1
|
Neuromyelitis Optica Spectrum Disorders (NMOSD) and Connective Tissue Disease (CTD): an Update for the Rheumatologist. Curr Rheumatol Rep 2021; 23:33. [PMID: 33909180 DOI: 10.1007/s11926-021-01000-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To review the pathophysiology, presentation, and treatment of neuromyelitis optica spectrum disorder (NMOSD) and its association with systemic lupus erythematosus (SLE) and Sjogren's syndrome (SS). RECENT FINDINGS NMOSD is an autoimmune disorder of the central nervous system that primarily targets astrocytes. Although the prevalence is unknown, the coexistence of NMOSD and SLE/SS is well-recognized. Patients with both NMOSD and SLE or SS require may require unique approaches to diagnosis and management. Coexistence of NMOSD and SLE/SS is important for the rheumatologist and neurologist to be able to recognize. For the rheumatologist, NMOSD and its neurologic symptoms represent a distinct disease process from neurologic complications of the patient's underlying connective tissue disease, and it requires distinct acute and chronic management. For the neurologist, the coexistence of SLE and SS can help to establish a diagnosis of NMOSD, or in some situations, the development of neurologic symptoms secondary to NMOSD can lead to the diagnosis of connective tissue disease.
Collapse
|
2
|
Oertel FC, Scheel M, Chien C, Bischof A, Finke C, Paul F. [Differential diagnostics of autoimmune inflammatory spinal cord diseases]. DER NERVENARZT 2021; 92:293-306. [PMID: 33765163 PMCID: PMC7992127 DOI: 10.1007/s00115-021-01092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 11/04/2022]
Abstract
Myelitis is an acute or subacute inflammatory syndrome of the spinal cord. Myelopathy, often used as a synonym and presenting with similar symptoms in clinical practice, can be caused by numerous, not primarily inflammatory etiologies and might also show a progressive disease course. Within the last decade the spectrum of autoimmune myelitis was significantly broadened as was the spectrum of diagnostic methods. Apart from the characteristic example of multiple sclerosis with short-length myelitis and neuromyelitis optica spectrum disorders with longitudinally extensive transverse myelitis, multiple rare but important differential diagnoses should also be considered. Magnetic resonance imaging and laboratory analyses of serum antibodies and cerebrospinal fluid are the most important diagnostic methods and are fundamental for rapid treatment decisions, subsequently with better prognosis. This article reviews representative diseases within the spectrum of autoimmune spinal cord diseases and their differential diagnoses.
Collapse
Affiliation(s)
- Frederike C Oertel
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Deutschland
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of health, Berlin, Deutschland
| | - Michael Scheel
- Institut für Neuroradiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Deutschland
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Deutschland
| | - Antje Bischof
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Carsten Finke
- Klinik für Neurologie mit Experimenteller Neurologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Deutschland
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Deutschland.
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of health, Berlin, Deutschland.
- Klinik für Neurologie mit Experimenteller Neurologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Deutschland.
| |
Collapse
|
3
|
Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 2021; 236:6115-6135. [PMID: 33559160 DOI: 10.1002/jcp.30318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Hajiabbasi
- Guilan Rheumatology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wildemann B, Horstmann S, Korporal-Kuhnke M, Viehöver A, Jarius S. [Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis: Diagnosis and Treatment]. Klin Monbl Augenheilkd 2020; 237:1290-1305. [PMID: 33202462 DOI: 10.1055/a-1219-7907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Optic neuritis (ON) is a frequent manifestation of aquaporin-4 (AQP4) antibody-mediated neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disorders, MOGAD). The past few years have seen major advances in the diagnosis and treatment of these two relatively new entities: international diagnostic criteria for NMOSD and MOG-EM have been proposed, improved antibody assays developed, and consensus recommendations on the indications and methodology of serological testing published. Very recently, the results of four phase III trials assessing new treatment options for NMOSD have been presented. With eculizumab, a monoclonal antibody inhibiting complement factor C5, for the first time a relapse-preventing long-term treatment for NMOSD - which has so far mostly been treated off-label with rituximab, azathioprine, and other immunosuppressants - has been approved. Data from recent retrospective studies evaluating treatment responses in MOG-ON suggest that rituximab and other immunosuppressants are effective also in this entity. By contrast, many drugs approved for the treatment of multiple sclerosis (MS) have been found to be either ineffective or to cause disease exacerbation (e.g., interferon-β). Recent studies have shown that not only NMOSD-ON but also MOG-ON usually follows a relapsing course. If left untreated, both disorders can result in severe visual deficiency or blindness, though MOG-ON seems to have a better prognosis overall. Acute attacks are treated with high-dose intravenous methylprednisolone and, in many cases, plasma exchange (PEX) or immunoadsorption (IA). Early use of PEX/IA may prevent persisting visual loss and improve the long-term outcome. Especially MOG-ON has been found to be frequently associated with flare-ups, if steroids are not tapered, and to underlie many cases of "chronic relapsing inflammatory optic neuropathy" (CRION). Both NMOSD-ON and MOG-ON are often associated with simultaneous or consecutive attacks of myelitis and brainstem encephalitis; in contrast to earlier assumptions, supratentorial MRI brain lesions are a common finding and do not preclude the diagnosis. In this article, we review the current knowledge on the clinical presentation, epidemiology, diagnosis, and treatment of these two rare yet important differential diagnoses of both MS-associated ON und idiopathic autoimmune ON.
Collapse
Affiliation(s)
| | | | | | | | - Sven Jarius
- Neurologische Klinik, Universitätsklinikum Heidelberg
| |
Collapse
|
5
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Jarius S, Pellkofer H, Siebert N, Korporal-Kuhnke M, Hümmert MW, Ringelstein M, Rommer PS, Ayzenberg I, Ruprecht K, Klotz L, Asgari N, Zrzavy T, Höftberger R, Tobia R, Buttmann M, Fechner K, Schanda K, Weber M, Asseyer S, Haas J, Lechner C, Kleiter I, Aktas O, Trebst C, Rostasy K, Reindl M, Kümpfel T, Paul F, Wildemann B. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: Results from 163 lumbar punctures in 100 adult patients. J Neuroinflammation 2020; 17:261. [PMID: 32883348 PMCID: PMC7470615 DOI: 10.1186/s12974-020-01824-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/23/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND New-generation cell-based assays have demonstrated a robust association of serum autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis, and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis (ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD). OBJECTIVE To describe systematically the CSF profile in MOG-EM. MATERIAL AND METHODS Cytological and biochemical findings (including white cell counts and differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/serum ratios; intrathecal IgG/IgA/IgM fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster (MRZ) reaction; other anti-viral and anti-bacterial antibody indices; CSF total protein; CSF L-lactate) from 163 lumbar punctures in 100 adult patients of mainly Caucasian descent with MOG-EM were analyzed retrospectively. RESULTS Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in almost 90% of samples (N = 151), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100% (N = 62). If present, intrathecal IgG (and, more rarely, IgM) synthesis was low, often transient and mostly restricted to acute attacks. CSF WCC was elevated in > 50% of samples (median 31 cells/μl; mostly lymphocytes and monocytes; > 100/μl in 12%). Neutrophils were present in > 40% of samples; activated lymphocytes were found less frequently and eosinophils and/or plasma cells only very rarely (< 4%). Blood-CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present in 48% of all samples and at least once in 55% of all patients (N = 88) tested. The frequency and degree of CSF alterations were significantly higher in patients with acute myelitis than in patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly with the spinal cord lesion load in patients with acute myelitis (p < 0.0001). Like pleocytosis, blood-CSF barrier dysfunction was present also during remission in a substantial number of patients. CONCLUSION MOG-IgG-positive EM is characterized by CSF features that are distinct from those in MS. Our findings are important for the differential diagnosis of MS and MOG-EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Hannah Pellkofer
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nadja Siebert
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Paulus S Rommer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ilya Ayzenberg
- Department of Neurology, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nasrin Asgari
- Department of Regional Health Research, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tobias Zrzavy
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Rafik Tobia
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | | | | | - Kathrin Schanda
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Martin Weber
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Susanna Asseyer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Christian Lechner
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Ingo Kleiter
- Department of Neurology, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Witten, Germany
| | - Markus Reindl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Jarius S, Lechner C, Wendel EM, Baumann M, Breu M, Schimmel M, Karenfort M, Marina AD, Merkenschlager A, Thiels C, Blaschek A, Salandin M, Leiz S, Leypoldt F, Pschibul A, Hackenberg A, Hahn A, Syrbe S, Strautmanis J, Häusler M, Krieg P, Eisenkölbl A, Stoffels J, Eckenweiler M, Ayzenberg I, Haas J, Höftberger R, Kleiter I, Korporal-Kuhnke M, Ringelstein M, Ruprecht K, Siebert N, Schanda K, Aktas O, Paul F, Reindl M, Wildemann B, Rostásy K. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 2: Results from 108 lumbar punctures in 80 pediatric patients. J Neuroinflammation 2020; 17:262. [PMID: 32883358 PMCID: PMC7470445 DOI: 10.1186/s12974-020-01825-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND New-generation, cell-based assays have demonstrated a robust association of serum autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis, and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis (ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD). OBJECTIVE To describe systematically the CSF profile in children with MOG-EM. MATERIAL AND METHODS Cytological and biochemical findings (including white cell counts [WCC] and differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/serum ratios; intrathecal IgG/IgM/IgA fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster [MRZ] reaction; other anti-viral and anti-bacterial antibody indices; CSF total protein; CSF L-lactate) from 108 lumbar punctures in 80 pediatric patients of mainly Caucasian descent with MOG-EM were analyzed retrospectively. RESULTS Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in 89% of samples (N = 96), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100% (N = 29). If present at all, intrathecal IgG synthesis was low, often transient and mostly restricted to acute attacks. Intrathecal IgM synthesis was present in 21% and exclusively detectable during acute attacks. CSF WCC were elevated in 54% of samples (median 40 cells/μl; range 6-256; mostly lymphocytes and monocytes; > 100/μl in 11%). Neutrophils were present in 71% of samples; eosinophils, activated lymphocytes, and plasma cells were seen only rarely (all < 7%). Blood-CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present in 46% of all samples (N = 79) and at least once in 48% of all patients (N = 67) tested. CSF alterations were significantly more frequent and/or more pronounced in patients with acute spinal cord or brain disease than in patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly with the spinal cord lesions load (measured in vertebral segments) in patients with acute myelitis (p = 0.0099). An analysis of pooled data from the pediatric and the adult cohort showed a significant relationship of QAlb (p < 0.0005), CST TP (p < 0.0001), and CSF L-lactate (p < 0.0003) during acute attacks with age. CONCLUSION MOG-IgG-associated EM in children is characterized by CSF features that are distinct from those in MS. With regard to most parameters, no marked differences between the pediatric cohort and the adult cohort analyzed in Part 1 were noted. Our findings are important for the differential diagnosis of pediatric MS and MOG-EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Christian Lechner
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva M Wendel
- Department of Pediatrics, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Breu
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Mareike Schimmel
- Division of Pediatric Neurology, Children's Hospital, Medical University of Augsburg, Augsburg, Germany
| | - Michael Karenfort
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adela Della Marina
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's Hospital, University of Duisburg-Essen, Duisburg, Germany
| | - Andreas Merkenschlager
- Division of Pediatric Neurology, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Charlotte Thiels
- Department of Neuropediatrics, University Children's Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Astrid Blaschek
- Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Steffen Leiz
- Department of Pediatrics, Division of Pediatric Neurology, Klinikum Dritter Orden, Munich, Germany
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, Christian-Albrechts-University Kiel and Medical University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Pschibul
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Hackenberg
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andreas Hahn
- Department of Pediatric Neurology, University Children's Hospital Giessen, Giessen, Germany
| | - Steffen Syrbe
- Division of Child Neurology and Inherited Metabolic Diseases, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jurgis Strautmanis
- Department of Neurology, Children's Clinical University Hospital, Riga, Latvia
| | - Martin Häusler
- Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Medical University RWTH Aachen, Aachen, Germany
| | - Peter Krieg
- Department of Pediatrics, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Astrid Eisenkölbl
- Department of Pediatrics, Women's and Children's Hospital, Linz, Austria
| | - Johannes Stoffels
- Department of Pediatric Neurology, Children's Hospital Neuburg, Neuburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ingo Kleiter
- Department of Neurology, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Siebert
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Orhan Aktas
- Department of Pediatric Neurology, Children's Hospital Neuburg, Neuburg, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany.
