1
|
Pramudita JA, Hiroki W, Yoda T, Tanabe Y. Variations in Strain Distribution at Distal Radius under Different Loading Conditions. Life (Basel) 2022; 12:life12050740. [PMID: 35629407 PMCID: PMC9144860 DOI: 10.3390/life12050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Distal radial fractures exhibit various fracture patterns. By assuming that the strain distribution at the distal radius affects the diversification of the fracture pattern, a parameter study using the finite element model of a wrist developed from computed tomography (CT) images was performed under different loading conditions. The finite element model of the wrist consisted of the radius, ulna, scaphoid, lunate, triquetrum, and major carpal ligaments. The material properties of the bone models were assigned on the basis of the Hounsfield Unit (HU) values of the CT images. An impact load was applied to the scaphoid, lunate, and triquetrum to simulate boundary conditions during fall accidents. This study considered nine different loading conditions that combine three different loading directions and three different load distribution ratios. According to the analysis results, the strain distribution at the distal radius changed with respect to the change in the loading condition. High strain concentration occurred in regions where distal radius fractures are commonly developed. The direction and distribution of the load acting on the radius were considered to be factors that may cause variations in the fracture pattern of distal radius fractures.
Collapse
Affiliation(s)
- Jonas A. Pramudita
- College of Engineering, Nihon University, Koriyama 963-8642, Japan
- Correspondence:
| | - Wataru Hiroki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takuya Yoda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan;
| | - Yuji Tanabe
- Management Strategy Section, President Office, Niigata University, Niigata 950-2181, Japan;
| |
Collapse
|
2
|
Ono K, Ohashi S, Oka H, Kadono Y, Yasui T, Matsumoto T, Omata Y, Tanaka S. Evaluations of daily teriparatide using finite-element analysis over 12 months in rheumatoid arthritis patients. J Bone Miner Metab 2021; 39:270-277. [PMID: 32886175 DOI: 10.1007/s00774-020-01146-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The objective of this study was to quantitatively evaluate the effects of daily teriparatide on rheumatoid arthritis patients using predicted bone strength (PBS) assessed by quantitative computed tomography-based finite-element analysis (QCT/FEA) and using bone mineral density (BMD) assessed by dual-energy X-ray absorptiometry (DXA), and to prospectively investigate clinical determinants associated with PBS and BMD increases. MATERIALS AND METHODS Participants comprised 39 patients (mean age, 69 years; disease activity score assessing 28 joints with CRP, 3.0; previous vertebral fractures, 82%) enrolled in this study. BMD by DXA and PBS by QCT/FEA of lumbar spine (LS) and proximal femur were measured at baseline, and after 6 and 12 months. In the groups showing increases in these values, variables that may have affected these increases were evaluated using univariate logistic regression analysis. RESULTS Daily teriparatide treatment significantly increased not only LS BMD, but also LS PBS in RA patients with osteoporosis after both 6 and 12 months of treatment. Increases in N-terminal type I procollagen propeptide (PINP) at 1 and 3 months were significantly associated with increased LS PBS at 12 months according to univariate logistic regression analysis. The threshold value for increased PINP at 1 month for increased PBS at 12 months was 75 µg/L. CONCLUSIONS Increased LS PBS at 12 months was predicted by increased PINP at 1 month from baseline.
Collapse
Affiliation(s)
- Kumiko Ono
- Department of Joint Surgery, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Satoru Ohashi
- Department of Orthopaedic Surgery, Sagamihara Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Sagamihara, Kanagawa, 252-0315, Japan.
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, Faculty of Medicine, 22nd Century Medical and Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Saitama Medical University Hospital, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Tetsuro Yasui
- Department of Orthopaedic Surgery, Teikyo University Mizonokuchi Hospital, 5-1-1 Futago, Takatsu-ku, Kawasaki-shi, Kawasaki, Kanagawa, 213-8507, Japan
| | - Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Xu S, Liang Y, Meng F, Zhu Z, Liu H. Risk prediction of degenerative scoliosis combined with lumbar spinal stenosis in patients with rheumatoid arthritis: a case-control study. Rheumatol Int 2020; 40:925-932. [PMID: 31919576 DOI: 10.1007/s00296-019-04508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
The purpose of this study is to compare incidence of degenerative scoliosis (DS) in patients who diagnosed lumbar spinal stenosis (LSS) with or without rheumatoid arthritis (RA) and identify the risk factors of DS severity in RA patients. 61 LSS patients with RA (RA group) and 87 demographic-matched LSS patients without RA (NoRA group) from January 2013 to April 2018 were enrolled. The extracted information includes RA-related parameters such as Steinbrocker classification, disease-modifying anti-rheumatic drugs (DMARDs), and DS-related information such as Cobb angle, apical vertebra, along with osteoporosis and history of total knee arthroplasty (TKA). Comparisons between RA and NoRA group and between DS and non-DS subgroup with RA were performed, as well as the risk factors on DS severity in RA patients. The incidence of DS in RA group was 42.6%, larger than that of NoRA group (P = 0.002). The mean Cobb angle between the two groups was of no difference (P = 0.076). The apical vertebrae were both mainly focused on L3 and L4 vertebrae in both groups with no significant difference on the distribution of apical vertebrae (P = 0.786). Female took a larger proportion in DS subgroup than that of NoDS subgroup in patients with RA (P = 0.039), while Steinbrocker classification was irrelevant to the occurrence of DS and Cobb angle. Multiple regression analysis showed that TKA was a risk factor for the severity of Cobb angle (P = 0.040). The incidence of DS in LSS patients with RA is higher than non-RA patients. RA patients performed TKA sustained less severity of DS.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Yan Liang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Fanqi Meng
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Zhenqi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Haiying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China.
