1
|
Brown EM, Nguyen PNU, Xavier RJ. Emerging biochemical, microbial and immunological evidence in the search for why HLA-B ∗27 confers risk for spondyloarthritis. Cell Chem Biol 2024:S2451-9456(24)00314-3. [PMID: 39168118 DOI: 10.1016/j.chembiol.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The strong association of the human leukocyte antigen B∗27 alleles (HLA-B∗27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B∗27 could trigger spondyloarthritis, with a focus on whether HLA-B∗27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B∗27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Navid F, Gill T, Fones L, Allbritton-King JD, Zhou K, Shen I, Van Doorn J, LiCausi F, Cougnoux A, Randazzo D, Brooks SR, Colbert RA. CHOP-mediated IL-23 overexpression does not drive colitis in experimental spondyloarthritis. Sci Rep 2024; 14:12293. [PMID: 38811719 PMCID: PMC11137091 DOI: 10.1038/s41598-024-62940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human β2m (hβ2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Lilah Fones
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | | | - Kelly Zhou
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Isabel Shen
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Jinny Van Doorn
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Francesca LiCausi
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892, USA
| | | | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Ren Z, Li C, Wang J, Sui J, Ma Y. Single-cell transcriptome revealed dysregulated RNA-binding protein expression patterns and functions in human ankylosing spondylitis. Front Med (Lausanne) 2024; 11:1369341. [PMID: 38770048 PMCID: PMC11104332 DOI: 10.3389/fmed.2024.1369341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Objective To explore the expression characteristics and regulatory patterns of RBPs in different immune cell types of AS, and to clarify the potential key role of RBPs in the occurrence and development of AS disease. Methods PBMC sample data from scRNA-seq (HC*29, AS*10) and bulk RNA-seq (NC*3, AS*5) were selected for correlation analysis. Results (1) Compared with the HC group, the numbers of B, DC (dendritic cells), CD14+ Mono and CD8+ T cells were increased in AS group, while the numbers of platelet (platelets), CD8+ NKT, CD16+ Mono (non-classical monocytes), Native CD4+ T and NK were decreased. (2) Through the analysis of RBP genes in B cells, some RBPs were found to play an important role in B cell differentiation and function, such as DDX3X, SFPQ, SRRM1, UPF2. (3) It may be related to B-cell receptor, IgA immunity, NOD-like receptor and other signaling pathways; Through the analysis of RBP genes in CD8+ T cells, some RBPs that play an important role in the immune regulation of CD8+ T were found, such as EIF2S3, EIF4B, HSPA5, MSL3, PABPC1 and SRSF7; It may be related to T cell receptor, TNF, IL17 and other signaling pathways. (4) Based on bulk RNA-seq, it was found that compared with HC and AS patients, differentially expressed variable splicing genes (RASGs) may play an important role in the occurrence and development of AS by participating in transcriptional regulation, protein phosphorylation and ubiquitination, DNA replication, angiogenesis, intracellular signal transduction and other related pathways. Conclusion RBPs has specific expression characteristics in different immune cell types of AS patients, and has important regulatory functions. Its abnormal expression and regulation may be closely related to the occurrence and development of AS.
Collapse
Affiliation(s)
- Zheng Ren
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Chenyang Li
- Microsurgery Unit, The Third People’s Hospital of Xinjiang, Ürümqi, Xinjiang, China
| | - Jing Wang
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Jiangtao Sui
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yuan Ma
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
4
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
5
|
Rosine N, Fogel O, Koturan S, Rogge L, Bianchi E, Miceli-Richard C. T cells in the pathogenesis of axial spondyloarthritis. Joint Bone Spine 2023; 90:105619. [PMID: 37487956 DOI: 10.1016/j.jbspin.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Axial spondyloarthritis (axSpA) is the prototype of the spondyloarthritis spectrum. The involvement of T cells in its pathogenesis has long been suspected on the basis of the association with the major histocompatibility complex I molecule HLA-B27 and the pivotal role of interleukin 17 in the inflammatory mechanisms associated with the disease. Moreover, the presence of unconventional or "innate-like" T cells within the axial enthesis suggests an important role for these cells in the pathophysiology of the disease. In this review, we describe the characteristics and the interleukin 17 secretion capacity of the T-cell subsets identified in axSpA. We discuss the genetic and epigenetic mechanisms that support the alteration of T-cell functions and promote their activation in axSpA. We also discuss recent data on T cells that could explain the extra-articular manifestations of the SpA spectrum.
Collapse
Affiliation(s)
- Nicolas Rosine
- Service de rhumatologie, université Angers, CHU d'Angers, Paris, France.
| | - Olivier Fogel
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| | - Surya Koturan
- Faculty of Medicine, MRC London Institute of Medical Science, Institute of Clinical Sciences, Imperial College, W12 0NN London, United Kingdom
| | - Lars Rogge
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| |
Collapse
|
6
|
Brown AC, Cohen CJ, Mielczarek O, Migliorini G, Costantino F, Allcock A, Davidson C, Elliott KS, Fang H, Lledó Lara A, Martin AC, Osgood JA, Sanniti A, Scozzafava G, Vecellio M, Zhang P, Black MH, Li S, Truong D, Molineros J, Howe T, Wordsworth BP, Bowness P, Knight JC. Comprehensive epigenomic profiling reveals the extent of disease-specific chromatin states and informs target discovery in ankylosing spondylitis. CELL GENOMICS 2023; 3:100306. [PMID: 37388915 PMCID: PMC10300554 DOI: 10.1016/j.xgen.2023.100306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 07/01/2023]
Abstract
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 genetic associations whose functional effects remain largely unresolved. Here, we present a comprehensive transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific differences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regulation of likely pathogenic relevance and prioritize drug targets.