| |
Collapse
|
8
|
Deijns SJ, Broen JCA, Kruyt ND, Schubart CD, Andreoli L, Tincani A, Limper M. The immunologic etiology of psychiatric manifestations in systemic lupus erythematosus: A narrative review on the role of the blood brain barrier, antibodies, cytokines and chemokines. Autoimmun Rev 2020; 19:102592. [PMID: 32561462 DOI: 10.1016/j.autrev.2020.102592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The aim of this narrative review is to provide an overview of the literature on the possible immunologic pathophysiology of psychiatric manifestations of neuropsychiatric systemic lupus erythematosus (NPSLE). METHODS A systematic search on PubMed was conducted. English studies with full text availability that investigated the correlation between blood-brain barrier (BBB) dysfunction, intrathecal synthesis of antibodies, antibodies, cytokines, chemokines, metalloproteinases, complement and psychiatric NPSLE manifestations in adults were included. RESULTS Both transient BBB-dysfunction with consequent access of antibodies to the cerebrospinal fluid (CSF) and intrathecal synthesis of antibodies could occur in psychiatric NPSLE. Anti-phospholipid antibodies, anti-NMDA antibodies and anti-ribosomal protein p antibodies seem to mediate concentration dependent neuronal dysfunction. Interferon-α may induce microglial engulfment of neurons, direct neuronal damage and production of cytokines and chemokines in psychiatric NPSLE. Several cytokines, chemokines and matrix metalloproteinase-9 may contribute to the pathophysiology of psychiatric NPSLE by attracting and activating Th1-cells and B-cells. DISCUSSION This potential pathophysiology may help understand NPSLE and may have implications for the diagnostic management and therapy of psychiatric NPSLE. However, the presented pathophysiological model is based on correlations between potential immunologic etiologies and psychiatric NPSLE that remain questionable. More research on this topic is necessary to further elucidate the pathophysiology of NPSLE.
Collapse
Affiliation(s)
- Sander J Deijns
- University Medical Centre Utrecht and Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Jasper C A Broen
- Regional Rheumatology Centre, Máxima Medical Centre, 5631 BM Eindhoven and 5504 DB, Veldhoven, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Centre, Leiden 2333 ZA, the Netherlands.
| | - Chris D Schubart
- Department of Psychiatry, Tergooi Ziekenhuis, 1261 AN Blaricum, Hilversum 1213 XZ, the Netherlands.
| | - Laura Andreoli
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, BS 25123, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25123, Italy.
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, BS 25123, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25123, Italy; I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
9
|
Marrodan M, Gaitán MI, Correale J. Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines 2020; 8:E130. [PMID: 32455910 PMCID: PMC7277673 DOI: 10.3390/biomedicines8050130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diagnostic accuracy is poor in demyelinating myelopathies, and therefore a challenge for neurologists in daily practice, mainly because of the multiple underlying pathophysiologic mechanisms involved in each subtype. A systematic diagnostic approach combining data from the clinical setting and presentation with magnetic resonance imaging (MRI) lesion patterns, cerebrospinal fluid (CSF) findings, and autoantibody markers can help to better distinguish between subtypes. In this review, we describe spinal cord involvement, and summarize clinical findings, MRI and diagnostic characteristics, as well as treatment options and prognostic implications in different demyelinating disorders including: multiple sclerosis (MS), neuromyelitis optica spectrum disorder, acute disseminated encephalomyelitis, anti-myelin oligodendrocyte glycoprotein antibody-associated disease, and glial fibrillary acidic protein IgG-associated disease. Thorough understanding of individual case etiology is crucial, not only to provide valuable prognostic information on whether the disorder is likely to relapse, but also to make therapeutic decision-making easier and reduce treatment failures which may lead to new relapses and long-term disability. Identifying patients with monophasic disease who may only require acute management, symptomatic treatment, and subsequent rehabilitation, rather than immunosuppression, is also important.
Collapse
Affiliation(s)
| | | | - Jorge Correale
- Neurology Department, Fleni, C1428AQK Buenos Aires, Argentina; (M.M.); (M.I.G.)
| |
Collapse
|
10
|
Bruijstens AL, Wong YYM, van Pelt DE, van der Linden PJE, Haasnoot GW, Hintzen RQ, Claas FHJ, Neuteboom RF, Wokke BHA. HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e702. [PMID: 32198229 PMCID: PMC7136059 DOI: 10.1212/nxi.0000000000000702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 01/04/2023]
Abstract
Objective To investigate the possible human leukocyte antigen (HLA) association of both myelin oligodendrocyte glycoprotein (MOG-IgG)-associated diseases (MOGAD) and aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSDs) in the Dutch population with European ancestry to clarify similarities or differences in the immunogenetic background of both diseases. Methods Blood samples from patients in the Dutch national MS/NMOSD expert clinic were tested for MOG-IgG and AQP4-IgG using a cell-based assay. HLA Class I and II genotyping was performed in 43 MOG-IgG–seropositive and 42 AQP4-IgG–seropositive Dutch patients with European ancestry and compared with those of 5,604 Dutch healthy blood donors. Results No significant HLA association was found in MOG-IgG–seropositive patients. The AQP4-IgG–seropositive patients had a significant higher frequency of HLA-A*01 (61.9% vs 33.7%, OR 3.16, 95% CI, 1.707–5.863, p after correction [pc] = 0.0045), HLA-B*08 (61.9% vs 25.6%, OR 4.66, 95% CI, 2.513–8.643, pc < 0.0001), and HLA-DRB1*03 (51.2% vs 27.6%, OR 2.75, 95% CI, 1.495–5.042, pc = 0.0199) compared with controls. Conclusions The present study demonstrates differences in the immunogenetic background of MOGAD and AQP4-IgG–positive NMOSD. The strong positive association with HLA-A*01, -B*08, and -DRB1*03 is suggestive of a role of this haplotype in the etiology of AQP4-IgG–positive NMOSD in patients with European ancestry, whereas in MOGAD no evidence was found for any HLA association in these disorders.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands.