| |
Collapse
|
4
|
Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int 2020; 31:1025-1048. [PMID: 32335687 PMCID: PMC7237403 DOI: 10.1007/s00198-020-05384-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition.
Collapse
Affiliation(s)
- T M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA.
| | - B L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - F Cosman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - E S Siris
- Toni Stabile Osteoporosis Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - M L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Chandler H, Brooks DJ, Hattersley G, Bouxsein ML, Lanske B. Abaloparatide increases bone mineral density and bone strength in ovariectomized rabbits with glucocorticoid-induced osteopenia. Osteoporos Int 2019; 30:1607-1616. [PMID: 31053927 PMCID: PMC6663928 DOI: 10.1007/s00198-019-04999-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/21/2019] [Indexed: 12/22/2022]
Abstract
UNLABELLED Glucorticoid (GC) therapy is the commonest cause of secondary osteoporosis. Ovariectomized rabbits receiving the GC methylprednisolone for 6 weeks exhibited relatively lower vertebral and femoral bone mass. Treatment with the PTH receptor agonist abaloparatide for 12 weeks during ongoing methylprednisolone administration increased cortical and trabecular bone mass and femur bending strength. INTRODUCTION Abaloparatide, an osteoanabolic PTHrP analog, increases bone mineral density (BMD) and reduces fracture risk in women with postmenopausal osteoporosis. This study assessed abaloparatide effects on BMD and bone strength in ovariectomized (OVX) rabbits with glucocorticoid (GC)-induced osteopenia. METHODS Thirty-two rabbits underwent OVX and 8 underwent sham surgery. One day later, 24 OVX rabbits began daily s.c. GC injections (methylprednisolone, 1 mg/kg/day) for 6 weeks, while 8 OVX and 8 sham controls received no GC. GC-challenged rabbits (8/group) then received GC (0.5 mg/kg/day) along with daily s.c. vehicle (GC-OVX), abaloparatide 5 μg/kg/day (ABL5), or 25 μg/kg/day (ABL25) for 12 weeks, and the no-GC OVX and sham controls received daily vehicle. RESULTS GC-OVX rabbits showed significant deficits in vertebral and proximal femur areal BMD, lower cortical area, thickness and volumetric BMD of the femur diaphysis, and reduced trabecular bone volume and volumetric BMD in the vertebra and distal femur versus sham controls. These deficits were significantly reversed in the ABL25 group, which also showed enhanced trabecular micro-architecture versus GC-OVX controls. Destructive bending tests showed significantly lower femur diaphysis ultimate load and bending rigidity of the femoral diaphysis in the GC-OVX group versus sham controls, whereas these parameters were similar in the ABL25 group vs sham controls. CONCLUSIONS Abaloparatide 25 μg/kg/day mitigated the adverse effects of GC administration on cortical and trabecular bone and improved femoral strength in OVX rabbits. These results suggest potential promise for abaloparatide as an investigational therapy for glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- H Chandler
- Radius Health Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - D J Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - G Hattersley
- Radius Health Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - M L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - B Lanske
- Radius Health Inc., 950 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
6
|
Schwaiger BJ, Kopperdahl DL, Nardo L, Facchetti L, Gersing AS, Neumann J, Lee KJ, Keaveny TM, Link TM. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations. Bone 2017; 101:62-69. [PMID: 28442297 PMCID: PMC5506071 DOI: 10.1016/j.bone.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. MATERIALS AND METHODS Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm3, femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. RESULTS All measurements from PET/CT versus MDCT were strongly correlated (R2=0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm2, 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm3, 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm2; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). CONCLUSION Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures.
Collapse
Affiliation(s)
- Benedikt J Schwaiger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | | | - Lorenzo Nardo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Luca Facchetti
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Alexandra S Gersing
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | - Jan Neumann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | - Kwang J Lee
- O.N. Diagnostics, LLC, Berkeley, CA, United States
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, United States.