Collapse
Affiliation(s)
- Andrew C. Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carla J. Cohen
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Olga Mielczarek
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Horizon Discovery (PerkinElmer) Cambridge Research Park, 8100 Beach Dr., Waterbeach, Cambridge CB25 9TL, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Félicie Costantino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- UVSQ, INSERM UMR1173, Infection et Inflammation, Laboratory of Excellence INFLAMEX, Université Paris-Saclay, Paris, France
- Rheumatology Department, AP-HP, Ambroise Paré Hospital, Paris, France
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Alicia Lledó Lara
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice C. Martin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Julie A. Osgood
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anna Sanniti
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- Centro Ricerche Fondazione Italiana Ricerca sull’Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mary Helen Black
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Shuwei Li
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Dongnhu Truong
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Julio Molineros
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Trevor Howe
- Data Science, External Innovation, Janssen R&D, London W1G 0BG, UK
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
7
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
8
|
Tran TM, Gill T, Bennett J, Hong S, Holt V, Lindstedt AJ, Bakshi S, Sikora K, Taurog JD, Breban M, Navid F, Colbert RA. Paradoxical Effects of Endoplasmic Reticulum Aminopeptidase 1 Deficiency on HLA-B27 and Its Role as an Epistatic Modifier in Experimental Spondyloarthritis. Arthritis Rheumatol 2023; 75:220-231. [PMID: 36577442 PMCID: PMC9892207 DOI: 10.1002/art.42327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We undertook this study to examine the functional basis for epistasis between endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 in experimental spondyloarthritis (SpA). METHODS ERAP1-knockout rats were created using genome editing and bred with HLA-B27/human β2 -microglobulin-transgenic (HLA-B27-Tg) rats and HLA-B7-Tg rats. The effects of ERAP1 deficiency on HLA allotypes were determined using immunoprecipitation and immunoblotting, flow cytometry, allogeneic T cell proliferation assays, and gene expression analyses. Animals were examined for clinical features of disease, and tissue was assessed by histology. RESULTS ERAP1 deficiency increased the ratio of folded to unfolded (β2 m-free) HLA-B27 heavy chains, while having the opposite effect on HLA-B7. Furthermore, in rats with ERAP1 deficiency, HLA-B27 misfolding was reduced, while free HLA-B27 heavy chain dimers on the cell surface and monomers were increased. The effects of ERAP1 deficiency persisted during up-regulation of HLA-B27 and led to a reduction in endoplasmic reticulum stress. ERAP1 deficiency reduced the prevalence of arthritis in HLA-B27-Tg rats by two-thirds without reducing gastrointestinal inflammation. Dendritic cell abnormalities attributed to the presence of HLA-B27, including reduced allogeneic T cell stimulation and loss of CD103-positive/major histocompatibility complex class II-positive cells, were not rescued by ERAP1 deficiency, while excess Il23a up-regulation was mitigated. CONCLUSION ERAP1 deficiency reduced HLA-B27 misfolding and improved folding while having opposing effects on HLA-B7. The finding that HLA-B27-Tg rats had partial protection against SpA in this study is consistent with genetic evidence that loss-of-function and/or reduced expression of ERAP1 reduces the risk of ankylosing spondylitis. Functional studies support the concept that the effects of ERAP1 on HLA-B27 and SpA may be a consequence of how peptides affect the biology of this allotype rather than their role as antigenic determinants.
Collapse
Affiliation(s)
- Tri M. Tran
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Tejpal Gill
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joshua Bennett
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Vance Holt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Anders J. Lindstedt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sufia Bakshi
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Keith Sikora
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joel D. Taurog
- Division of Rheumatic Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maxime Breban
- Infection & Inflammation, UMR1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux & Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Robert A. Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| |
Collapse
|
9
|
Parthasarathy R, Santiago F, McCluskey P, Kaakoush NO, Tedla N, Wakefield D. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies. Trends Microbiol 2023; 31:142-158. [PMID: 36058784 DOI: 10.1016/j.tim.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
The pathogenesis of human leukocyte antigen (HLA)-B27-associated diseases such as acute anterior uveitis (AAU) and ankylosing spondylitis (AS) remains poorly understood, though Gram-negative bacteria and subclinical bowel inflammation are strongly implicated. Accumulating evidence from animal models and clinical studies supports several hypotheses, including HLA-B27-dependent dysbiosis, altered intestinal permeability, and molecular mimicry. However, the existing literature is hampered by inadequate studies designed to establish causation or uncover the role of viruses and fungi. Moreover, the unique disease model afforded by AAU to study the gut microbiota has been neglected. This review critically evaluates the current literature and prevailing hypotheses on the link between the gut microbiota and HLA-B27-associated disease. We propose a new potential role for HLA-B27-driven altered antibody responses to gut microbiota in disease pathogenesis and outline recommendations for future well-controlled human studies, focusing on AAU.
Collapse
Affiliation(s)
- Rohit Parthasarathy
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Fernando Santiago
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Peter McCluskey
- Save Sight Institute, Sydney Eye Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Denis Wakefield
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia; Center for Immunology and Immunopathology, South Eastern Area Health Service, Sydney, Australia.
| |
Collapse
|
10
|
Tavasolian F, Pastrello C, Ahmed Z, Jurisica I, Inman RD. Vesicular traffic-mediated cell-to-cell signaling at the immune synapse in Ankylosing Spondylitis. Front Immunol 2023; 13:1102405. [PMID: 36741392 PMCID: PMC9889860 DOI: 10.3389/fimmu.2022.1102405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The chronic inflammatory disease ankylosing spondylitis (AS) is marked by back discomfort, spinal ankylosis, and extra-articular symptoms. In AS, inflammation is responsible for both pain and spinal ankylosis. However, the processes that sustain chronic inflammation remain unknown. Despite the years of research conducted to decipher the intricacy of AS, little progress has been made in identifying the signaling events that lead to the development of this disease. T cells, an immune cell type that initiates and regulates the body's response to infection, have been established to substantially impact the development of AS. T lymphocytes are regarded as a crucial part of adaptive immunity for the control of the immune system. A highly coordinated interaction involving antigen-presenting cells (APCs) and T cells that regulate T cell activation constitutes an immunological synapse (IS). This first phase leads to the controlled trafficking of receptors and signaling mediators involved in folding endosomes to the cellular interface, which allows the transfer of information from T cells to APCs through IS formation. Discrimination of self and nonself antigen is somatically learned in adaptive immunity. In an autoimmune condition such as AS, there is a disturbance of self/nonself antigen discrimination; available findings imply that the IS plays a preeminent role in the adaptive immune response. In this paper, we provide insights into the genesis of AS by evaluating recent developments in the function of vesicular trafficking in IS formation and the targeted release of exosomes enriched microRNAs (miRNA) at the synaptic region in T cells.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada,Departments of Medical Biophysics and Computer Science, and the Faculty of Dentistry, University of Toronto, Toronto, ON, Canada,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert D. Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada,Krembil Research Institute, University Health Network, Toronto, ON, Canada,Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada,*Correspondence: Robert D. Inman,
| |
Collapse
|
11
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
12
|
Shirayanagi T, Kazaoka A, Watanabe K, Qu L, Sakamoto N, Hoshino T, Ito K, Aoki S. Weak complex formation of adverse drug reaction-associated HLAB57, B58, and B15 molecules. Toxicol In Vitro 2022; 82:105383. [PMID: 35568130 DOI: 10.1016/j.tiv.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The combination of certain human leukocyte antigen (HLA) polymorphisms with administration of certain drugs shows a strong correlation with developing drug hypersensitivity. Examples of typical combinations are HLA-B*57:01 with abacavir and HLA-B*15:02 with carbamazepine. However, despite belonging to the same serotype, HLA-B*57:03 and HLA-B*15:01 are not associated with drug hypersensitivity. Recent studies have shown that several HLA polymorphisms are associated with multiple drugs rather than a single drug, all resulting in drug hypersensitivity. In this study, we compared the molecular structures and intracellular localization of HLA-B*57:01, HLA-B*58:01, and HLA-B*15:02, which pose risks for developing drug hypersensitivity, as well as HLA-B*57:03 and HLA-B*15:01 that do not present such risks. We found that HLA molecules posing risks have a low affinity for the subunit β2-microglobulin; notably, the weak hydrogen bond formed via Gln96 of the HLA molecule contributes to this behavior. We also clarified that these HLA molecules are easily accumulated in the endoplasmic reticulum, exhibiting a low expression on the cell surface. Considering that these hypersensitivity risk-associated HLA molecules form complexes with β2-microglobulin and peptides in the endoplasmic reticulum, we assumed that their low complex formation ability in the endoplasmic reticulum facilitates the interaction with multiple drugs.