| | - Yu Yi M Wong
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Daniëlle E van Pelt
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Pieter J E van der Linden
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Geert W Haasnoot
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rogier Q Hintzen
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Frans H J Claas
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rinze F Neuteboom
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Beatrijs H A Wokke
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
11
|
Pröbstel AK, Thanei M, Erni B, Lecourt AC, Branco L, André R, Roux-Lombard P, Koenig KF, Huynh-Do U, Ribi C, Chizzolini C, Kappos L, Trendelenburg M, Derfuss T. Association of antibodies against myelin and neuronal antigens with neuroinflammation in systemic lupus erythematosus. Rheumatology (Oxford) 2020; 58:908-913. [PMID: 30265368 DOI: 10.1093/rheumatology/key282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine frequency and syndrome specificity of novel and known nervous system (NS)-directed antibodies in a large, unbiased cohort of SLE patients in the Swiss SLE Cohort Study. METHODS This retrospective pilot study included 174 patients in a cross-sectional and 102 in a longitudinal study. Antibodies against 12 NS antigens [myelin oligodendrocyte glycoprotein (MOG), neurofascin 186 (NF186), aquaporin-4 (AQP4), N-methyl-D-aspartate receptor (subunit NR1) (NMDAR-NR1), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (subunits 1 and 2) (AMPAR1/2), gamma-aminobutyric acid B receptor (subunits B1 and B2) (GABABR1/2), glutamate decarboxylase 65 (GAD65), glycine receptor (GlyR), contactin-associated protein-like 2 (CASPR2), leucine-rich glioma-inactivated 1 (LGI1), metabotropic glutamate receptor 5 (mGluR5) and dipeptidyl-peptidase-like protein 6 (DPPX)] were screened with validated cell-based assays and correlated with clinical and diagnostic findings. RESULTS Twenty-three of one hundred and seventy-four (13.2%) patients harboured antibodies against MOG (n = 14), NF186 (n = 6), GAD65 (n = 2), AQP4 and GlyR (n = 1). Anti-MOG antibodies were most frequently found in the cohort (8%). Thirteen of the anti-NS antibody-positive patients showed clinical symptoms of NS involvement, a subgroup of which (n = 8) resembled the syndrome associated with the antibody. Nine patients harboured antibodies without neurological symptoms and one patient was lost to follow-up. The frequency of NPSLE was significantly higher in the anti-NS antibody-positive patients (13/23, 56.5%: MOG 6/14, 42.9%; NF186 5/6, 83.3%; GAD65 2/2, 100%; AQP4/GlyR 0/1, 0%) compared with the antibody-negative cohort (21/151, 13.9%) (chi-square test, P < 0.0001). CONCLUSION Anti-NS antibodies, most prevalently anti-MOG antibodies, are significantly associated with NPSLE and manifest with the distinct neurological syndrome associated with the antibody in a subgroup. Follow-up studies in large, independent cohorts will reveal whether these anti-NS antibodies could serve as a diagnostic and prognostic biomarker for NPSLE and enable tailored treatment decisions in this challenging and diverse patient cohort.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | - Madlaina Thanei
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | - Barbara Erni
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | - Anne-Catherine Lecourt
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | - Léonore Branco
- Clinical Immunology, Department of Biomedicine, University Hospital Basel, Basel
| | - Raphaël André
- Department of Immunology and Allergy, University Hospital and School of Medicine, Geneva
| | - Pascal Roux-Lombard
- Department of Immunology and Allergy, University Hospital and School of Medicine, Geneva
| | - Katrin F Koenig
- Division of Internal Medicine, University Hospital Basel, Basel
| | - Uyen Huynh-Do
- Division of Nephrology, Hypertension and Clinical Pharmacology, University Hospital Bern, Bern
| | - Camillo Ribi
- Division of Immunology and Allergy, CHUV, Lausanne, Switzerland
| | - Carlo Chizzolini
- Department of Immunology and Allergy, University Hospital and School of Medicine, Geneva
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | - Marten Trendelenburg
- Clinical Immunology, Department of Biomedicine, University Hospital Basel, Basel.,Division of Internal Medicine, University Hospital Basel, Basel
| | - Tobias Derfuss
- Neurologic Clinic and Policlinic, Department of Medicine, University Hospital Basel, Basel.,Clinical Neuroimmunology, Department of Biomedicine, University of Basel, Basel
| | | |
Collapse
|
12
|
Thabah MM, D S, Pranov R, Moulitej MMV, Ramesh A, Kadhiravan T. Neuromyelitis optica spectrum disorder and systemic lupus erythematosus. Lupus 2019; 28:1722-1726. [PMID: 31722604 DOI: 10.1177/0961203319888692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuromyelitis optica spectrum disorder is an inflammatory syndrome that is associated with many autoimmune conditions. We present the case of a patient who had longitudinally extensive transverse myelitis and antibodies to aquaporin 4 IgG (AQP4-IgG). Based on presence of lymphopenia, further workup revealed strong ANA positivity, anti-Sm antibodies, and low serum complements suggesting presence of systemic lupus erythematosus. The patient promptly responded to intravenous pulse methylprednisolone and five sessions of plasma exchange. At 1 year, she is on maintenance treatment with low dose prednisolone, azathioprine, and hydroxychloroquine, she has had no relapse and no other clinical features of lupus. This case is an illustration that neuromyelitis optica spectrum disorder can be the first manifestation of systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Sekar D
- Department of Medicine, JIPMER, India
| | - R Pranov
- Department of Medicine, JIPMER, India
| | | | - A Ramesh
- Department of Radiodiagnosis, JIPMER, India
| | | |
Collapse
|
13
|
Vinogradova ES, Panova AP, Bulanov NM, Novikov PI, Moiseev SV. Systemic lupus erythematosus with the development of neuromyelitis optica (Devic's syndrome) is a rare combination of autoimmune diseases. MODERN RHEUMATOLOGY JOURNAL 2019. [DOI: 10.14412/1996-7012-2019-4-89-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neuromyelitis optica ((NMO), Devic's syndrome) is an immune-mediated inflammatory demyelinating disease characterized by transverse myelitis and optic neuritis. Determination of the level of antibodies to aquaporin 4 (NMO-IgG) is presently one of the key methods for the diagnosis and assessment of the activity of ONM, which allows this disease to be differentiated from multiple sclerosis and other demyelinating CNS lesions. ONM can occur not only as an independent disease, but also as a syndrome in different systemic diseases, such as: systemic lupus erythematosus (SLE), antineutrophilic cytoplasmic antibody-associated vasculitides, Sjögren's disease, etc. (up to 50–70%). In such situations, the clinician is always confronted with a question as whether the patient can have two rare autoimmune diseases or develop ONM as a systemic manifestation of rheumatic disease.The paper describes a clinical case of a young female patient with SLE concurrent with a CNS lesion, the manifestations of which corresponded to ONM. The patient had focal changes in the substance of the brain and spinal cord, as evidenced by magnetic resonance imaging, as well as high NMO-IgG titers. The development of ONM worsens SLE prognosis and requires active immunosuppressive therapy. The patient received three plasmapheresis sessions, ultrahigh-dose glucocorticoid and cyclophosphamide therapy, followed by replacement with azathioprine, causing a stable clinical and laboratory disease remission to be achieved.
Collapse
Affiliation(s)
- E. S. Vinogradova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| | | | - N. M. Bulanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - P. I. Novikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - S. V. Moiseev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| |
Collapse
|
14
|
Jarius S, Wildemann B. Devic's index case: A critical reappraisal - AQP4-IgG-mediated neuromyelitis optica spectrum disorder, or rather MOG encephalomyelitis? J Neurol Sci 2019; 407:116396. [PMID: 31726278 DOI: 10.1016/j.jns.2019.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
In 1894, Eugène Devic (1858-1930) and his doctoral student Fernand Gault (1873-1936) reported on a patient with optic neuritis (ON) and myelitis and proposed the name "neuro-myélite optique" for this syndrome. Subsequently, Devic became the eponym of neuromyelitis optica (NMO), which was then referred to as "Devic's syndrome", "Devic's disease" or "Morbus Devic". Thereby, the case became a historical index case of NMO. For many decades little attention was paid to NMO, which most authors considered a clinical variant of multiple sclerosis. However, the discovery of pathogenic antibodies to aquaporin-4 at the beginning of the 21st century revived interest in the syndrome, and AQP4-IgG-positive NMO spectrum disorders (NMOSD) are now studied as prototypical autoimmune diseases. More recently, antibodies to full-length myelin oligodendrocyte glycoprotein (MOG) have been detected in patients with ON as well as in patients with myelitis, some of whom exhibit a clinical phenotype very similar to that described by Devic. This raises the question of whether Devic's patient might have suffered from MOG encephalomyelitis rather than classic NMOSD. In this article, we summarise and discuss the available evidence for and against that hypothesis. We also discuss differential diagnoses and the question whether Devic's patient, who worked as a hatter and had initially been admitted for nervous hyperexcitability and tremor, might have suffered from co-existing erethism ('mad hatter disease'), which is caused by chronic occupational exposure to mercury.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Germany.
| |
Collapse
|
15
|
Tampoia M, Abbracciavento L, Barberio G, Fabris M, Bizzaro N. A new M23-based ELISA assay for anti-aquaporin 4 autoantibodies: diagnostic accuracy and clinical correlation. AUTOIMMUNITY HIGHLIGHTS 2019; 10:5. [PMID: 32257061 PMCID: PMC7065340 DOI: 10.1186/s13317-019-0115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Purpose Although many assays have been developed to detect anti-aquaporin-4 (AQP4) antibodies, most of these assays require sophisticated techniques and are thus only available at specialized laboratories. The aim of this study was to evaluate the analytical and clinical performance of a new commercial enzyme-linked immunosorbent assay (ELISA RSR, AQP4 Ab Version 2) to detect anti-AQP4 antibodies performed on a fully automated system (SkyLAB 752). Methods Serum samples from 64 patients with neuromyelitis optica spectrum disorders (NMOSD) (including NMO, longitudinally extensive myelitis-LETM, optical neuritis and myelitis) and 27 controls were tested for anti-AQP4 antibodies. All sera were previously tested using an indirect immunofluorescence (IIF) method on primate tissue, as the reference method. Commercial control sera were used to determine within-run, between-day and within-laboratory precision (CLSI guidelines). Results At a cut-off value of 2.1 U/mL as determined by ROC curves, sensitivity and specificity for NMO were 83.3% and 100%, respectively. The ELISA assay provided 100% concordant results with the reference IIF method. The median concentration of anti-AQP4 antibodies was statistically higher in patients with NMO than in patients with LETM (p = 0.0006) or with other NMOSD and in controls (p < 0.0001). At the concentration of 12.4 and 28.1 U/mL, the within-run, between-day and within-laboratory coefficients of variation (CV) were 3.2% and 3%, 7.6% and 7.4%, and 8.2% and 8.0%, respectively. Conclusions This new ELISA method performed on a fully automated system, showed high sensitivity and absolute specificity, good CV in precision tests, and provided observer-independent quantitative results.
