Avila-Campos MJ, da Silva JS, Santos CF, Campanelli AP, Trombone APF, Garlet GP. Dose-response met-RANTES treatment of experimental periodontitis: a narrow edge between the disease severity attenuation and infection control. PLoS One 2011; 6:e22526. [PMID: 21799885 PMCID: PMC3140528 DOI: 10.1371/journal.pone.0022526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
Chemokines and chemokine receptors have been implicated in the selective migration of leukocyte subsets to periodontal tissues, which consequently influences the disease outcome. Among these chemoattractants, the chemokines CCL3, CCL4 and CCL5 and its receptors, CCR1 and CCR5, have been associated with increased disease severity in mice and humans. Therefore, in this study we investigated the modulation of experimental periodontitis outcome by the treatment with a specific antagonist of CCR1 and 5 receptors, called met-RANTES. C57Bl/6 mice was orally infected with Aggregatibacter actinomycetemcomitans and treated with 0.05, 0.1, 0.5, 1.5 and 5 mg doses of met-RANTES on alternate days, and evaluated by morphometric, cellular, enzymatic and molecular methods. At 0.5 mg up to 5 mg doses, a strong reduction in the alveolar bone loss and inflammatory cell migration were observed. Interestingly, 5 mg dose treatment resulted in the maximum inhibition of inflammatory cell migration, but resulted in a similar inhibition of bone loss when compared with the lower doses, and also resulted in increased bacterial load and CRP response. When 0.5 and 5 mg therapy regimens were compared it was observed that both therapeutic protocols were able to downregulate the levels of pro-inflammatory, Th1-type and osteoclastogenic cytokines, and CD3+ and F4/80+ cells migration to periodontal tissues, but the high dose modulates host response in a more pronounced and unspecific and excessive way, interfering also with the production of antimicrobial mediators such as MPO, iNOS and IgG, and with GR1+ and CD19+ cells migration. Our results demonstrate a thin line between beneficial immunoregulation and impaired host defense during experimental periodontitis, and the determination of the exact equilibrium point is mandatory for the improvement of immune-targeted therapy of periodontitis.
Collapse
Affiliation(s)
- Carlos Eduardo Repeke
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | - Samuel Barros Ferreira
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | - Andreia Espindola Vieira
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | - Elcia Maria Silveira
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | - Mario Julio Avila-Campos
- Department of Microbiology, Institute of Biomedical Sciences, São Paulo University - ICB/USP, Sao Paulo, Sao Paulo, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, São Paulo University - FMRP/USP, Riberao Preto, Sao Paulo, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
50
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Mandelin AM, Shahrara S. Characterization of CCL19 and CCL21 in rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 63:914-22. [PMID: 21225692 DOI: 10.1002/art.30232] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the expression of CCL19 and CCL21 in rheumatoid arthritis (RA) synovial tissue (ST) and to examine their regulation and pathogenetic role in macrophages and RA ST fibroblasts. METHODS Expression of CCL19 and CCL21 in RA and normal ST was demonstrated by immunohistochemistry analysis. CCL19 and CCL21 levels in synovial fluid (SF) from patients with osteoarthritis (OA), juvenile idiopathic arthritis, psoriatic arthritis (PsA), and RA were quantified by enzyme-linked immunosorbent assay (ELISA). Regulation of CCL19 and CCL21 expression in in vitro-differentiated RA peripheral blood macrophages as well as RA ST fibroblasts was determined by real-time reverse transcription-polymerase chain reaction. Proangiogenic factor production in CCL19- and CCL21-activated in vitro-differentiated peripheral blood macrophages and RA ST fibroblasts was examined by ELISA. RESULTS CCL19 and CCL21 were elevated in RA ST compared to tissue from normal controls. Levels of CCL19 and CCL21 were greatly increased in RA and PsA SF versus OA SF. In RA macrophages and fibroblasts, expression of CCL19 was increased by stimulation with lipopolysaccharide, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β). However, CCL21 expression was modulated only by IL-1β in RA fibroblasts, and by TNFα and RA SF in RA macrophages. CCL19 and CCL21 activation induced vascular endothelial growth factor and angiotensin I (Ang I) production in RA ST fibroblasts and secretion of IL-8 and Ang I from macrophages. CONCLUSION The findings of the present study identify, for the first time, regulators of CCL19 and CCL21 in RA fibroblasts and in vitro-differentiated RA peripheral blood macrophages and demonstrate a novel role of CCL19/CCL21 in angiogenesis in RA.
Collapse
Affiliation(s)
- Sarah R Pickens
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|