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
7
|
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation. Curr Opin Rheumatol 2017; 29:402-409. [PMID: 28376059 DOI: 10.1097/bor.0000000000000405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Bugatti S, Bogliolo L, Vitolo B, Manzo A, Montecucco C, Caporali R. Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther 2016; 18:226. [PMID: 27716332 PMCID: PMC5052789 DOI: 10.1186/s13075-016-1116-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023] Open
Abstract
Background Autoantibodies such as anti-citrullinated protein antibodies (ACPA) are major risk factors for articular bone destruction from the earliest phases of rheumatoid arthritis (RA). The aim of the current study was to determine whether RA-associated autoantibodies also impact on systemic bone loss in patients with early disease. Methods Systemic bone mineral density (BMD) was measured in the lumbar spine and the hip in 155 consecutive treatment-naïve patients with early RA (median symptom duration 13 weeks). Demographic and disease-specific parameters, including clinical disease activity, ultrasonographic (US) examination of the hands and wrists, radiographic scoring of joint damage, ACPA and rheumatoid factor (RF) levels were recorded from all patients. Reduced BMD was defined as Z score ≤ -1 SD and analysed in relation to disease-related characteristics and autoantibody subgroups. Results Reduced BMD was found in 25.5 % of the patients in the spine and 19.4 % in the hip. Symptom duration, clinical and US disease activity, functional disability and radiographic damage did not significantly impact on spine and hip BMD loss in regression analyses adjusted for possible confounders (age, gender, menopausal status, current smoking, body mass index). In contrast, ACPA positivity (at any level) negatively affected the spine Z-score (adjusted OR (95 % CI) 2.76 (1.19 to 6.42)); the hip Z score was affected by high titres only (adjusted OR (95 % CI) 2.96 (1.15 to 7.66)). The association of ACPA with reduced BMD in the spine was confirmed even at low levels of RF (adjusted OR (95 % CI) 2.65 (1.01 to 7.24)), but was further increased by concomitant high RF (adjusted OR (95 % CI) 3.38 (1.11 to 10.34)). In contrast, Z scores in the hip were significantly reduced only in association with high ACPA and RF (adjusted OR (95 % CI) 4.96 (1.48 to 16.64)). Conclusions Systemic BMD in patients with early RA is reduced in relation with ACPA positivity and high RF levels. This finding supports the notion that RA-associated autoimmunity may have a direct causative role in bone remodeling.
Collapse
Affiliation(s)
- Serena Bugatti
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy
| | - Laura Bogliolo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy
| | - Barbara Vitolo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy
| | - Carlomaurizio Montecucco
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Roberto Caporali
- Rheumatology and Translational Immunology Research Laboratories (LaRIT) and Early Arthritis Clinic, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation/University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy
| |
Collapse
|
9
|
Lee DC, Varela A, Kostenuik PJ, Ominsky MS, Keaveny TM. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2016; 31:1586-95. [PMID: 27149403 DOI: 10.1002/jbmr.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aurore Varela
- Charles River Laboratories Inc., Montréal, QC, Canada
| | | | | | | |
Collapse
|
10
|
Kopp FK, Holzapfel K, Baum T, Nasirudin RA, Mei K, Garcia EG, Burgkart R, Rummeny EJ, Kirschke JS, Noël PB. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment. PLoS One 2016; 11:e0159903. [PMID: 27447827 PMCID: PMC4957801 DOI: 10.1371/journal.pone.0159903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/11/2016] [Indexed: 01/23/2023] Open
Abstract
We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Collapse
Affiliation(s)
- Felix K. Kopp
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Konstantin Holzapfel
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Radin A. Nasirudin
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Kai Mei
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eduardo G. Garcia
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Orthopedic Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rainer Burgkart
- Department of Orthopedic Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Section of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter B. Noël
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Chair for Biomedical Physics, Physik-Department, Technische Universität München, Garching, Germany
| |
Collapse
|
11
|
Mellibovsky L, Prieto-Alhambra D, Mellibovsky F, Güerri-Fernández R, Nogués X, Randall C, Hansma PK, Díez-Perez A. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis. J Bone Miner Res 2015; 30:1651-6. [PMID: 25736591 DOI: 10.1002/jbmr.2497] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/07/2022]
Abstract
Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.
Collapse
Affiliation(s)
- Leonardo Mellibovsky
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Daniel Prieto-Alhambra
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
- Oxford NIHR Musculoskeletal Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- GREMPAL Research Group, Idiap Jordi Gol Primary Care Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Mellibovsky
- Castelldefels School of Telecom and Aerospace Engineering (EETAC), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Roberto Güerri-Fernández
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Xavier Nogués
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Connor Randall
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Paul K Hansma
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Adolfo Díez-Perez
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| |
Collapse
|
12
|
Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part II. J Clin Densitom 2015; 18:359-92. [PMID: 26277852 DOI: 10.1016/j.jocd.2015.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/19/2023]
Abstract
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.