Collapse
Affiliation(s)
- Marilina Tampoia
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Letizia Abbracciavento
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Barberio
- 2Laboratory Medicine, Department of Clinical Pathology, Treviso Hospital, Treviso, Italy
| | - Martina Fabris
- 3Laboratory of Immunopathology and Allergology, University Hospital Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Nicola Bizzaro
- 4Laboratory of Clinical Pathology, San Antonio Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
16
|
Apetse K, Diatewa JE, Dongmo Tajeuna JJ, Dansou YM, Bakoudissa R, Waklatsi KP, Kombate D, Assogba K, Balogou AAK. Case report: an area postrema syndrome revealing a neuromyelitis optica spectrum disorder associated with central nervous system tuberculosis in a young Togolese (black African) woman. BMC Neurol 2019; 19:58. [PMID: 30971218 PMCID: PMC6458629 DOI: 10.1186/s12883-019-1287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/28/2019] [Indexed: 02/01/2023] Open
Abstract
Background Area postrema syndrome (APS) is considered to be one of the most specific clinical presentations of neuromyelitis optica spectrum disorders (NMOSDs). In sub-Saharan Africa, NMOSDs and even more so those revealed by an APS, are rarely reported. However, studies among mixed populations have shown that NMOSDs disproportionately affect black people with relatively more frequent encephalic involvement. We report a case of APS revealing an NMOSD associated with central nervous system (CNS) tuberculosis in a young Togolese woman residing in Togo (West Africa). Case presentation A 28-year-old Togolese woman was admitted for left hemibody sensory problems with ataxia. These problems were observed while the patient was hospitalized for a few days in the hepato-gastroenterology department for persistent vomiting, abdominal pain and hiccups lasting for about a month. The examination confirmed left hemibody ataxia with nystagmus when looking to the left, pronounced left osteotendinous reflexes, and left hemibody hypoesthesia up to the base of the neck. Encephalic magnetic resonance imaging (MRI) showed a hypersignal lesion in the bulbar more lateralized on the left in the fluid-attenuated inversion recovery sequence, not enhanced after a gadolinium injection. Biological assessment showed the presence of Mycobacterium tuberculosis deoxyribonucleic acid in the cerebrospinal fluid and a sedimentation rate of 120 mm in the 1st hour. The result of the anti-AQP4 antibody test was positive. Two months from the onset of digestive problems with Lhermitte’s sign and hand and foot contracture access without vesico-sphincter problems were established. Cervical medullary MRI showed an additional intramedullary hypersignal lesion in the T2 sequence at the C2 level, not enhanced after a gadolinium injection. A second course of intravenous corticosteroids was administered, and anti-tuberculosis treatment was continued. The outcome was favorable. After 8 months of anti-tuberculosis treatment, the patient started immunosuppressive therapy (azathioprine 50 mg twice daily) to limit the risk of recurrence of NMOSD. Conclusion The recognition of an APS is an additional challenge for the diagnosis of NMOSDs, especially in countries with limited resources. CNS tuberculosis must be tested when faced with an NMOSD because it seems to be a major cause.
Collapse
Affiliation(s)
- Kossivi Apetse
- Faculte des Sciences de la Sante, Universite de Lome, BP 1515, Lome, Togo. .,Service de Neurologie, CHU CAMPUS de Lome, 03 BP 30284, Lome, Togo.
| | | | | | | | - Rolph Bakoudissa
- Service de Neurologie, CHU CAMPUS de Lome, 03 BP 30284, Lome, Togo
| | | | - Damelan Kombate
- Faculte des Sciences de la Sante, Universite de Lome, BP 1515, Lome, Togo.,Service de Neurologie, CHU CAMPUS de Lome, 03 BP 30284, Lome, Togo
| | - Komi Assogba
- Faculte des Sciences de la Sante, Universite de Lome, BP 1515, Lome, Togo.,Service de Neurologie, CHU CAMPUS de Lome, 03 BP 30284, Lome, Togo
| | - Agnon A Koffi Balogou
- Faculte des Sciences de la Sante, Universite de Lome, BP 1515, Lome, Togo.,Service de Neurologie, CHU CAMPUS de Lome, 03 BP 30284, Lome, Togo
| |
Collapse
|
17
|
Stathopoulos P, Chastre A, Waters P, Irani S, Fichtner ML, Benotti ES, Guthridge JM, Seifert J, Nowak RJ, Buckner JH, Holers VM, James JA, Hafler DA, O'Connor KC. Autoantibodies against Neurologic Antigens in Nonneurologic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2210-2219. [PMID: 30824481 PMCID: PMC6452031 DOI: 10.4049/jimmunol.1801295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to test whether autoantibodies against neurologic surface Ags are found in nonneurologic autoimmune diseases, indicating a broader loss of tolerance. Patient and matched healthy donor (HD) sera were derived from four large cohorts: 1) rheumatoid arthritis (RA) (n = 194, HD n = 64), 2) type 1 diabetes (T1D) (n = 200, HD n = 200), 3) systemic lupus erythematosus (SLE) (n = 200, HD n = 67; neuro-SLE n = 49, HD n = 33), and 4) a control cohort of neurologic autoimmunity (relapsing-remitting multiple sclerosis [MS] n = 110, HD n = 110; primary progressive MS n = 9; secondary progressive MS n = 10; neuromyelitis optica spectrum disorders n = 15; and other neurologic disorders n = 26). Screening of 1287 unique serum samples against four neurologic surface Ags (myelin oligodendrocyte glycoprotein, aquaporin 4, acetylcholine receptor, and muscle-specific kinase) was performed with live cell–based immunofluorescence assays using flow cytometry. Positive samples identified in the screening were further validated using autoantibody titer quantification by serial dilutions or radioimmunoassay. Autoantibodies against neurologic surface Ags were not observed in RA and T1D patients, whereas SLE patients harbored such autoantibodies in rare cases (2/200, 1%). Within the CNS autoimmunity control cohort, autoantibodies against aquaporin 4 and high-titer Abs against myelin oligodendrocyte glycoprotein were, as expected, specific for neuromyelitis optica spectrum disorders. We conclude that neurologic autoantibodies do not cross disease barriers in RA and T1D. The finding of mildly increased neurologic autoantibodies in SLE may be consistent with a broader loss of B cell tolerance in this form of systemic autoimmunity.
Collapse
Affiliation(s)
- Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Anne Chastre
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Sarosh Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Miriam L Fichtner
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Erik S Benotti
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Oklahoma Clinical and Translational Science Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jennifer Seifert
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Oklahoma Clinical and Translational Science Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511; .,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511; .,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
18
|
Xing W, Shi W, Leng Y, Sun X, Guan T, Liao W, Wang X. Resting-state fMRI in primary Sjögren syndrome. Acta Radiol 2018; 59:1091-1096. [PMID: 29310446 DOI: 10.1177/0284185117749993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The involvement of the central nervous system in primary Sjögren syndrome (pSS) remains controversial. Functional magnetic resonance imaging (fMRI) is a relatively new method that can be applied to investigate the heterogeneity of central nervous system (CNS) involvement in pSS patients through regional homogeneity (ReHo) analysis. Purpose To collect data from pSS patients and healthy controls, and use ReHo analysis to elucidate the neurobiological mechanism of CNS involvement in pSS. Material and Methods Fourteen clinically diagnosed pSS patients and 14 age- and gender-matched healthy controls underwent resting-state fMRI. The data were processed by ReHo analysis. The double sample t-test was used to compare ReHo data between groups. Results Compared to controls, pSS patients had significantly increased ReHo values in the right cerebrum, left limbic lobe, right middle temporal gyrus, and the inferior parietal lobe. However, ReHo values significantly decreased in the right lingual gyrus, left cuneiform lobe, left superior occipital gyrus, bilateral middle occipital gyrus, and the fronto-parietal junction area ( P < 0.01, clusters ≥ 50 voxels). Conclusion This study demonstrates the abnormal brain activity in the visual cortex and fronto-parietal junction area in pSS patients, suggesting pathological neuronal dysfunction in these regions.