Collapse
Affiliation(s)
- Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kenji Watanabe
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Liang Qu
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Naoki Sakamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan.
| |
Collapse
|
13
|
Kocatürk B, Balık Z, Pişiren G, Kalyoncu U, Özmen F, Özen S. Spondyloarthritides: Theories and beyond. Front Pediatr 2022; 10:1074239. [PMID: 36619518 PMCID: PMC9816396 DOI: 10.3389/fped.2022.1074239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Spondyloarthritides (SpA) are a family of interrelated rheumatic disorders with a typical disease onset ranging from childhood to middle age. If left untreated, they lead to a severe decrease in patients' quality of life. A succesfull treatment strategy starts with an accurate diagnosis which is achieved through careful analysis of medical symptoms. Classification criterias are used to this process and are updated on a regular basis. Although there is a lack of definite knowledge on the disease etiology of SpA, several studies have paved the way for understanding plausible risk factors and developing treatment strategies. The significant increase of HLA-B27 positivity in SpA patients makes it a strong candidate as a predisposing factor and several theories have been proposed to explain HLA-B27 driven disease progression. However, the presence of HLA-B27 negative patients underlines the presence of additional risk factors. The current treatment options for SpAs are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), TNF inhibitors (TNFis), Disease-Modifying Anti-Rheumatic Drugs (DMARDs) and physiotherapy yet there are ongoing clinical trials. Anti IL17 drugs and targeted synthetic DMARDs such as JAK inhibitors are also emerging as treatment alternatives. This review discusses the current diagnosis criteria, treatment options and gives an overview of the previous findings and theories to clarify the possible contributors to SpA pathogenesis with a focus on Ankylosing Spondylitis (AS) and enthesitis-related arthritis (ERA).
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Zeynep Balık
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gaye Pişiren
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Umut Kalyoncu
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seza Özen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in spondyloarthritis. Semin Immunol 2021; 58:101521. [PMID: 34763975 DOI: 10.1016/j.smim.2021.101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The spondyloarthritides are a cluster of inflammatory rheumatic diseases characterized by different diagnostic entities with heterogeneous phenotypes. The current classification system groups spondyloarthritis patients in two main categories, axial and peripheral spondyloarthritis, providing a framework wherein the clinical picture guides the treatment. However, the heterogeneity of the clinical manifestations of the pathologies, even when residing in the same group, highlights the importance of analyzing the smallest features of each entity to understand how different cellular subsets evolve, what the underlying mechanisms are and what biological markers can be identified and validated to evaluate the stage of disease and the corresponding efficacy of treatments. In this review, we will focus mostly on axial spondyloarthritis, report current knowledge concerning the cellular populations involved in its pathophysiology, and their molecular diversity. We will discuss the implications of such a diversity, and their meaning in terms of patients' stratification.
Collapse
Affiliation(s)
- G R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium
| | - M Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium.
| |
Collapse
|
15
|
Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol 2021; 32:484-492. [PMID: 34918137 DOI: 10.1093/mr/roab057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Despite increasing availability of treatments for spondyloarthritis (SpA) including tumour necrosis factor (TNF) and interleukin-17 (IL-17) inhibitors, there is no established treatment that abates new bone formation (NBF) in ankylosing spondylitis (AS), a subset of SpA. Recent research on TNF has revealed the increased level of transmembrane TNF in the joint tissue of SpA patients compared to that of rheumatoid arthritis patients, which appears to facilitate TNF-driven osteo-proliferative changes in AS. In addition, there is considerable interest in the central role of IL-23/IL-17 axis in type 3 immunity and the therapeutic potential of blocking this axis to ameliorate enthesitis and NBF in AS. AS immunopathology involves a variety of immune cells, including both innate and adoptive immune cells, to orchestrate the immune response driving type 3 immunity. In response to external stimuli of inflammatory cytokines, local osteo-chondral progenitor cells activate intra-cellular anabolic molecules and signals involving hedgehog, bone morphogenetic proteins, receptor activator of nuclear factor kappa-B ligand, and Wnt pathways to promote NBF in AS. Here, we provide an overview of the current immunopathology and future directions for the treatment of enthesitis and NBF associated with AS.
Collapse
Affiliation(s)
- Masaki Kusuda
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol 2021; 17:387-404. [PMID: 34113018 DOI: 10.1038/s41584-021-00625-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown aetiology. Unlike other systemic autoimmune diseases, in AS, the innate immune system has a dominant role characterized by aberrant activity of innate and innate-like immune cells, including γδ T cells, group 3 innate lymphoid cells, neutrophils, mucosal-associated invariant T cells and mast cells, at sites predisposed to the disease. The intestine is involved in disease manifestations, as it is at the forefront of the interaction between the mucosal-associated immune cells and the intestinal microbiota. Similarly, biomechanical factors, such as entheseal micro-trauma, might also be involved in the pathogenesis of the articular manifestation of AS, and sentinel immune cells located in the entheses could provide links between local damage, genetic predisposition and the development of chronic inflammation. Although these elements might support the autoinflammatory nature of AS, studies demonstrating the presence of autoantibodies (such as anti-CD74, anti-sclerostin and anti-noggin antibodies) and evidence of activation and clonal expansion of T cell populations support an autoimmune component to the disease. This Review presents the evidence for autoinflammation and the evidence for autoimmunity in AS and, by discussing the pathophysiological factors associated with each, aims to reconcile the two hypotheses.
Collapse
|
17
|
Tay SH, Yeo JG, Leong JY, Albani S, Arkachaisri T. Juvenile Spondyloarthritis: What More Do We Know About HLA-B27, Enthesitis, and New Bone Formation? Front Med (Lausanne) 2021; 8:666772. [PMID: 34095174 PMCID: PMC8174582 DOI: 10.3389/fmed.2021.666772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Juvenile spondyloarthritis (JSpA) refers to a diverse spectrum of immune-mediated inflammatory arthritides whose onset occurs in late childhood and adolescence. Like its adult counterpart, JSpA is typified by a strong association with human leukocyte antigen-B27 (HLA-B27) and potential axial involvement, while lacking rheumatoid factor (RF) and distinguishing autoantibodies. A characteristic manifestation of JSpA is enthesitis (inflammation of insertion sites of tendons, ligaments, joint capsules or fascia to bone), which is commonly accompanied by bone resorption and new bone formation at affected sites. In this Review, advances in the role of HLA-B27, enthesitis and its associated osteoproliferation in JSpA pathophysiology and treatment options will be discussed. A deeper appreciation of how these elements contribute to the JSpA disease mechanism will better inform diagnosis, prognosis and therapy, which in turn translates to an improved quality of life for patients.