Collapse
Affiliation(s)
- Philippe Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Ling Qin
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Lang
- Center for Clinical and Translational Science, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - John A Shepherd
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - John T Schousboe
- Park Nicollet Clinic/HealthPartners, Minneapolis, MN, USA; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| | - Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany; Bioclinica, Hamburg, Germany.
| |
Collapse
|
13
|
Okamoto Y, Murakami H, Demura S, Kato S, Yoshioka K, Hayashi H, Sakamoto J, Kawahara N, Tsuchiya H. The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model. Spine J 2015; 15:713-20. [PMID: 25450655 DOI: 10.1016/j.spinee.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 10/18/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Kyphotic deformity associated with vertebral fracture is believed to be a significant risk factor for additional vertebral fractures. However, previously published research is limited. PURPOSE The purpose of this study was to estimate the biomechanical stresses that kyphotic deformity, with an initial vertebral fracture, place on adjacent vertebrae using three-dimensional finite element (FE) of the spine, head, and ribs. STUDY DESIGN This study is based on the basic science. METHODS Total Human Model for Safety, a three-dimensional FE model of the human body, was used and adjusted to represent an elderly osteoporotic woman. The 12th thoracic vertebra (T12), which is a frequent site of osteoporotic vertebral fractures, was transformed to a wedge shape at 0°, 10°, and 20° to create a normal model, a 10° kyphosis model, and a 20° kyphosis model. Additionally, compensated postures were created for the 10° and 20° kyphosis models. Thus, five models were created: (A) a normal model, (B) a 10° kyphosis model, (C) a 20° kyphosis model, (D) a 10° kyphosis model with compensated posture, and (E) a 20° kyphosis model with compensated posture. Compressive principal stresses (CPSs) on T1-L5 in each model were calculated. RESULTS The highest CPS value was 7.78 MPa placed on the anterior part of the T10 vertebra in the 20° kyphosis model. In the 20° kyphosis model, the higher CPS values showed bimodal peaks at T6 and T7 in the midthoracic spine and at T10 and T11 in the two superior adjacent vertebrae. The maximum CPS values in the A, B, C, D, and E models at T10 were 3.12, 6.74, 7.78, 6.61, and 5.78 MPa. At T11, they were 1.70, 4.41, 6.45, 4.07, and 4.79 MPa. CONCLUSIONS The existence of an initial vertebral fracture at T12 caused an increase in stress on adjacent vertebrae. Higher CPS values showed bimodal peaks in midthoracic vertebrae and in two superior adjacent vertebrae when T12 was transformed to a wedge shape in the 20° kyphosis model.
Collapse
Affiliation(s)
- Yoshiyuki Okamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan.
| | - Hideki Murakami
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Satoshi Kato
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Katsuhito Yoshioka
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Hiroyuki Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Jiro Sakamoto
- Department of Human and Mechanical System Engineering, Faculty of Engineering, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan
| | - Norio Kawahara
- Department of Orthopedic Surgery, Kanazawa Medical University Hospital, 1-1 Uchinadamachi, Kahoku 920-0293, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| |
Collapse
|
14
|
Soriano R, Herrera S, Nogués X, Diez-Perez A. Current and future treatments of secondary osteoporosis. Best Pract Res Clin Endocrinol Metab 2014; 28:885-94. [PMID: 25432359 DOI: 10.1016/j.beem.2014.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Osteoporosis is commonly associated with menopause and ageing. It can, however, also be caused by diseases, lifestyle, genetic diseases, drug therapies and other therapeutic interventions. In cases of secondary osteoporosis, a common rule is the management of the underlying condition. Healthy habits and calcium and vitamin D supplementation are also generally advised. In cases of high risk of fracture, specific antiosteoporosis medications should be prescribed. For most conditions, the available evidence is limited. Special attention should be paid to possible contraindications of drugs used for the treatment of postmenopausal or senile osteoporosis. Bisphosphonates are the most widely used drugs in secondary osteoporosis, and denosumab or teriparatide have been also assessed in some cases. Important research is needed to develop more tailored strategies, specific to the peculiarities of the different types of secondary osteoporosis.
Collapse
Affiliation(s)
- Raquel Soriano
- Department of Internal Medicine, Hospital del Mar, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Spain; Autonomous University of Barcelona, Spain; RETICEF, Instituto Carlos III, Spain.
| | - Sabina Herrera
- Department of Internal Medicine, Hospital del Mar, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Spain; Autonomous University of Barcelona, Spain; RETICEF, Instituto Carlos III, Spain.
| | - Xavier Nogués
- Department of Internal Medicine, Hospital del Mar, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Spain; Autonomous University of Barcelona, Spain; RETICEF, Instituto Carlos III, Spain.
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Spain; Autonomous University of Barcelona, Spain; RETICEF, Instituto Carlos III, Spain.
| |
Collapse
|
15
|
Lu Y, Engelke K, Glueer CC, Morlock MM, Huber G. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone. Proc Inst Mech Eng H 2014; 228:1208-13. [DOI: 10.1177/0954411914558654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative computed tomography–based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography–based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm3 vs 0.18 × 0.18 × 0.6 mm3). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm3 vs. 0.18 × 0.18 × 0.3 mm3). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications.