Collapse
Affiliation(s)
- Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Wei Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yueshuang Leng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xianting Sun
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Tingting Guan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
19
|
Levinson JB, Alvarez MR, Koci K, Feoktistov A, McFarlane IM. Epstein - Barr virus Infection in a Patient with Neuromyelitis Optica Spectrum Disorder and Sjögren's Syndrome: A Case Report and Review of Literature. CLINICAL CASE REPORTS AND REVIEWS 2018; 4. [PMID: 30214826 DOI: 10.15761/ccrr.1000411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The association of Neuromyelitis Optica Spectrum Disorders (NMOSD) with autoimmune disorders including Sjögren's syndrome (SS), is well recognized. Epstein Barr virus (EBV) has been associated to various neurological entities. We describe a case where EBV infection likely preceded NMOSD in a patient with unrecognized SS. The clinical features, work up and management are described. CASE PRESENTATION A 40-year woman with history of stroke and Guillain-Barre Syndrome (GBS) two years prior, presented with progressive lower extremity weakness and pain. Brain MRI revealed hyperintensities in the cerebellar and parietal lobes consistent with old infarcts, high intensity signal in the white matter and enhancing intramedullary lesion at the level of T2 and the conus medullaris. Cerebrospinal fluid (CSF) revealed no oligoclonal bands. Next day, the patient developed right ankle weakness and urinary incontinence. NMOSD was suspected and pulse steroids initiated. Patient's weakness resolved. Antinuclear antibodies (ANA), anti-SSA/SSB and Aquaporin 4 antibodies (AQP4Ab) were positive. CSF was positive for EBV. Parotid gland ultrasound revealed non-homogeneous tissue.Ganciclovir and plasmapheresis were started. The patient's sensation and motor deficits improved and one month after, she had regained motor power and sphincter control. The patient was discharged on oral prednisone and plans for rituximab infusions.On follow-up imaging, Spinal MRI showed areas of myelomalacia and complete resolution at the level of T2 and conus medularis lesions respectively. The patient had no additional flares, but did complain of chronic neuropathic pain. CONCLUSION NMOSD commonly coexist with other autoimmune diseases. The association of SS and NMOSD is well recognized. EBV infections can present with neurological manifestations however, EBV has also been linked to the development of autoimmunity. In our case, EBV was detected in CSF and antiviral therapy was initiated in addition to the treatment modalities for NMOSD which led to a full recovery in our patient.
Collapse
Affiliation(s)
- Justin B Levinson
- Department of Medicine, Division of Rheumatology, State University of New York, Downstate Medical Center/Health + Hospitals Kings County Brooklyn, NY 11203 USA
| | - Milena Rodriguez Alvarez
- Department of Medicine, Division of Rheumatology, State University of New York, Downstate Medical Center/Health + Hospitals Kings County Brooklyn, NY 11203 USA
| | - Kristaq Koci
- Department of Medicine, Division of Rheumatology, State University of New York, Downstate Medical Center/Health + Hospitals Kings County Brooklyn, NY 11203 USA
| | - Aleksander Feoktistov
- Department of Medicine, Division of Rheumatology, State University of New York, Downstate Medical Center/Health + Hospitals Kings County Brooklyn, NY 11203 USA
| | - Isabel M McFarlane
- Department of Medicine, Division of Rheumatology, State University of New York, Downstate Medical Center/Health + Hospitals Kings County Brooklyn, NY 11203 USA
| |
Collapse
|
20
|
Kaneko J, Kanazawa N, Tominaga N, Kaneko A, Suga H, Usui R, Ishima D, Kitamura E, Akutsu T, Yoshida K, Nishiyama K, Iizuka T. Practical issues in measuring autoantibodies to neuronal cell-surface antigens in autoimmune neurological disorders: 190 cases. J Neurol Sci 2018; 390:26-32. [PMID: 29801900 DOI: 10.1016/j.jns.2018.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To address practical issues in measuring autoantibodies to neuronal cell-surface antigens (NSAs) in various autoimmune neurological disorders (ANDs). METHODS We retrospectively reviewed the clinical information of 221 patients with clinically suspected ANDs who underwent antibody testing for NSAs between January 2007 and September 2017. 31 were excluded. In 190 patients, antibody-detection rate (ADR) and antibody-phenotype association were assessed. RESULTS Fifty-four patients had NSA-antibodies: NMDA receptor (NMDAR) (n = 39), AMPA receptor (n = 3), leucine-rich glioma inactivated 1 (LGI1) (n = 3), glycine receptor (GlyR) (n = 3), GABA(A) receptor (n = 2), GABA(B) receptor (n = 1), metabotrophic glutamate receptor 5 (n = 1), or unknown (n = 6); 3 had multiple NSA-antibodies. ADR in patients with diagnostic criteria for "possible autoimmune encephalitis (AE)", "probable anti-NMDAR encephalitis", "definite autoimmune limbic encephalitis (ALE)", and "stiff-person spectrum disorder (SPSD)", was 34% (46/134), 85% (34/40), 46% (11/24), and 22% (4/18), respectively, but NSA-antibodies were not identified in 11 patients with systemic autoimmune disorders (SADs). Among 134 patients with "possible AE" criteria, NMDAR-antibodies were more frequently identified in patients with typical anti-NMDAR encephalitis than those without (34/40 [85%] vs. 4/94 [4%], p < 0.0001). LGI1-antibodies were identified in patients with ALE but not in the others (3/24 [13%] vs. 0/110 [0%], p = 0.005). GlyR-antibodies were identified in those with stiff-person syndrome plus (2/8, 25%) or stiff-limb syndrome (1/6, 17%). CONCLUSIONS NSA-antibodies were most frequently identified in "probable anti-NMDAR encephalitis", followed by "definite ALE", "possible AE", and "SPSD", but not identified in SADs. NMDAR, LGI1 and GlyR were associated with clinical phenotype. Cell-surface antigens should be determined based on individual phenotype.
Collapse
Affiliation(s)
- Juntaro Kaneko
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Kanazawa
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Naomi Tominaga
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Atsushi Kaneko
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Hiroki Suga
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Ryo Usui
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Daisuke Ishima
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Tsugio Akutsu
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Koji Yoshida
- Department of Neurology, Hyogo Brain and Heart Center, Himeji, Japan.
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Takahiro Iizuka
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|
21
|
Volkman T, Hemingway C. A case of seropositive Neuromyelitis Optica in a paediatric patient with co-existing acute nephrotic syndrome. Mult Scler Relat Disord 2017; 18:103-105. [DOI: 10.1016/j.msard.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
22
|
Lalji A, Izbudak I, Birnbaum J. Cortical blindness and not optic neuritis as a cause of vision loss in a Sjögren's syndrome (SS) patient with the neuromyelitis optica spectrum disorder (NMOSD): Challenges of ascribing demyelinating syndromes to SS: a case report. Medicine (Baltimore) 2017; 96:e7454. [PMID: 28834867 PMCID: PMC5571989 DOI: 10.1097/md.0000000000007454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The conception that multiple sclerosis may be challenging to distinguish from demyelinating manifestations of Sjögren's syndrome (SS) was introduced more than 30 years ago. However, it is now recognized that the neuromyelitis optica spectrum disorder (NMOSD) may occur more frequently in SS as opposed to multiple sclerosis. Characteristic NMOSD features can include severe attacks of optic neuritis, myelitis which is frequently longitudinally-extensive (spanning at least three vertebral segments on magnetic resonance imaging [MRI]), and an association with anti-aquaporin-4 antibodies. In addition, whereas NMOSD was initially thought to spare the brain, it is now recognized that brain lesions occur in a majority of NMOSD patients. Therefore, it is important for the multi-disciplinary team of physicians who care for SS patients to understand this widening spectrum of NMOSD as encompassing brain lesions. In this case-report we describe clinical features, radiographic findings, and treatment of a SS NMOSD patient presenting with severely decreased visual acuity, visual hallucinations, and encephalopathy. PATIENT CONCERNS The SS NMOSD patient presented with rapid, bilateral onset of severely decreased visual acuity and was therefore suspected as having bilateral optic neuritis. DIAGNOSIS However, the patient lacked stigmata of optic neuritis, instead had visual hallucinations and encephalopathy suggestive of cortical blindness, and was noted to have occipital lobe lesions on brain MRI. Other radiographic findings included simultaneous enhancement of brainstem and periventricular lesions. INTERVENTIONS The patient was initially treated with methylprednisolone with no change in her neurological deficits. She was then treated with plasma exchange therapy. OUTCOMES The patient had resolution of decreased visual acuity, visual hallucinations, encephalopathy, and contrast-enhancing brain lesions in response to plasma exchange therapy. LESSON We provide the first example of severely decreased visual acuity in a NMOSD patient due to cortical blindness and not bilateral optic neuritis. This finding expands the spectrum of central nervous system syndromes and brain lesions which may occur in NMOSD. The synchronous enhancement of a brainstem lesion (known to occur in NMOSD) with occipital lobe lesions also suggests that our patient's occipital lobe findings were due to NMOSD. All of our patient's findings had an excellent clinical and radiographic response to plasma exchange therapy.
Collapse
Affiliation(s)
- Aliya Lalji
- The Johns Hopkins University School of Medicine
| | - Izlem Izbudak
- Division of Neuroradiology, Department of Radiology and Radiological Sciences
| | - Julius Birnbaum
- Division of Rheumatology and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Asgari N, Jarius S, Laustrup H, Skejoe HP, Lillevang ST, Weinshenker BG, Voss A. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus: A predominantly population-based study. Mult Scler 2017; 24:331-339. [PMID: 28326889 DOI: 10.1177/1352458517699791] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Serum immunoglobulin G targeting the astrocyte water channel aquaporin-4 (AQP4) in the central nervous system (CNS) is a biomarker for neuromyelitis optica spectrum disease (NMOSD). Co-existence of NMOSD with systemic lupus erythematosus (SLE) putatively suggests susceptibility to antibody-mediated autoimmune disease. OBJECTIVE To estimate the prevalence of NMOSD in SLE and investigate the immunogenetic background for an association of NMOSD and SLE. METHODS The study included a predominantly population-based cohort with clinical and serological investigations of 208 patients with SLE, followed prospectively since 1995. All patients received immunosuppressive treatment. NMOSD was evaluated retrospectively based on the 2015 International Panel for NMOSD Diagnosis (IPND) criteria. Polymorphisms in programmed cell death protein 1 (PDCD-1) PD-1.3 G/A were genotyped. AGP4-IgG and other autoantibodies, including myelin oligodendrocyte glycoprotein (MOG), was determined blinded to clinical diagnosis. RESULTS Of 208 patients with SLE, 45(22%) had neuropsychiatric (NP) SLE, and CNS involvement predominated in 30 of 45 (67%) patients. Serum AQP4-IgG was detected in 2 of 30 (6.7%) neuropsychiatric SLE (NPSLE) patients both of whom had myelitis and antiphospholipid syndrome; one patient also had myasthenia gravis. None had MOG-IgG. PD-1.3A allele was not associated with SLE nor with NPSLE. CONCLUSION AQP4-IgG autoimmune syndrome may rarely co-exist with SLE, and such patients have other NMOSD-typical syndromes such as myelitis.