Collapse
Affiliation(s)
- Shi Huan Tay
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joo Guan Yeo
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jing Yao Leong
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Salvatore Albani
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
18
|
McGonagle D, Watad A, Sharif K, Bridgewood C. Why Inhibition of IL-23 Lacked Efficacy in Ankylosing Spondylitis. Front Immunol 2021; 12:614255. [PMID: 33815371 PMCID: PMC8017223 DOI: 10.3389/fimmu.2021.614255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The term spondyloarthritis pertains to both axial and peripheral arthritis including ankylosing spondylitis (AS) and psoriatic arthritis (PsA), which is strongly linked to psoriasis and also the arthritis associated with inflammatory bowel disease. The argument supporting the role for IL-23 across the spectrum of SpA comes from 4 sources. First, genome wide associated studies (GWAS) have shown that all the aforementioned disorders exhibit IL-23R pathway SNPs, whereas HLA-B27 is not linked to all of these diseases-hence the IL-23 pathway represents the common genetic denominator. Secondly, experimental animal models have demonstrated a pivotal role for the IL-23/IL-17 axis in SpA related arthropathy that initially manifests as enthesitis, but also synovitis and axial inflammation and also associated aortic root and cutaneous inflammation. Thirdly, the emergent immunology of the human enthesis also supports the presence of IL-23 producing myeloid cells, not just at the enthesis but in other SpA associated sites including skin and gut. Finally, drugs that target the IL-23 pathway show excellent efficacy for skin disease, efficacy for IBD and also in peripheral arthropathy associated with SpA. The apparent failure of IL-23 blockade in the AS which is effectively a spinal polyenthesitis but evidence for efficacy of IL-23 inhibition for peripheral enthesitis in PsA and preliminary suggestions for benefit in axial PsA, raises many questions. Key amongst these is whether spinal inflammation may exhibit entheseal IL-17A production independent of IL-23 but peripheral enthesitis is largely dependent on IL-23 driven IL-17 production. Furthermore, IL-23 blocking strategies in animal models may prevent experimental SpA evolution but not prevent established disease, perhaps pointing towards a role for IL-23 in innate immune disease initiation whereas persistent disease is dependent on memory T-cell responses that drive IL-17A production independently of IL-23, but this needs further study. Furthermore, IL-12/23 posology in inflammatory bowel disease is substantially higher than that used in AS trials which merits consideration. Therefore, the IL-23 pathway is centrally involved in the SpA concept but the nuances and intricacies in axial inflammation that suggest non-response to IL-23 antagonism await formal definition. The absence of comparative immunology between the different skeletal sites renders explanations purely hypothetical at this juncture.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Department of Medicine ‘B’, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Department of Medicine ‘B’, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
Kavadichanda CG, Geng J, Bulusu SN, Negi VS, Raghavan M. Spondyloarthritis and the Human Leukocyte Antigen (HLA)-B *27 Connection. Front Immunol 2021; 12:601518. [PMID: 33763060 PMCID: PMC7982681 DOI: 10.3389/fimmu.2021.601518] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
Heritability of Spondyloarthritis (SpA) is highlighted by several familial studies and a high association with the presence of human leukocyte antigen (HLA)-B*27. Though it has been over four decades since the association of HLA-B*27 with SpA was first determined, the pathophysiological roles played by specific HLA-B*27 allotypes are not fully understood. Popular hypotheses include the presentation of arthritogenic peptides, triggering of endoplasmic reticulum (ER) stress by misfolded HLA-B*27, and the interaction between free heavy chains or heavy chain homodimers of HLA-B*27 and immune receptors to drive IL-17 responses. Several non-HLA susceptibility loci have also been identified for SpA, including endoplasmic reticulum aminopeptidases (ERAP) and those related to the IL-23/IL-17 axes. In this review, we summarize clinical aspects of SpA including known characteristics of gut inflammation, enthesitis and new bone formation and the existing models for understanding the association of HLA-B*27 with disease pathogenesis. We also examine newer insights into the biology of HLA class I (HLA-I) proteins and their implications for expanding our understanding of HLA-B*27 contributions to SpA pathogenesis.
Collapse
Affiliation(s)
- Chengappa G Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jie Geng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:265-277. [PMID: 33569634 PMCID: PMC7990868 DOI: 10.1007/s00281-021-00837-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Spondyloarthritis (SpA) is a heterogeneous group of chronic inflammatory diseases of unknown etiology. Over time, the plethora of cellular elements involved in its pathogenesis has progressively enriched together with the definition of specific cytokine pathways. Recent evidence suggests the involvement of new cellular mediators of inflammation in the pathogenesis of SpA or new subgroups of known cellular mediators. The research in this sense is ongoing, and it is clear that this challenge aimed at identifying new cellular actors involved in the perpetuation of the inflammatory process in AxSpA is not a mere academic exercise but rather aims to define a clear cellular hierarchy. Such a definition could pave the way for new targeted therapies, which could interfere with the inflammatory process and specific pathways that trigger immune system dysregulation and stromal cell activity, ultimately leading to significant control of the inflammation and new bone formation in a significant number of patients. In this review, we will describe the recent advances in terms of new cellular actors involved in the pathogenesis of SpA, focusing our attention on stromal cells and innate and adaptive immunity cells.
Collapse
Affiliation(s)
- Daniele Mauro
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
21
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
22
|
Breban M, Glatigny S, Cherqaoui B, Beaufrère M, Lauraine M, Rincheval-Arnold A, Gaumer S, Guénal I, Araujo LM. Lessons on SpA pathogenesis from animal models. Semin Immunopathol 2021; 43:207-219. [PMID: 33449154 DOI: 10.1007/s00281-020-00832-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Understanding the complex mechanisms underlying a disorder such as spondyloarthritis (SpA) may benefit from studying animal models. Several suitable models have been developed, in particular to investigate the role of genetic factors predisposing to SpA, including HLA-B27, ERAP1, and genes related to the interleukin (IL)-23/IL-17 axis. One of the best examples of such research is the HLA-B27 transgenic rat model that fostered the emergence of original theories regarding HLA-B27 pathogenicity, including dysregulation of innate immunity, contribution of the adaptive immune system to chronic inflammation, and influence of the microbiota on disease development. Very recently, a new model of HLA-B27 transgenic Drosophila helped to expand further some of those theories in an unexpected direction involving the TGFβ/BMP family of mediators. On the other hand, several spontaneous, inducible, and/or genetically modified mouse models-including SKG mouse, TNFΔARE mouse and IL-23-inducible mouse model of SpA-have highlighted the importance of TNFα and IL-23/IL-17 axis in the development of SpA manifestations. Altogether, those animal models afford not only to study disease mechanism but also to investigate putative therapeutic targets.
Collapse
Affiliation(s)
- Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France. .,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France. .,Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 ave Charles de Gaulle, 92100, Boulogne, France.