Collapse
Affiliation(s)
- Yongtao Lu
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
- INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| | - Klaus Engelke
- Institute of Medical Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claus-C Glueer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Michael M Morlock
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | - Gerd Huber
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| |
Collapse
|
16
|
Mallory GW, Halasz SR, Clarke MJ. Advances in the treatment of cervical rheumatoid: Less surgery and less morbidity. World J Orthop 2014; 5:292-303. [PMID: 25035832 PMCID: PMC4095022 DOI: 10.5312/wjo.v5.i3.292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/08/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis is a chronic systemic inflammatory disease that often affects the cervical spine. While it was initially thought that cervical involvement was innocuous, natural history studies have substantiated the progressive nature of untreated disease. Over the past 50 years, there has been further elucidation in the pathophysiology of the disease, as well as significant advancements in medical and surgical therapy. The introduction of disease modifying drugs and biologic agents has reduced the amount of patients with advanced stages of the disease needing surgery. Advancement in instrumentation techniques has improved patient outcomes and fusion rates. The introduction of endoscopic approaches for ventral decompression may further lower surgical morbidity. In this review, we give a brief overview of the pertinent positives of the disease. A discussion of historical techniques and the evolution of surgical therapy into the modern era is provided. With improved medical therapies and less invasive approaches, we will likely continue to see less advanced cases of disease and less surgical morbidity. Nonetheless, a thorough understanding of the disease is crucial, as its systemic involvement and need for continued medical therapy have tremendous impact on overall complications and outcomes even in patients being seen for standard degenerative disease with comorbid rheumatoid.
Collapse
|
17
|
Characteristics of lumbar scoliosis in patients with rheumatoid arthritis. J Orthop Surg Res 2014; 9:30. [PMID: 24767138 PMCID: PMC4003293 DOI: 10.1186/1749-799x-9-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/09/2014] [Indexed: 01/30/2023] Open
Abstract
Background Although a substantial percentage of patients with rheumatoid arthritis (RA) experience low back pain, the characteristics of lumbar spine pathology in RA patients has been poorly investigated. In our institutions, lumbar spine radiographs indicated scoliosis in 26 patients. The present study aimed to clarify the characteristics of lumbar scoliosis in RA patients. Methods This is a retrospective study of 26 RA patients with lumbar scoliosis. Patient characteristics such as disease duration, disease stage and class according to Steinbrocker's classification, and medication for RA and osteoporosis were reviewed. Radiologic evaluation of scoliosis was performed at two different time points by measuring Cobb angles. The progression of scoliosis per year was calculated by dividing the change in Cobb angles by the number of years. Apical vertebral rotation, lateral listhesis, and the level of the intercrestal line at the first observation were also measured. The correlation between different factors and changes in the Cobb angles per year was analyzed. Results Majority of the patients had a long disease duration and were classified as stage 3 or 4 according to Steinbrocker's classification. During the observation period, most patients were treated with glucocorticoids. Unlike the previous studies on degenerative scoliosis, apical vertebral rotation, lateral listhesis, and the level of the intercrestal line at initial observation were not significantly related to the progression of scoliosis. Initial Cobb angles were inversely related to the progression of scoliosis. Patients who were treated with bisphosphonates showed slower progression of scoliosis. Conclusions Our results indicate that the characteristics of lumbar scoliosis in RA patients differ from those of degenerative lumbar scoliosis. Bone fragility due to the long disease duration, poor control of disease activity, and osteoporosis is possibly related to its progression.
Collapse
|
18
|
Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 2014; 29:158-65. [PMID: 23794225 PMCID: PMC4238810 DOI: 10.1002/jbmr.2024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 01/23/2023]
Abstract
In the randomized, placebo-controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (-5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by -4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis.