Collapse
Affiliation(s)
- Nasrin Asgari
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark/Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Helle Laustrup
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Hanne Pb Skejoe
- Department of Radiology, Aleris-Hamlet Hospital, Copenhagen, Denmark
| | - Soeren T Lillevang
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Anne Voss
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13:280. [PMID: 27793206 PMCID: PMC5086042 DOI: 10.1186/s12974-016-0718-0] [Citation(s) in RCA: 650] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A subset of patients with neuromyelitis optica spectrum disorders (NMOSD) has been shown to be seropositive for myelin oligodendrocyte glycoprotein antibodies (MOG-IgG). OBJECTIVE To describe the epidemiological, clinical, radiological, cerebrospinal fluid (CSF), and electrophysiological features of a large cohort of MOG-IgG-positive patients with optic neuritis (ON) and/or myelitis (n = 50) as well as attack and long-term treatment outcomes. METHODS Retrospective multicenter study. RESULTS The sex ratio was 1:2.8 (m:f). Median age at onset was 31 years (range 6-70). The disease followed a multiphasic course in 80 % (median time-to-first-relapse 5 months; annualized relapse rate 0.92) and resulted in significant disability in 40 % (mean follow-up 75 ± 46.5 months), with severe visual impairment or functional blindness (36 %) and markedly impaired ambulation due to paresis or ataxia (25 %) as the most common long-term sequelae. Functional blindess in one or both eyes was noted during at least one ON attack in around 70 %. Perioptic enhancement was present in several patients. Besides acute tetra-/paraparesis, dysesthesia and pain were common in acute myelitis (70 %). Longitudinally extensive spinal cord lesions were frequent, but short lesions occurred at least once in 44 %. Fourty-one percent had a history of simultaneous ON and myelitis. Clinical or radiological involvement of the brain, brainstem, or cerebellum was present in 50 %; extra-opticospinal symptoms included intractable nausea and vomiting and respiratory insufficiency (fatal in one). CSF pleocytosis (partly neutrophilic) was present in 70 %, oligoclonal bands in only 13 %, and blood-CSF-barrier dysfunction in 32 %. Intravenous methylprednisolone (IVMP) and long-term immunosuppression were often effective; however, treatment failure leading to rapid accumulation of disability was noted in many patients as well as flare-ups after steroid withdrawal. Full recovery was achieved by plasma exchange in some cases, including after IVMP failure. Breakthrough attacks under azathioprine were linked to the drug-specific latency period and a lack of cotreatment with oral steroids. Methotrexate was effective in 5/6 patients. Interferon-beta was associated with ongoing or increasing disease activity. Rituximab and ofatumumab were effective in some patients. However, treatment with rituximab was followed by early relapses in several cases; end-of-dose relapses occurred 9-12 months after the first infusion. Coexisting autoimmunity was rare (9 %). Wingerchuk's 2006 and 2015 criteria for NMO(SD) and Barkhof and McDonald criteria for multiple sclerosis (MS) were met by 28 %, 32 %, 15 %, 33 %, respectively; MS had been suspected in 36 %. Disease onset or relapses were preceded by infection, vaccination, or pregnancy/delivery in several cases. CONCLUSION Our findings from a predominantly Caucasian cohort strongly argue against the concept of MOG-IgG denoting a mild and usually monophasic variant of NMOSD. The predominantly relapsing and often severe disease course and the short median time to second attack support the use of prophylactic long-term treatments in patients with MOG-IgG-positive ON and/or myelitis.
Collapse
|
25
|
Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease. J Neuroimmunol 2015; 289:8-11. [DOI: 10.1016/j.jneuroim.2015.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022]
|
26
|
Sudulagunta SR, Sodalagunta MB, Khorram H, Sepehrar M, Gonivada J, Noroozpour Z, Prasad N. Autoimmune thyroiditis associated with neuromyelitis optica (NMO). GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2015; 13:Doc22. [PMID: 26633965 PMCID: PMC4649796 DOI: 10.3205/000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/13/2015] [Indexed: 11/30/2022]
Abstract
Neuromyelitis optica (NMO or Devic's syndrome) is a rare relapsing demyelinating disease of the central nervous system (CNS) that mainly affects the spinal cord and optic nerves and shares many clinical and radiological features with multiple sclerosis. The association of NMO with other autoimmune diseases was reported, but very few reports described association with autoimmune thyroid disease. Early differentiation between NMO and multiple sclerosis is very important as the natural course and treatment regimens differ significantly. We report a case of a 50-year-old woman who was admitted initially with vomiting, hiccups and paraesthesias but was not diagnosed with NMO and presented with a severe progression of the disease. The patient was also diagnosed to have autoimmune thyroiditis with lymphocytic infiltration of the thyroid which progressed from hyperthyroidism to hypothyroidism. NMO diagnosis was established with seropositivity for NMO-IgG and MRI showing longitudinally extensive spinal cord lesions (3 or more spinal segments). In spite of treatment, the response was poor due to lack of early diagnosis and aggressive immunosuppressant therapy.
Collapse
Affiliation(s)
- Sreenivasa Rao Sudulagunta
- Columbia Asia Hospital, Bangalore, India,*To whom correspondence should be addressed: Sreenivasa Rao Sudulagunta, Columbia Asia Hospital, Kirloskar Business Park, Bellary Road, Hebbal, Bangalore-560024, India, E-mail:
| | | | - Hadi Khorram
- Dr.B.R. Ambedkar Medical College, Otolaryngology Department, Bangalore, India
| | | | | | | | | |
Collapse
|
27
|
Jarius S, Wildemann B. Devic's disease before Devic: Bilateral optic neuritis and simultaneous myelitis in a young woman (1874). J Neurol Sci 2015; 358:419-21. [PMID: 26303625 DOI: 10.1016/j.jns.2015.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Neuromyelitis optica (NMO, Devic's disease) is an often severely disabling disorder of the central nervous system (CNS) which mainly affects the optic nerves and spinal cord. NMO was long considered a clinical subform of multiple sclerosis (MS). In 2004, however, Lennon and colleagues described a novel autoantibody in NMO which targets aquaporin-4, the most abundant water channel in the CNS, and which was later shown to be directly pathogenic. This has led to the recognition of NMO as a distinct disease entity in its own right. While the history of 'classical' MS has been extensively studied, only little is known about the early history of NMO. The term neuromyelitis optica was coined in 1894 by Eugène Devic (1858-1930) and Fernand Gault (1873-1936), who were the first to provide a systematic description of that disorder. Here we re-present a very early description of a case of NMO by a Polish physician, Adolf Wurst, which appeared in 1876 in Przegląd Lekarski, one of the oldest Polish medical journals. This report predates Devic and Gault's seminal work on NMO by more than two decades. The patient, a 30-year-old woman, subacutely developed simultaneous bilateral optic neuritis with papilloedema and bilateral blindness and transverse myelitis with severe paraparesis, anaesthesia, and bladder and bowel dysfunction. At last follow-up, one year after onset, she had recovered except for a residual spastic gait and some visual deficit on the right side. Of note, this is the first known case of NMO in a Caucasian patient ever reported outside Western Europe.
Collapse
Affiliation(s)
- S Jarius
- Department of Neurology, University of Heidelberg, Germany.
| | - B Wildemann
- Department of Neurology, University of Heidelberg, Germany
| |
Collapse
|
28
|
Kovacs KT, Kalluri SR, Boza-Serrano A, Deierborg T, Csepany T, Simo M, Rokusz L, Miseta A, Alcaraz N, Czirjak L, Berki T, Molnar T, Hemmer B, Illes Z. Change in autoantibody and cytokine responses during the evolution of neuromyelitis optica in patients with systemic lupus erythematosus: A preliminary study. Mult Scler 2015; 22:1192-201. [PMID: 26514978 DOI: 10.1177/1352458515613165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neuromyelitis optica (NMO)-systemic lupus erythematosus (SLE) association is a rare condition characterized by multiple autoantibodies. OBJECTIVE To examine if, during the evolution of NMO, anti-AQP4 responses are part of polyclonal B cell activation, and if T cell responses contribute. METHODS In 19 samples of six patients who developed NMO during SLE, we examined the correlation of AQP4-IgG1 and IgM with (i) anti-MOG IgG and IgM, (ii) anti-nuclear, anti-nucleosome and anti-dsDNA IgG antibodies, (iii) cytokines and chemokines in the serum and (iv) longitudinal relation to NMO relapses/remission. RESULTS AQP4-IgG1 was present 1-2-5 years before the first NMO relapse. During relapse, AQP4-IgG1, ANA, anti-dsDNA and anti-nucleosome antibodies were elevated. Anti-MOG IgG/IgM and AQP4-IgM antibodies were not detected. AQP4-IgG1 antibodies correlated with concentration of anti-nucleosome, IFN-γ,interferon-gamma-induced CCL10/IP-10 and CCL17/TARC (p<0.05, respectively). CCL17/TARC correlated with levels of anti-nucleosome and anti-dsDNA (p<0.05, respectively). Compared to healthy subjects, concentration of IFN-γ and CCL17/TARC was higher in NMO/SLE (p<0.05). CONCLUSIONS AQP4-IgG1 antibodies are present in the sera years before the first NMO attack in patients with SLE; elevation of anti-AQP4 is part of a polyclonal B cell response during NMO relapses; in spite of multiple autoantibodies in the serum, MOG antibodies were not present; Th1 responses accompany autoantibody responses in NMO/SLE.