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Bilade Cherqaoui
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Marie Beaufrère
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Marc Lauraine
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
23
|
Sharip A, Kunz J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020; 10:biom10101461. [PMID: 33092023 PMCID: PMC7588965 DOI: 10.3390/biom10101461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Spondyloarthritis comprises a group of inflammatory diseases of the joints and spine, with various clinical manifestations. The group includes ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated spondyloarthritis. The exact etiology and pathogenesis of spondyloarthritis are still unknown, but five hypotheses explaining the pathogenesis exist. These hypotheses suggest that spondyloarthritis is caused by arthritogenic peptides, an unfolded protein response, HLA-B*27 homodimer formation, malfunctioning endoplasmic reticulum aminopeptidases, and, last but not least, gut inflammation and dysbiosis. Here we discuss the five hypotheses and the evidence supporting each. In all of these hypotheses, HLA-B*27 plays a central role. It is likely that a combination of these hypotheses, with HLA-B*27 taking center stage, will eventually explain the development of spondyloarthritis in predisposed individuals.
Collapse
MESH Headings
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Reactive/genetics
- Arthritis, Reactive/immunology
- Arthritis, Reactive/metabolism
- Arthritis, Reactive/pathology
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Joints/immunology
- Joints/pathology
- Spine/immunology
- Spine/pathology
- Spondylarthritis/genetics
- Spondylarthritis/immunology
- Spondylarthritis/metabolism
- Spondylarthritis/pathology
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/metabolism
- Spondylitis, Ankylosing/pathology
- Unfolded Protein Response/genetics
- Unfolded Protein Response/immunology
Collapse
|
24
|
Voruganti A, Bowness P. New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology 2020; 161:94-102. [PMID: 32696457 PMCID: PMC7496782 DOI: 10.1111/imm.13242] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common immune‐mediated inflammatory arthritis with a strong genetic predisposition. We review recent data from genetic and animal studies highlighting the importance of Type 17 immune responses. Furthermore, the efficacy (or lack thereof) of different anti‐cytokine monoclonal antibodies has highlighted the diversity of Type 17 immune cells and cytokines critical to AS and related spondyloarthritis pathogenesis. Recent studies have strongly implicated the gut microbiome in AS. Finally, we propose that the local metabolic environment of the joint may have a key role in driving AS, and present a novel model of AS pathogenesis.
Collapse
Affiliation(s)
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science (NDORMS), Botnar Research Centre, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
25
|
Stoll ML, Duck LW, Chang MH, Colbert RA, Nigrovic PA, Thompson SD, Elson CO. Identification of Prevotella Oralis as a possible target antigen in children with Enthesitis related arthritis. Clin Immunol 2020; 216:108463. [PMID: 32437923 DOI: 10.1016/j.clim.2020.108463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Patients with Crohn's disease often produce antibodies against flagellated intestinal bacteria. There are mixed data as to whether such antibodies are present in patients with spondyloarthritis. Our objectives were to evaluate for the presence of antibodies against intestinal organisms in children with enthesitis related arthritis (ERA). METHODS Children with ERA and healthy controls were recruited at three sites. Sera were plated on a nitrocellulose array and incubated with labelled antibodies to human IgA and IgG. RESULTS At UAB, patients and controls had similar antibody levels against the majority of the bacteria selected, with the exception of increased IgA antibodies among ERA patients against Prevotella oralis (1231 [IQR 750, 2566] versus 706 [IQR 428, 1106], p = .007.) These findings were partially validated at a second but not at a third site. CONCLUSIONS ERA patients may produce increased IgA antibodies against P. oralis. The possible significance of this finding bears further exploration.
Collapse
Affiliation(s)
- Matthew L Stoll
- University of Alabama at Birmingham (UAB), Departments of Pediatrics, 1601 4(th) Ave South Suite G10, Birmingham, AL 35233, USA.
| | - L Wayne Duck
- UAB, Department of Medicine. 1825 University Blvd, Shelby 631, Birmingham, AL 35294, USA.
| | - Margaret H Chang
- Boston Children's Hospital (BCH), Division of Immunology. Fegan 6, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Robert A Colbert
- Cincinnati Children's Hospital Medical Center (CCHMC), Center for Autoimmune Genomics and Etiology, University of Cincinnati College of Medicine, Immunology Graduate Program. 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Peter A Nigrovic
- BCH, Division of Immunology, Brigham and Women's Hospital, Division of Rheumatology, Inflammation, and Immunity, Hale 6002L, 60 Fenwood Road, Boston, MA, USA 02115..
| | - Susan D Thompson
- CCHMC, Center for Autoimmune Genomics and Etiology, University of Cincinnati College of Medicine, Immunology Graduate Program, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Charles O Elson
- UAB, Department of Medicine, 1825 University Blvd, Shelby 607, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Abstract
Human leukocyte antigen (HLA) B27 is the key laboratory parameter for axial spondyloarthritis (axSpA). Its prevalence is variable across different geographic zones and ethnicities, and often mirrors the prevalence of axSpA. HLA-B27 plays a role in axSpA physiopathology. It is correlated with spondyloarthritis phenotype with a consistent positive association with family history, early disease onset, shorter diagnostic delay, hip involvement, and acute anterior uveitis. HLA-B27 has a pivotal role in many referral strategies. However, these strategies were developed in European populations and need to be evaluated in populations with lower HLA-B27 background prevalence, and where additional parameters might be needed.
Collapse
|
27
|
Abstract
A causal link between the wealth of microbes that populate our body surfaces, designated as microbiota, and inflammatory disorders, including ankylosing spondylitis and the related spondyloarthritis (SpA) has been suspected for decades. This specially concerns the gut microbiota that became only recently accessible to thorough description thanks to massive sequencing methods or metagenomics. Here, we review evidences supporting the existence of microbiota imbalance or dysbiosis in the context of SpA. We also discuss currently existing evidences for a causal relationship between such dysbiosis and disease development, as well as putative therapeutic implications.