Collapse
Affiliation(s)
- Tony M Keaveny
- University of California Berkeley, Berkeley, CA, USA; O.N. Diagnostics, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bisphosphonates for the prevention and treatment of osteoporosis in patients with rheumatic diseases: a systematic review and meta-analysis. PLoS One 2013; 8:e80890. [PMID: 24324644 PMCID: PMC3855695 DOI: 10.1371/journal.pone.0080890] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/08/2013] [Indexed: 11/21/2022] Open
Abstract
Background While bisphosphonates (BPs) are commonly used in clinical treatment for osteoporosis, their roles on osteoporosis treatment for rheumatic patients remain unclear. We performed a meta-analysis to evaluate the efficacy of BPs on fractures prevention and bone mass preserving in rheumatic patients. Methodology/Principal Findings We searched PubMed, EmBase, and the Cochrane Central Register of Controlled Trials for relevant literatures with a time limit of Jan. 6, 2012. All randomized clinical trials of BPs for adult rheumatic patients with a follow-up of 6 months or more were included. We calculated relative risks (RRs) for fractures and weighted mean difference (WMD) for percent change of bone mineral density (BMD). Twenty trials were included for analysis. The RR in rheumatic patients treated with BPs was 0.61 (95%CI [0.44, 0.83], P = 0.002) for vertebral fractures, and 0.49 (95%CI [0.23, 1.02], P = 0.06) for non-vertebral fractures. The WMD of BMD change in the lumbar spine was 3.72% (95%CI [2.72, 4.72], P<0.001) at 6 months, 3.67% (95%CI [2.84, 4.50], P<0.001) at 12 months, 3.64% (95%CI [2.59, 4.69], P<0.001) at 24 months, and 5.87% (95%CI [4.59, 7.15], P<0.001) at 36 months in patients using BPs, as compared with those treated with calcium, vitamin D or calcitonin. In subgroup analyses, rheumatic patients using BPs for osteoporosis prevention had greater WMD than those using BPs for treating osteoporosis at 6 months (4.53% vs. 2.73%, P = 0.05) and 12 months (4.93% vs. 2.91%, P = 0.01). Conclusions/Significance In both short-term and middle-term, BPs can preserve bone mass and reduce the incidence of vertebral fractures in rheumatic patients, mainly for those who have GC consumption. The efficacy of BPs is better when using BPs to prevent rather than to treat osteoporosis in rheumatic patients.
Collapse
|
20
|
Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 2013; 11:246-55. [PMID: 23712690 DOI: 10.1007/s11914-013-0147-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Based on spiral 3D tomography a large variety of applications have been developed during the last decade to asses bone mineral density, bone macro and micro structure, and bone strength. Quantitative computed tomography (QCT) using clinical whole body scanners provides separate assessment of trabecular, cortical, and subcortical bone mineral density (BMD) and content (BMC) principally in the spine and hip, although the distal forearm can also be assessed. Further bone macrostructure, for example bone geometry or cortical thickness can be quantified. Special high resolution peripheral CT (hr-pQCT) devices have been introduced to measure bone microstructure for example the trabecular architecture or cortical porosity at the distal forearm or tibia. 3D CT is also the basis for finite element analysis (FEA) to determine bone strength. QCT, hr-pQCT, and FEM are increasingly used in research as well as in clinical trials to complement areal BMD measurements obtained by the standard densitometric technique of dual x-ray absorptiometry (DXA). This review explains technical developments and demonstrates how QCT based techniques advanced our understanding of bone biology.
Collapse
Affiliation(s)
- K Engelke
- Institute of Medical Physics, University of Erlangen, Henkestr. 91, 91052, Erlangen, Germany,
| | | | | | | | | |
Collapse
|
21
|
Ricciardi BF, Paul J, Kim A, Russell LA, Lane JM. Osteoporosis drug therapy strategies in the setting of disease-modifying agents for autoimmune disease. Osteoporos Int 2013; 24:423-32. [PMID: 22955310 DOI: 10.1007/s00198-012-2113-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this systematic review is to evaluate the effects of methotrexate (MTX) and tumor necrosis factor-alpha (TNF-α) inhibitors on bone mineral properties in the clinical literature. A systematic review of the literature identifying relevant case reports, population-based studies, cohort studies, case control studies, and randomized controlled trials in Pubmed and Web of Science databases from inception to December 31, 2011 was conducted. The following keywords were used: "bone turnover," "bone mineral density," "TNF-α inhibitors," "infliximab," "adalimumab," "etanercept," and "MTX." The bibliographies of all retrieved studies were also reviewed to identify additional articles. Based on these results, a rational drug therapy strategy was suggested for treating osteoporosis in patients with inflammatory disease. MTX and TNF-α inhibitors do not appear to have an adverse effect on BMD in patients with inflammatory disease. Their negative effects on BMD and bone turnover in pre-clinical models appear to be outweighed by their anti-disease effects in clinical studies. Treatment with MTX or TNF-α inhibitors has no adverse effect on BMD in patients with inflammatory disease. Future studies will focus on developing optimal drug strategies when combining DMARDs with anti-osteoporotic agents in this patient population.
Collapse
Affiliation(s)
- B F Ricciardi
- Metabolic Bone Disease Service, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
22
|
Tanaka S. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways. World J Orthop 2013; 4:1-6. [PMID: 23362468 PMCID: PMC3557316 DOI: 10.5312/wjo.v4.i1.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/23/2012] [Accepted: 12/23/2012] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that osteoclasts, the primary cells responsible for bone resorption, are mainly involved in bone and joint destruction in rheumatoid arthritis (RA) patients. Recent progress in bone cell biology has revealed the molecular mechanism of osteoclast differentiation and bone resorption by mature osteoclasts. We highlight here the potential role of the receptor activator of nuclear factor κB ligand (RANKL)-RANK pathways in bone destruction in RA and review recent clinical trials treating RA by targeting RANKL.