Collapse
Affiliation(s)
- Katalin T Kovacs
- Department of Rheumatology and Immunology, University of Pecs, Hungary
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Tunde Csepany
- Department of Neurology, University of Debrecen, Hungary
| | - Magdolna Simo
- Department of Neurology, Semmelweis University, Hungary
| | - Laszlo Rokusz
- 1st Department of Internal Medicine, Military Hospital - State Health Centre, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pecs, Hungary
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Denmark
| | - Laszlo Czirjak
- Department of Rheumatology and Immunology, University of Pecs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, University of Pecs, Hungary
| | - Tihamer Molnar
- Department of Anesthesiology and Intensive Care, University of Pecs, Hungary
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany/Munich Cluster for Systems Neurology (SyNergy), Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Denmark/Institute of Clinical Research, University of Southern Denmark, Denmark
| |
Collapse
|
29
|
Ringelstein M, Aktas O, Harmel J, Prayer D, Jarius S, Wildemann B, Hartung HP, Salhofer-Polanyi S, Leutmezer F, Rommer PS. [Contribution of spinal cord biopsy to the differential diagnosis of longitudinal extensive transverse myelitis]. DER NERVENARZT 2015; 85:1298-303. [PMID: 25148869 DOI: 10.1007/s00115-014-4137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are characterized by recurrent optic neuritis (ON) and longitudinally extensive transverse myelitis (LETM) as well as the serological detection of antibodies to aquaporin-4 (AQP4-ab). However, longitudinal extensive spinal cord lesions are not pathognomonic for NMOSD as they can also occur in systemic autoimmune diseases or mimic spinal cord tumors. OBJECTIVES/METHODS We report a female patient who initially presented with a subacute spinal syndrome and a longitudinal spinal cord lesion on magnetic resonance imaging (MRI). As the brain MRI showed only unspecific white matter lesions and the cerebrospinal fluid was normal, a spinal cord biopsy was performed to exclude malignancies and revealed inflammatory demyelinating changes. In addition, after several deep vein thromboses and the detection of antiphospholipid antibodies, an antiphospholipid syndrome (APS) was diagnosed. Many years after the spinal cord biopsy, AQP4-ab were tested and found to be positive. We discuss the important differential diagnoses of LETM, give an overview of previously reported NMOSD cases in which a spinal cord biopsy was performed and highlight the crucial role of AQP4-ab testing for the differential diagnosis of longitudinal spinal cord lesions. RESULTS/CONCLUSIONS Considering possible serious sequelae of spinal biopsy procedures, testing for AQP4-ab is mandatory in patients with unclear longitudinally extensive spinal cord lesions and should be performed preoperatively in all cases. In light of the heterogeneity of available assays, different detection methods should be used in doubtful cases. The relationship between NMO and APS needs further clarification; however, AQP4 IgG testing is recommended in patients presenting with APS and myelitis, optic neuritis or brainstem encephalitis.
Collapse
Affiliation(s)
- M Ringelstein
- Neurologische Klinik, Medizinische Fakultät, Heinrich-Heine-Universität, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
[Therapeutic strategies for systemic lupus erythematosus]. Z Rheumatol 2015; 74:199-205. [PMID: 25854154 DOI: 10.1007/s00393-014-1457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Therapeutic strategy means the definition of a long-term target, which should be reached by a chosen management. As for rheumatoid arthritis, the treat to target initiative recommends remission as the target for systemic lupus erythematosus (SLE) but the command variables of remission are not yet defined. The basis of a therapeutic strategy is first the analysis of those factors that may influence the achievement of the objectives: SLE disease activity, the differentiation of damage, organ manifestations, comorbidities, genetics, sex, age of onset and considering the pathophysiological basis are some of these factors. The next step is the analysis of the available substances and concepts that allow the target to be reached. Finally, rules for management (e.g. guidelines) are needed that enrich the possibility to reach the target and improve the prognosis of patients suffering from SLE.
Collapse
|
31
|
Jayarangaiah A, Sehgal R, Epperla N. Sjögren's syndrome and neuromyelitis optica spectrum disorders (NMOSD)--a case report and review of literature. BMC Neurol 2014; 14:200. [PMID: 25291981 PMCID: PMC4193162 DOI: 10.1186/s12883-014-0200-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO) is a rare relapsing auto-immune disease of the central nervous system which is sometimes found in association with other autoimmune disorders including Sjogren's syndrome. We present the case of a middle aged female with Sjogren's syndrome (SS) and Neuromyelitis optica spectrum disorders (NMOSD) who had a rapidly declining neurological illness that responded to immunosuppressive therapy. CASE PRESENTATION A 51-year-old female with Sjogren's syndrome and recent history of varicella zoster infection presented with right upper and lower extremity weakness of one week duration. She was noted to have contrast enhancement at C2-C4 cord levels on cervico-thoracic MRI. Comprehensive work up was negative except for presence of a mild lymphocytic pleocytosis and oligoclonal bands in the CSF. She was diagnosed with transverse myelitis secondary to varicella zoster infection and was treated with high dose steroids in addition to acyclovir with improvement in her symptoms. Two months later she developed left upper and lower extremity weakness, bilateral dysesthesias and urinary incontinence. Repeat MRI of the cervico-thoracic spine revealed worsening enhancement at lower cervical cord levels (C5-7) with extension to T1. CSF analysis was unchanged; however immunological work up was abnormal for elevated NMO-IgG/AQP4 antibody. She was diagnosed with NMOSD and was treated with immunosuppressive therapy. Initially with IV methylprednisone and Cyclophosphamide therapy followed by Mycophenolate mofetil (MMF) maintenance therapy with good response. Repeat MRI 6 months later showed near complete resolution of previous abnormal cord signal changes. CONCLUSION One needs to recognize the relationship between autoimmune diseases especially SS and NMOSD. The presence of NMO antibody has been associated with a relapsing disease course and a careful follow-up, besides use of remission maintenance agents such as MMF and Azathioprine are important to consider.
Collapse
|
32
|
Jarius S, Paul F, Fechner K, Ruprecht K, Kleiter I, Franciotta D, Ringelstein M, Pache F, Aktas O, Wildemann B. Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate. J Neuroinflammation 2014; 11:129. [PMID: 25074611 PMCID: PMC4128531 DOI: 10.1186/1742-2094-11-129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. OBJECTIVE To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. METHODS Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. RESULTS Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the 'classic' assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. CONCLUSIONS This large study did not reveal significant differences in AQP4-IgG detection rates between the 'classic' CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the 'classic' AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176:149-64. [PMID: 24666204 DOI: 10.1111/cei.12271] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
The term 'neuromyelitis optica' ('Devic's syndrome', NMO) refers to a syndrome characterized by optic neuritis and myelitis. In recent years, the condition has raised enormous interest among scientists and clinical neurologists, fuelled by the detection of a specific serum immunoglobulin (Ig)G reactivity (NMO-IgG) in up to 80% of patients with NMO. These autoantibodies were later shown to target aquaporin-4 (AQP4), the most abundant water channel in the central nervous system (CNS). Here we give an up-to-date overview of the clinical and paraclinical features, immunopathogenesis and treatment of NMO. We discuss the widening clinical spectrum of AQP4-related autoimmunity, the role of magnetic resonance imaging (MRI) and new diagnostic means such as optical coherence tomography in the diagnosis of NMO, the role of NMO-IgG, T cells and granulocytes in the pathophysiology of NMO, and outline prospects for new and emerging therapies for this rare, but often devastating condition.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Abstract
Systemic lupus erythematosus is a prototypic but heterogeneous autoimmune disease. The major clinical symptoms and signs are reviewed, as well as the main immunological abnormalities. Emphasis is put on the role of long-lived autoimmune plasma cells, not affected by current immunosuppressants and biologics, which are responsible for refractoriness and relapses.
Collapse
Affiliation(s)
- Falk Hiepe
- Charité-Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology; German Rheumatism Research Center - a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
35
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2014; 23:661-83. [PMID: 24118483 DOI: 10.1111/bpa.12084] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
36
|
Adawi M, Bisharat B, Bowirrat A. Systemic Lupus Erythematosus (SLE) Complicated by Neuromyelitis Optica (NMO - Devic's Disease): Clinic-Pathological Report and Review of the Literature. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2014; 7:41-7. [PMID: 24948869 PMCID: PMC4051802 DOI: 10.4137/ccrep.s15177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/01/2014] [Accepted: 04/13/2014] [Indexed: 11/05/2022]
Abstract
Neuromyelitis optica (NMO) is usually a relapsing demyelinating disease of the central nervous system associated with optic neuritis, transverse myelitis involving three or more contiguous spinal cord segments, and seropositivity for NMO-IgG antibody. NMO is often mistaken for multiple sclerosis and there are relatively sporadic publications about NMO and overlapping systemic or organ-specific autoimmune diseases, such as systemic lupus erythematosus (SLE). We described a unique case of a 25-year-old Arab young woman who was diagnosed with SLE, depending on clinical, laboratory investigations and after she had fulfilled the diagnostic criteria for SLE and had presented the following findings: constitutional findings (fatigue, fever, and arthralgia); dermatologic finding (photosensitivity and butterfly rash); chronic renal failure (proteinuria up to 400 mg in 24 hours); hematologic and antinuclear antibodies (positivity for antinuclear factor (ANF), anti-double-stranded DNA antibodies, direct Coombs, ANA and anti-DNA, low C4 and C3, aCL by IgG and IgM). Recently, she presented with several episodes of transverse myelitis and optic neuritis. Clinical, radiological, and laboratory findings especially seropositivity for NMO-IgG were compatible with NMO. Accurate diagnosis is critical to facilitate initiation of immunosuppressive therapy for attack prevention. This case illustrates that NMO may be associated with SLE.