Collapse
Affiliation(s)
- Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marie Beaufrère
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
29
|
Bridgewood C, Sharif K, Sherlock J, Watad A, McGonagle D. Interleukin-23 pathway at the enthesis: The emerging story of enthesitis in spondyloarthropathy. Immunol Rev 2020; 294:27-47. [PMID: 31957051 DOI: 10.1111/imr.12840] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The inflammatory disorders collectively termed the seronegative spondyloarthropathies (SpA) include ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, the arthritis associated with inflammatory bowel disease including Crohn's disease and ulcerative colitis, the arthritis related to anterior uveitis, and finally, somewhat controversially Behcet's disease. All of these diseases are associated with SNPs in the IL-23R or the interleukin-23 (IL-23) cytokine itself and related downstream signaling JAK pathway genes and the interleukin-17 (IL-17) pathway. In rheumatoid arthritis, the target of the immune response is the synovium but the SpA disorders target the tendon, ligament, and joint capsule skeletal anchorage points that are termed entheses. The discovery that IL-23R-expressing cells were ensconced in healthy murine enthesis, and other extraskeletal anchorage points including the aortic root and the ciliary body of the eye and that systemic overexpression of IL-23 resulted in a severe experimental SpA, confirmed a fundamentally different immunobiology to rheumatoid arthritis. Recently, IL-23R-expressing myeloid cells and various innate and adaptive T cells that produce IL-17 family cytokines have also been described in the human enthesis. Blockade of IL-23 pathway with either anti-p40 or anti-p19 subunits has resulted in some spectacular therapeutic successes in psoriasis and PsA including improvement in enthesitis in the peripheral skeleton but has failed to demonstrate efficacy in AS that is largely a spinal polyenthesitis. Herein, we discuss the known biology of IL-23 at the human enthesis and highlight the remarkable emerging story of this unique skeletal tissue.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jonathan Sherlock
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| |
Collapse
|
30
|
Abstract
Spondyloarthritis (SpA) describes the group of inflammatory diseases characterized by inflammation within axial joints and/or peripheral arthritis, enthesitis, and dactylitis. Disease development is strongly determined by genes and particularly associated with the presence of HLA-B27. Transgenic expression in animal models leads to induction of a SpA-like disease, suggesting a direct effect of HLA-B27 on disease development. Genome-wide association studies in SpA patients have identified further associations between polymorphisms in genes with an immune function, in particular in genes controlling the interleukin (IL)-23/IL-17 signaling pathway. The efficacy of IL-17 inhibitors in SpA patients underscores the impact of this pathway in this disease. Microscopic gut inflammation or chronic inflammatory bowel disease is found in the majority of patients with SpA, suggesting a pathogenic impact of commensal microbiota. In histopathologic examinations of axial manifestations, replacement of the subchondral bone marrow by granulation tissue with bone destructive and reparative properties is found. The mechanisms governing how genetic predisposition and gut inflammation promote inflammatory reactions at sites of mechanical stress is a matter of current research.
Collapse
|
31
|
TCR repertoire and CDR3 motif analyses depict the role of αβ T cells in Ankylosing spondylitis. EBioMedicine 2019; 47:414-426. [PMID: 31477563 PMCID: PMC6796593 DOI: 10.1016/j.ebiom.2019.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic inflammatory disease with worldwide high prevalence. Although AS is strongly associated with HLA-B27 MHC-I antigen presentation, the role played by αβ T cells in AS remains elusive. Methods Utilizing TCRβ repertoire sequencing and bioinformatics tools developed in house, we analyzed overall TCR repertoire structures and antigen-recognizing CDR3 motifs in AS patients with different disease activities. Findings We found that disease progression is associated with both CD4+ and CD8+ T cell oligo-clonal expansion, which suggests that αβ T cell activation may mediate AS disease progression. By developing a bioinformatics platform to dissect antigen-specific responses, we discovered a cell population consisting of both CD4+ and CD8+ T cells expressing identical TCRs, herein termed CD4/8 T cells. CD4/8 clonotypes were highly enriched in the spondyloarthritic joint fluid of patients, and their expansion correlated with the activity of disease. Interpretation These results provide evidence on the T cell clone side to reveal the potential role of CD4/8 T cells in the etiology of AS development.
Collapse
|
32
|
Abstract
Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.
Collapse
|
33
|
Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology (Oxford) 2019; 57:vi4-vi9. [PMID: 30445483 PMCID: PMC6238220 DOI: 10.1093/rheumatology/key001] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
AS is a common rheumatic condition characterized by inflammation and new bone formation. The pathogenesis of AS is likely multifactorial and has not been fully elucidated to date. A major genetic role has been demonstrated. The strongest genetic association is with HLA B27. Numerous other associated genetic polymorphisms have been identified, including those affecting the type 17 immune pathway, although the precise link between genetics and pathogenesis remains unexplained. Several immunological alterations, together with recent therapeutic advances, support a central role for IL-23- and IL-17-producing immune cells in disease pathogenesis. Recently, perturbations of gut microbiota of AS patients have further catalysed research and offer potential for future therapeutic intervention. In this review we outline the genetic basis of AS and describe the current hypotheses for disease pathogenesis. We synthesize recent experimental research data and clinical studies to support a central role for the type 17/23 immune axis in AS.
Collapse
Affiliation(s)
- Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - M Hussein Al Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Transport of cellular misfolded proteins to the cell surface by HLA-B27 free heavy chain. Biochem Biophys Res Commun 2019; 511:862-868. [DOI: 10.1016/j.bbrc.2019.02.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/20/2022]
|
35
|
The role of ERAP1 in autoinflammation and autoimmunity. Hum Immunol 2019; 80:302-309. [PMID: 30817945 DOI: 10.1016/j.humimm.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune and autoinflammatory diseases affect millions worldwide. These classes of disease involve abnormal immune activation of both the innate and adaptive immune systems. While both classes of disease represent a spectrum of aberrant immune activation, excessive activation of the innate immune system has been considered causal for the inflammation and tissue damage found in autoinflammatory diseases, while excessive activation of the adaptive immune system has been thought to primarily contribute to end-organ symptoms noted in autoimmune diseases. Interestingly, the endoplasmic reticulum aminopeptidase 1 (ERAP1) protein, well known for its aminopeptidase function as a "molecular ruler", trimming peptides prior to their loading onto MHC-I molecules for antigen presentation in the ER, has also been shown to be genetically associated with both autoinflammatory and autoimmune diseases. Indeed, this multifaceted protein has been found to have many functions that affect both the innate and adaptive immune responses. In this review, we summarize these findings, with an attempt to identify the possible ERAP1 dependent mechanisms responsible for the pathogenesis of multiple, ERAP1 associated diseases.
Collapse
|
36
|
Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis-Novel Targets for Therapy? Front Immunol 2019; 9:3132. [PMID: 30687330 PMCID: PMC6335330 DOI: 10.3389/fimmu.2018.03132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.
Collapse
Affiliation(s)
- Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Amity R Roberts
- Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul B Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tony J Kenna
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia.,Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
37
|
López-Medina C, Moltó A. Update on the epidemiology, risk factors, and disease outcomes of axial spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 32:241-253. [PMID: 30527429 DOI: 10.1016/j.berh.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
Axial spondyloarthritis (axSpA) is the prototype of a class of a rheumatic chronic inflammatory disease named spondyloarthritis (SpA). The prevalence of axSpA ranges between 0.1% and 1.4% globally, hence showing geographic differences that can be explained mostly by the prevalence of the HLA-B27 antigen. However, not many studies have evaluated the incidence of this disease. Inflammation may be initiated in the enthesis as a consequence of the action of IL-23, which can activate resident T cells. The elevated expression of IL-23 has been explained by three hypotheses: the presence of HLA-B27, variations in the gut microbiome and the biomechanical stress at the enthesis. However, the role of IL-23 in this whole context is still unclear. In axSpA, the presence of syndesmophytes at baseline, systemic inflammation, and smoking may promote the spinal radiographic damage in these patients. The most frequent comorbidity in these patients is osteoporosis, which is directly associated with ankylosis and inflammation.