Collapse
|
23
|
Abstract
Bisphosphonates are pharmacological compounds that have been used for the prevention and treatment of several pathological conditions including osteoporosis, primary hyperparathyroidism, osteogenesis imperfecta, and other conditions characterized by bone fragility. Many studies have been performed to date to analyze their effects on inflammation and bone remodelling and related pathologies. The aim of this review is, starting from a background on inflammatory processes and bone remodelling, to give an update on the use of bisphosphonates, outlining the possible side effects and proposing new trends for the future. Starting from a brief introduction on inflammation and bone remodelling, we collect and analyze studies involving the use of bisphosphonates for treatment of inflammatory conditions and pathologies characterized by bone loss. Selected articles, including reviews, published between 1976 and 2011, were chosen from Pubmed/Medline on the basis of their content. Bisphosphonates exert a selective activity on inflammation and bone remodelling and related pathologies, which are characterized by an excess in bone resorption. They improve not only skeletal defects, but also general symptoms. Bisphosphonates have found clinical application preventing and treating osteoporosis, osteitis deformans (Paget's disease of bone), bone metastasis (with or without hypercalcaemia), multiple myeloma, primary hyperparathyroidism, osteogenesis imperfecta, and other conditions that feature bone fragility. Further clinical studies involving larger cohorts are needed to optimize the dosage and length of therapy for each of these agents in each clinical field in order to be able to maximize their properties concerning modulation of inflammation and bone remodelling. In the near future, although "old" bisphosphonates will reach the end of their patent life, "new" bisphosphonates will be designed to specifically target a pathological condition.
Collapse
|
24
|
Metz LN, Wustrack R, Lovell AF, Sawyer AJ. Infectious, inflammatory, and metabolic diseases affecting the athlete's spine. Clin Sports Med 2012; 31:535-67. [PMID: 22658001 DOI: 10.1016/j.csm.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sports and weight-bearing activities can have a positive effect on bone health in the growing, mature, or aging athlete. However, certain athletic activities and training regimens may place the athlete at increased risk for stress fractures in the spine. In addition, some athletes have an underlying susceptibility to fracture due to either systemic or focal abnormalities. It is important to identify and treat these athletes in order to prevent stress fractures and reduce the risk of osteoporosis in late adulthood. Therefore, the pre-participation physical examination offers a unique opportunity to screen athletes for metabolic bone disease through the history and physical examination. Positive findings warrant a thorough workup including a metabolic bone laboratory panel, and possibly a DEXA scan, which includes a lateral spine view.
Collapse
Affiliation(s)
- Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94143-0728, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Abstract
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K. Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 2012; 50:165-70. [PMID: 22015818 DOI: 10.1016/j.bone.2011.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 09/08/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
To gain insight into the clinical effect of teriparatide and alendronate on the hip, we performed non-linear finite element analysis of quantitative computed tomography (QCT) scans from 48 women who had participated in a randomized, double-blind clinical trial comparing the effects of 18-month treatment of teriparatide 20 μg/d or alendronate 10mg/d. The QCT scans, obtained at baseline, 6, and 18 months, were analyzed for volumetric bone mineral density (BMD) of trabecular bone, the peripheral bone (defined as all the cortical bone plus any endosteal trabecular bone within 3 mm of the periosteal surface), and the integral bone (both trabecular and peripheral), and for overall femoral strength in response to a simulated sideways fall. At 18 months, we found in the women treated with teriparatide that trabecular volumetric BMD increased versus baseline (+4.6%, p<0.001), peripheral volumetric BMD decreased (-1.1%, p<0.05), integral volumetric BMD (+1.0%, p=0.38) and femoral strength (+5.4%, p=0.06) did not change significantly, but the ratio of strength to integral volumetric BMD ratio increased (+4.0%, p=0.04). An increase in the ratio of strength to integral volumetric BMD indicates that overall femoral strength, compared to baseline, increased more than did integral density. For the women treated with alendronate, there were small (<1.0%) but non-significant changes compared to baseline in all these parameters. The only significant between-treatment difference was in the change in trabecular volumetric BMD (p<0.005); related, we also found that, for a given change in peripheral volumetric BMD, femoral strength increased more for teriparatide than for alendronate (p=0.02). We conclude that, despite different compartmental volumetric BMD responses for these two treatments, we could not detect any overall difference in change in femoral strength between the two treatments, although femoral strength increased more than integral volumetric BMD after treatment with teriparatide.