Collapse
Affiliation(s)
- Mohammad Adawi
- Senior Physician Specialist in Rheumatology, Department of Rheumatology; North County Health Services (clalit), Faculty of Medicine in the Galilee, Bar Ilan University, Israel
| | - Bishara Bisharat
- Senior Physician Specialists in Family Medicine, Department of Family Medicine; Director of EMMS Nazareth Hospital, Faculty of Medicine in the Galilee, Bar Ilan University, Israel
| | - Abdalla Bowirrat
- Professor of Clinical Neuroscience and Population Genetics; Department of clinical Neuroscience - EMMS Nazareth Hospital, Faculty of Medicine in the Galilee, Bar Ilan University, Israel
| |
Collapse
|
37
|
Fragoso YD. The story of neuromyelitis optica continues to be written. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:403-404. [PMID: 24964103 DOI: 10.1590/0004-282x20140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Yara Dadalti Fragoso
- Departamento de Neurologia, Universidade Metropolitana de Santos, Sao Paulo, SP, Brazil
| |
Collapse
|
38
|
Affiliation(s)
- Clio P Mavragani
- Departments of Physiology (Mavragani) and Pathophysiology (Moutsopoulos), Faculty of Medicine, University of Athens, Athens, Greece
| | - Haralampos M Moutsopoulos
- Departments of Physiology (Mavragani) and Pathophysiology (Moutsopoulos), Faculty of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
39
|
Katsumata Y, Kawachi I, Kawaguchi Y, Gono T, Ichida H, Hara M, Yamanaka H. Semiquantitative measurement of aquaporin-4 antibodies as a possible surrogate marker of neuromyelitis optica spectrum disorders with systemic autoimmune diseases. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0572-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
|
41
|
Hyun JW, Kim SH, Kim HJ. The Systemic Rheumatologic Disease and Neuromyelitis Optica. JOURNAL OF RHEUMATIC DISEASES 2014. [DOI: 10.4078/jrd.2014.21.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
42
|
Jarius S, Wildemann B. 'Spinal amaurosis' (1841). On the early contribution of Edward Hocken to the concept of neuromyelitis optica. J Neurol 2013; 261:400-4. [PMID: 24366649 DOI: 10.1007/s00415-013-7210-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
While the history of classical multiple sclerosis has been extensively studied, only little is known about the early history of neuromyelitis optica (Devic's syndrome). Here we discuss a forgotten report by Edward Octavius Hocken (1820-1845) published in The Lancet in 1841. Hocken's report is important from a historic point of view for two reasons. Firstly, apart from a French language report by Antoine Portal, no earlier case of spinal cord inflammation and amaurosis is known. Secondly and much more importantly, Hocken, who upon his untimely death at the age of just 25 years was honoured by his contemporaries as a "precocious talent" of "very early reputation", in that article propagated the novel concept of 'spinal amaurosis', i.e. the concept of acute amaurosis and spinal cord disease being pathogenetically connected. Hocken's ideas predate Devic and Gault's seminal works on 'neuromyelitis optica' by more than 50 years.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany,
| | | |
Collapse
|
43
|
Komai T, Shoda H, Yamaguchi K, Sakurai K, Shibuya M, Kubo K, Takahashi T, Fujio K, Yamamoto K. Neuromyelitis optica spectrum disorder complicated with Sjogren syndrome successfully treated with tocilizumab: A case report. Mod Rheumatol 2013; 26:294-6. [PMID: 24313919 DOI: 10.3109/14397595.2013.861333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 38-year-old woman with relapsing longitudinal extensive transverse myelitis and Sjogren's syndrome (SS) was admitted with lower extremity muscle weakness. Studies showed high serum titer of anti-aquaporin4 antibody and gadolinium-enhanced-MRI T1-weighted lesions within thoracic cord. Clinical findings suggested neuromyelitis optica-spectrum disorder (NMO-SD). High-dose corticosteroids, plasma exchange and cyclophosphamide were not effective. After starting tocilizumab, her neurological findings gradually improved. This report describes the first evidence to show tocilizumab could be effective for NMO-SD with SS.
Collapse
Affiliation(s)
- Toshihiko Komai
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Hirofumi Shoda
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Kenichi Yamaguchi
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Keiichi Sakurai
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Mihoko Shibuya
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Kanae Kubo
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Toshiyuki Takahashi
- b Department of Neurology , Tohoku University Graduate School of Medicine , Sendai, Miyagi , Japan
| | - Keishi Fujio
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Kazuhiko Yamamoto
- a Department of Allergy and Rheumatology , Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
44
|
Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N, Kleiter I, Aktas O, Kümpfel T. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2013; 261:1-16. [PMID: 24272588 PMCID: PMC3895189 DOI: 10.1007/s00415-013-7169-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022]
Abstract
Neuromyelitis optica (NMO, Devic’s syndrome), long considered a clinical variant of multiple sclerosis, is now regarded as a distinct disease entity. Major progress has been made in the diagnosis and treatment of NMO since aquaporin-4 antibodies (AQP4-Ab; also termed NMO-IgG) were first described in 2004. In this review, the Neuromyelitis Optica Study Group (NEMOS) summarizes recently obtained knowledge on NMO and highlights new developments in its diagnosis and treatment, based on current guidelines, the published literature and expert discussion at regular NEMOS meetings. Testing of AQP4-Ab is essential and is the most important test in the diagnostic work-up of suspected NMO, and helps to distinguish NMO from other autoimmune diseases. Furthermore, AQP4-Ab testing has expanded our knowledge of the clinical presentation of NMO spectrum disorders (NMOSD). In addition, imaging techniques, particularly magnetic resonance imaging of the brain and spinal cord, are obligatory in the diagnostic workup. It is important to note that brain lesions in NMO and NMOSD are not uncommon, do not rule out the diagnosis, and show characteristic patterns. Other imaging modalities such as optical coherence tomography are proposed as useful tools in the assessment of retinal damage. Therapy of NMO should be initiated early. Azathioprine and rituximab are suggested as first-line treatments, the latter being increasingly regarded as an established therapy with long-term efficacy and an acceptable safety profile in NMO patients. Other immunosuppressive drugs, such as methotrexate, mycophenolate mofetil and mitoxantrone, are recommended as second-line treatments. Promising new therapies are emerging in the form of anti-IL6 receptor, anti-complement or anti-AQP4-Ab biologicals.
Collapse
Affiliation(s)
- Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2013. [PMID: 24118483 DOI: 10.1111/bpa.12084"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
46
|
Levin MH, Bennett JL, Verkman AS. Optic neuritis in neuromyelitis optica. Prog Retin Eye Res 2013; 36:159-71. [PMID: 23545439 PMCID: PMC3770284 DOI: 10.1016/j.preteyeres.2013.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision.
Collapse
Affiliation(s)
- Marc H Levin
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
47
|
Fragoso YD, Adoni T, Bichuetti DB, Brooks JBB, Ferreira MLB, Oliveira EML, Oliveira CLS, Ribeiro SBF, Silva AE, Siquineli F. Neuromyelitis optica and pregnancy. J Neurol 2013; 260:2614-9. [DOI: 10.1007/s00415-013-7031-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/15/2013] [Accepted: 06/28/2013] [Indexed: 11/29/2022]
|
48
|
Carroll WM, Saida T, Kim HJ, Kira J, Kermode AG, Tsai CP, Fujihara K, Kusunoki S, Tanaka M, Kim KK, Bates D. A guide to facilitate the early treatment of patients with idiopathic demyelinating disease (multiple sclerosis and neuromyelitis optica). Mult Scler 2013; 19:1371-80. [PMID: 23325588 DOI: 10.1177/1352458512471092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Definite diagnosis of inflammatory demyelinating disease (multiple sclerosis (MS) and neuromyelitis optica (NMO)) may require time, but early treatment offers the opportunity to maximize patient outcomes. The purpose of this report is to provide guidance to facilitate early treatment decisions for patients with inflammatory demyelinating disease, before definitive diagnosis. Neurology experts reviewed the existing literature and clinical evidence. A treatment decision pathway was developed, defining patients for whom first-line MS disease-modifying therapies (a) are unlikely to be effective, (b) may be effective but require careful monitoring and (c) are likely to provide benefit. This algorithm seeks to ensure that patients, particularly those in Asia, receive appropriate treatment early in inflammatory demyelinating disease.
Collapse
|
49
|
Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation 2013; 10:8. [PMID: 23320783 PMCID: PMC3599417 DOI: 10.1186/1742-2094-10-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/07/2012] [Indexed: 11/25/2022] Open
Abstract
The discovery of a novel serum autoantibody (termed NMO-IgG or AQP4-Ab) in a subset of patients in 2004 has revived interest in neuromyelitis optica (NMO). While the history of classical multiple sclerosis has been extensively studied, only little is known about the history of NMO. In the present article, we provide a comprehensive review of the early history of this rare but intriguing syndrome. We trace the origins of the concept of NMO in the 19th century medical literature and follow its evolution throughout the 20th and into the 21st century. Finally, we discuss recent proposals to revise the concept of NMO and explain why there is indeed a need for a more systematic and descriptive nomenclature.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| | | |
Collapse
|
50
|
Jarius S, Paul F, Ruprecht K, Wildemann B. Low vitamin B12 levels and gastric parietal cell antibodies in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J Neurol 2012; 259:2743-5. [PMID: 23052597 DOI: 10.1007/s00415-012-6677-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|