Collapse
Affiliation(s)
- Clementina López-Medina
- Rheumatology Department, Cochin Hospital, Paris, France; Inserm (U1153), Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Rheumatology Department, Reina Sofía University Hospital, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain.
| | - Anna Moltó
- Rheumatology Department, Cochin Hospital, Paris, France; Inserm (U1153), Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
38
|
de Koning A, Schoones JW, van der Heijde D, van Gaalen FA. Pathophysiology of axial spondyloarthritis: Consensus and controversies. Eur J Clin Invest 2018; 48:e12913. [PMID: 29460306 DOI: 10.1111/eci.12913] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is a common inflammatory arthritis of the sacroiliac joints and the spine. The best-known and most studied form of axSpA is ankylosing spondylitis. DESIGN In this review, we provide a brief overview of the pathophysiology of axSpA. In addition, we performed a quantitative text analysis of reviews on the pathogenesis of axSpA published in the last 10 years to establish the current consensus in various fields of research into the pathogenesis of axSpA. RESULTS There appears to be broad consensus on genetic risk factors and the involvement of the immune system in the initiation phase of the disease although little consensus was found on which specific immune cells drive disease. Moreover, despite relatively little data available, alterations in the microbiome are commonly thought to be involved in disease. Abnormal bone formation is the most prominent pathogenic factor thought to be involved in disease progression. CONCLUSION So, although the pathophysiology of axSpA remains incompletely understood, the progress in recent years in several fields of research in axSpA including genetics, diagnosis, imaging and therapeutics, hold great promise for the future.
Collapse
Affiliation(s)
- Anoek de Koning
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan W Schoones
- Walaeus Library, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Floris A van Gaalen
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
39
|
Reinhardt A, Prinz I. Whodunit? The Contribution of Interleukin (IL)-17/IL-22-Producing γδ T Cells, αβ T Cells, and Innate Lymphoid Cells to the Pathogenesis of Spondyloarthritis. Front Immunol 2018; 9:885. [PMID: 29922283 PMCID: PMC5996894 DOI: 10.3389/fimmu.2018.00885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
γδ T cells, αβ T cells, and innate lymphoid cells (ILCs) are capable of producing interleukin (IL)-17A, IL-17F, and IL-22. Among these three families of lymphocytes, it is emerging that γδ T cells are, at least in rodents, the main source of these key pro-inflammatory cytokines. γδ T cells were implicated in multiple inflammatory and autoimmune diseases, including psoriasis, experimental autoimmune encephalomyelitis and uveitis, colitis, and rheumatoid arthritis. Recent findings pointed toward a central role of γδ T cells in the pathogenesis of spondyloarthritis (SpA), a group of inflammatory rheumatic diseases affecting the axial skeleton. SpA primarily manifests as inflammation and new bone formation at the entheses, which are connecting tendons or ligaments with bone. In SpA patients, joint inflammation is frequently accompanied by extra-articular manifestations, such as inflammatory bowel disease or psoriasis. In humans, genome-wide association studies could link the IL-23/IL-17 cytokine axis to SpA. Accordingly, antibodies targeting IL-23/IL-17 for SpA treatment already showed promising results in clinical studies. However, the contribution of IL-17-producing γδ T cells to SpA pathogenesis is certainly not an open-and-shut case. Indeed, the cell types that are chiefly involved in local inflammation in human SpA still remain largely unclear. Some studies focusing on blood or synovium from SpA patients reported augmented IL-17-producing and IL-23 receptor-expressing γδ T cells, but other cell types might contribute as well. Here, we summarize the current understanding of how γδ T cells, αβ T cells, and ILCs contribute to the pathogenesis of human and experimental SpA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Immunity, Innate
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukins/immunology
- Interleukins/metabolism
- Lymphocytes/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spondylarthritis/immunology
- Interleukin-22
Collapse
|
40
|
Babaie F, Hasankhani M, Mohammadi H, Safarzadeh E, Rezaiemanesh A, Salimi R, Baradaran B, Babaloo Z. The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: New insights and updates. Immunol Lett 2018; 196:52-62. [DOI: 10.1016/j.imlet.2018.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
41
|
Rahman MA, Thomas R. The SKG model of spondyloarthritis. Best Pract Res Clin Rheumatol 2017; 31:895-909. [DOI: 10.1016/j.berh.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
42
|
Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol 2017; 190:281-290. [PMID: 28759104 DOI: 10.1111/cei.13020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The human leukocyte antigen class I gene HLA-B27 is the strongest risk factor for ankylosing spondylitis (AS), a chronic inflammatory arthritic disorder. More recently, the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 genes have been identified by genome wide association studies (GWAS) as additional susceptibility factors. In the ER, these aminopeptidases trim the peptides to a length suitable to fit into the groove of the major histocompatibility complex (MHC) class I molecules. It is noteworthy that an epistatic interaction between HLA-B27 and ERAP1, but not between HLA-B27 and ERAP2, has been highlighted. However, these observations suggest a paramount centrality for the HLA-B27 peptide repertoire that determines the natural B27 immunological function, i.e. the T cell antigen presentation and, as a by-product, elicits HLA-B27 aberrant behaviours: (i) the misfolding leading to ER stress responses and autophagy and (ii) the surface expression of homodimers acting as ligands for innate immune receptors. In this context, it has been observed that the HLA-B27 carriers, besides being prone to autoimmunity, display a far better surveillance to some viral infections. This review focuses on the ambivalent role of HLA-B27 in autoimmunity and viral protection correlating its functions to the quantitative and qualitative effects of ERAP1 and ERAP2 polymorphisms on their enzymatic activity.
Collapse
Affiliation(s)
- C Vitulano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - V Tedeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - F Paladini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - R Sorrentino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - M T Fiorillo
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
van Tok MN, Satumtira N, Dorris M, Pots D, Slobodin G, van de Sande MG, Taurog JD, Baeten DL, van Duivenvoorde LM. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats. Front Immunol 2017; 8:920. [PMID: 28824645 PMCID: PMC5545590 DOI: 10.3389/fimmu.2017.00920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Spondyloarthritis (SpA) does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.
Collapse
Affiliation(s)
- Melissa N van Tok
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nimman Satumtira
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Martha Dorris
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Desirée Pots
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gleb Slobodin
- Internal Medicine, Bnai Zion Medical Center, Haifa, Israel
| | - Marleen G van de Sande
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joel D Taurog
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dominique L Baeten
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonie M van Duivenvoorde
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Abstract
During recent years, the analysis of the human microbiota has been receiving more and more scientific focus. Deep sequencing analysis enables characterization of microbial communities in different environments without the need of culture-based methods. Hereby, information about microbial communities is increasing enormously. Numerous studies in humans and animal models revealed the important role of the microbiome in emergence and natural course of diseases such as autoimmune diseases and metabolic disorders, e. g., the metabolic syndrome. The identification of causalities between the intestinal microbiota composition and function, and diseases in humans and animal models can help to develop individualized therapies targeting the microbiome and its modification. Nowadays, it is established that several factors influence the composition of the microbiota. Diet it is one of the major factors shaping the microbiota and the use of pro- and prebiotica may induce changes in the microbial community. Fecal microbiome transfer is the first approach targeting the intestinal microbiota which is implemented in the clinical routine for patients with therapy-refractory infections with Clostridium difficile. Herewith, the recipient's microbiota can be changed permanently and the patient can be cured from the infection.