Collapse
Affiliation(s)
- Tony M Keaveny
- Department of Mechanical Engineering, 6175 Etcheverry Hall MC 1740, University of California, Berkeley, CA 94720-1740, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The digital era has witnessed an exponential growth in bone imaging as new modalities and analytic techniques improve the potential for noninvasive study of bone anatomy, physiology, and pathophysiology. Bone imaging very much lends itself to input across medical and engineering disciplines. It is in part a reflection of this multidisciplinary input that developments in the field of bone imaging over the past 30 years have in some respects outshone those in many other fields of medicine. These developments have resulted in much deeper knowledge of bone macrostructure and microstructure in osteoporosis and a much better understanding of the subtle changes that occur with age, concurrent disease, and treatment. This new knowledge is already being translated into improved day-to day clinical care with better recognition, treatment, and monitoring of the osteoporotic process. As "the more you know, the more you know you don't know" certainly holds true with osteoporosis and bone disease, there is little doubt that further advances in bone imaging and analytical techniques will continue to hold center stage in osteoporosis and related research.
Collapse
Affiliation(s)
- James F. Griffith
- Department of Diagnostic Radiology and Organ Imaging, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Harry K. Genant
- Departments of Radiology and Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
29
|
Edwards CJ, Williams E. The role of interleukin-6 in rheumatoid arthritis-associated osteoporosis. Osteoporos Int 2010; 21:1287-93. [PMID: 20229200 DOI: 10.1007/s00198-010-1192-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/30/2009] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Osteoporosis is highly prevalent in patients with rheumatoid arthritis (RA) and is a frequent cause of fractures, disability, reduced quality of life and increased use of healthcare resources. DISCUSSION Factors associated with the development of osteoporosis and fractures in patients with RA include disease activity, inflammation, gender, age, low body mass and glucocorticoid exposure. Several processes contribute towards the pathology of RA-associated osteoporosis, and increased osteoclast activation and subsequent bone resorption mediated by pro-inflammatory cytokines are thought to play major roles. Given the key effects of interleukin-6 (IL-6) in both RA and osteoporosis, and its ability to modulate other inflammatory mediators, IL-6 may be an important factor specifically associated with osteoporosis in patients with RA. CONCLUSION The development of agents that modulate the actions of IL-6 and those of other pro-inflammatory mediators of bone loss may provide alternative osteoporosis management strategies for patients with RA than existing general osteoporosis therapies.
Collapse
Affiliation(s)
- C J Edwards
- Department of Rheumatology, Southampton University Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | | |
Collapse
|
30
|
Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci 2010; 1192:57-65. [PMID: 20392218 DOI: 10.1111/j.1749-6632.2009.05348.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tony M Keaveny
- Department of Mechanical Engineering and Bioengineering, University of California, Berkeley, California, USA.
| |
Collapse
|
31
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:470-80. [PMID: 19858911 DOI: 10.1097/med.0b013e3283339a46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
The radiologist's important roles and responsibilities in osteoporosis. Eur J Radiol 2009; 71:385-7. [PMID: 19660884 DOI: 10.1016/j.ejrad.2009.04.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 04/14/2009] [Indexed: 11/21/2022]
|
33
|
Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 2008; 23:1974-82. [PMID: 18684084 PMCID: PMC2686921 DOI: 10.1359/jbmr.080805] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 06/16/2008] [Accepted: 07/31/2008] [Indexed: 01/12/2023]
Abstract
The "PTH and Alendronate" or "PaTH" study compared the effects of PTH(1-84) and/or alendronate (ALN) in 238 postmenopausal, osteoporotic women. We performed finite element analysis on the QCT scans of 162 of these subjects to provide insight into femoral strength changes associated with these treatments and the relative roles of changes in the cortical and trabecular compartments on such strength changes. Patients were assigned to either PTH, ALN, or their combination (CMB) in year 1 and were switched to either ALN or placebo (PLB) treatment in year 2: PTH-PLB, PTH-ALN, CMB-ALN, and ALN-ALN (year 1-year 2) treatments. Femoral strength was simulated for a sideways fall using nonlinear finite element analysis of the quantitative CT exams. At year 1, the strength change from baseline was statistically significant for PTH (mean, 2.08%) and ALN (3.60%), and at year 2, significant changes were seen for the PTH-ALN (7.74%), CMB-ALN (4.18%), and ALN-ALN (4.83%) treatment groups but not for PTH-PLB (1.17%). Strength increases were primarily caused by changes in the trabecular density regardless of treatment group, but changes in cortical density and mass also played a significant role, the degree of which depended on treatment. For PTH treatment at year 1 and for ALN-ALN treatment at year 2, there were significant negative and positive strength effects, respectively, associated with a change in external bone geometry. Average changes in strength per treatment group were somewhat consistent with average changes in total hip areal BMD as measured by DXA, except for the PTH group at year 1. The relation between change in femoral strength and change in areal BMD was weak (r(2) = 0.14, pooled, year 2). We conclude that femoral strength changes with these various treatments were dominated by trabecular changes, and although changes in the cortical bone and overall bone geometry did contribute to femoral strength changes, the extent of these latter effects depended on the type of treatment.
Collapse
Affiliation(s)
- Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740, USA.
| | | | | | | | | | | | | |
Collapse
|