Collapse
|
45
|
Chen B, Li J, He C, Li D, Tong W, Zou Y, Xu W. Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (Review). Mol Med Rep 2017; 15:1943-1951. [PMID: 28259985 PMCID: PMC5364987 DOI: 10.3892/mmr.2017.6248] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of ankylosing spondylitis (AS) has made significant progress over the last decade. Genome-wide association studies have identified and further substantiated the role of susceptibility genes outside the major histocompatibility complex locus. However, human leukocyte antigen (HLA)-B27 has been suggested to be important in the pathogenesis of AS, contributing to ~20.1% of AS heritability. The current review will present the classical and non-classical forms of HLA-B27, as well as their pathogenic roles, and further discuss the hypotheses regarding the potential pathogenesis of AS. In addition, the association between the pathogenic role of HLA-B27 and inflammatory indexes, including the interleukin-23/−17 axis will be investigated to provide novel insights into the pathogenesis of AS. The aim of the present review is to provide an update of the current research into the pathogenesis of AS, and provide a comprehensive description of the pathogenic role of HLA-B27 in AS.
Collapse
Affiliation(s)
- Bin Chen
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jia Li
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chongru He
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Dahe Li
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Wenwen Tong
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuming Zou
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Weidong Xu
- Department of Joint Surgery and Sports Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
46
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
47
|
Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, Reichardt HM. The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 198:1910-1920. [PMID: 28115529 DOI: 10.4049/jimmunol.1601011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
T cell activation is an energy-demanding process fueled by increased glucose consumption and accompanied by upregulation of the insulin receptor (INSR). In this article, we report that silencing the INSR in inducible knockdown rats impairs selective T cell functions but not thymocyte development. Glucose transport and glycolysis in activated CD4+ T cells were compromised in the absence of the INSR, which was associated with alterations in intracellular signaling pathways. The observed metabolic defects coincided with reduced cytokine production, proliferation, and migration, as well as increased apoptosis of CD4+ T cells. The cytotoxicity of CD8+ T cells in response to alloantigens was also diminished under these conditions, whereas the frequency and suppressive capacity of regulatory T cells were unaffected. The observed impairments proved to be decisive in vivo because silencing of the INSR attenuated clinical symptoms in animal models of acute graft-versus-host disease and multiple sclerosis. Taken together, our results suggest that upregulation of the INSR on T cells following activation is required for efficient adaptive immunity.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and.,Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christopher Sie
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Eric Schumann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ann-Kathrin Witte
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ralf Dressel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| |
Collapse
|
48
|
Chen L, Shi H, Yuan J, Bowness P. Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression. Ann Rheum Dis 2016; 76:593-601. [DOI: 10.1136/annrheumdis-2016-209512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/12/2022]
Abstract
ObjectiveAssociation of position 97 (P97) residue polymorphisms in human leucocyte antigen (HLA)-B, including HLA-B*27, with ankylosing spondylitis (AS) has recently been reported. We studied the effect of P97 variations on cell surface expression of the AS-associated HLA-B*27 and HLA-B*51, and the AS-protective HLA-B*7.MethodsFlow cytometry was used to measure surface expression of HLA-B*27 in C1R/HeLa cells expressing HLA-B*27 (N97) and six mutants at P97 (N97T, N97S, N97V, N97R, N97W and N97D). Transporter associated with antigen processing-deficient T2, tapasin-deficient 220, β2m-deficient HCT15 and endoplasmic reticulum aminopeptidase 1 or β2m-clustered regularly interspaced short palindromic repeats/Cas9-knockout HeLa cells were used to provide evidence for specific protein interactions. Surface expression of HLA-B*7/HLA-B*51 P97 mutants was also studied.ResultsMutation of HLA-B*27 P97 to the AS risk residue threonine increased cell surface free heavy chain (FHC) expression. Protective residues (serine or valine) and non-AS-associated residues (arginine or tryptophan) did not alter FHC expression. The N97D mutation reduced expression of conventional and FHC forms of HLA-B*27. Differences in FHC expression levels between HLA-B*27, HLA-B*27-N97T and HLA-B*27-N97D were dependent on the presence of functional β2m. HLA-B*7, which has an AS-protective serine at P97, expressed lower levels of FHC than HLA-B*27 or HLA-B*51. Introduction of asparagine at P97 of both HLA-B*7 and HLA-B*51 increased FHC expression.ConclusionsThe nature of P97 residue affects surface expression of HLA-B*27, B*7 and B*51, with AS-associated residues giving rise to higher FHC expression levels. The association of P97 amino acid polymorphisms with AS could be, at least in part, explained by its effect on HLA-B*27 FHC cell surface expression.
Collapse
|
49
|
Quaden DHF, De Winter LM, Somers V. Detection of novel diagnostic antibodies in ankylosing spondylitis: An overview. Autoimmun Rev 2016; 15:820-32. [PMID: 27288842 DOI: 10.1016/j.autrev.2016.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
Ankylosing spondylitis (AS) is a debilitating, chronic, rheumatic disease characterized by inflammation and new bone formation resulting in fusion of the spine and sacroiliac joints. Since early treatment is impeded by a delayed diagnosis, it is highly important to find new biomarkers that improve early diagnosis and may also contribute to a better assessment of disease activity, prognosis and therapy response in AS. Because of the absence of rheumatoid factor, AS was long assumed to have a seronegative character and antibodies are thus not considered a hallmark of the disease. However, emerging evidence suggests plasma cells and autoantibodies to be involved in the disease course. In this review, the role of B cells and antibodies in AS is discussed. Furthermore, an overview is provided of antibodies identified in AS up till now, and their diagnostic potential. Many of these antibody responses were based on small study populations and further validation is lacking. Moreover, most were identified by a hypothesis-driven approach and thus limited to antibodies against targets that are already known to be involved in AS pathogenesis. Hence, we propose an unbiased approach to identify novel diagnostic antibodies. The already successfully applied techniques cDNA phage display and serological antigen selection will be used to identify antibodies against both known and new antigen targets in AS plasma. These newly identified antibodies will enhance early diagnosis of AS and provide more insight into the underlying disease pathology, resulting in a more effective treatment strategy and eventually an improved disease outcome.
Collapse
Affiliation(s)
- Dana H F Quaden
- Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Hasselt, Belgium
| | - Liesbeth M De Winter
- Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
50
|
Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol 2016; 74:10-7. [PMID: 27107845 PMCID: PMC5425939 DOI: 10.1016/j.molimm.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. METHODS ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. RESULTS ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. CONCLUSIONS Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes.
Collapse
Affiliation(s)
- Tri M Tran
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|