1
|
Khojah A, Pachman LM, Bukhari A, Trinh C, Morgan G, Pandey S, Le Poole IC, Klein-Gitelman MS. Decreased Peripheral Blood Natural Killer Cell Count in Untreated Juvenile Dermatomyositis Is Associated with Muscle Weakness. Int J Mol Sci 2024; 25:7126. [PMID: 39000234 PMCID: PMC11241205 DOI: 10.3390/ijms25137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Juvenile Dermatomyositis (JDM) is the most common inflammatory myopathy in pediatrics. This study evaluates the role of Natural Killer (NK) cells in Juvenile Dermatomyositis (JDM) pathophysiology. The study included 133 untreated JDM children with an NK cell count evaluation before treatment. NK cell subsets (CD56low/dim vs. CD 56bright) were examined in 9 untreated children. CD56 and perforin were evaluated in situ in six untreated JDM and three orthopedic, pediatric controls. 56% of treatment-naive JDM had reduced circulating NK cell counts, designated "low NK cell". This low NK group had more active muscle disease compared to the normal NK cell group. The percentage of circulating CD56low/dim NK cells was significantly lower in the NK low group than in controls (0.55% vs. 4.6% p < 0.001). Examination of the untreated JDM diagnostic muscle biopsy documented an increased infiltration of CD56 and perforin-positive cells (p = 0.023, p = 0.038, respectively). Treatment-naive JDM with reduced circulating NK cell counts exhibited more muscle weakness and higher levels of serum muscle enzymes. Muscle biopsies from treatment-naive JDM displayed increased NK cell infiltration, with increased CD56 and perforin-positive cells.
Collapse
Affiliation(s)
- Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL 60611, USA
| | - Lauren M. Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ameera Bukhari
- College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Chi Trinh
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL 60611, USA
- Wellesley College, 106 Central St, Wellesley, MA 02481, USA
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL 60611, USA
| | - Surya Pandey
- Robert H. Lurie Comprehensive Cancer Center, Skin Biology and Diseases Resource-Based Center, Chicago, IL 60611, USA
| | - I. Caroline Le Poole
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Skin Biology and Diseases Resource-Based Center, Chicago, IL 60611, USA
| | - Marisa S. Klein-Gitelman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Nelke C, Pawlitzki M, Schroeter CB, Huntemann N, Räuber S, Dobelmann V, Preusse C, Roos A, Allenbach Y, Benveniste O, Wiendl H, Lundberg IE, Stenzel W, Meuth SG, Ruck T. High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies. Cells 2022; 11:3330. [PMID: 36291195 PMCID: PMC9601098 DOI: 10.3390/cells11203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation of skeletal muscle is the common feature of idiopathic inflammatory myopathies (IIM). Given the rarity of the disease and potential difficulty of routinely obtaining target tissue, i.e., standardized skeletal muscle, our understanding of immune signatures of the IIM spectrum remains incomplete. Further insight into the immune topography of IIM is needed to determine specific treatment targets according to clinical and immunological phenotypes. Thus, we used high-dimensional flow cytometry to investigate the immune phenotypes of anti-synthetase syndrome (ASyS), dermatomyositis (DM) and inclusion-body myositis (IBM) patients as representative entities of the IIM spectrum and compared them to healthy controls. We studied the CD8, CD4 and B cell compartments in the blood aiming to provide a contemporary overview of the immune topography of the IIM spectrum. ASyS was characterized by altered CD4 composition and expanded T follicular helper cells supporting B cell-mediated autoimmunity. For DM, unsupervised clustering identified expansion of distinct B cell subtypes highly expressing immunoglobulin G4 (IgG4) and CD38. Lastly, terminally differentiated, cytotoxic CD8 T cells distinguish IBM from other IIM. Interestingly, these terminally differentiated CD8 T cells highly expressed the integrin CD18 mediating cellular adhesion and infiltration. The distinct immune cell topography of IIM might provide the framework for targeted treatment approaches potentially improving therapeutic outcomes.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Yves Allenbach
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Olivier Benveniste
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
3
|
Karaca Ö, Güngör M, Sakarya Güneş A, Eser Şimşek I, Anık Y, Kara B. Angioedema-like presentation as the presenting finding of juvenile myositis and juvenile dermatomyositis in 2 patients. Int J Rheum Dis 2022; 25:617-625. [PMID: 35238477 DOI: 10.1111/1756-185x.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Juvenile dermatomyositis (JDM) is the most common subtype of idiopathic inflammatory myopathies in childhood. Gottron's papules, shawl sign, periorbital heliotrope rash, and periungual telengiectasis are characteristic skin findings of the disease. Besides characteristic skin involvement, some other skin findings, such as angioedema, may be seen prior or in the course of the disease. The presence of angioedema in JDM is emphasized in this report. CASE PRESENTATIONS We present 2 unrelated girls, aged 2 (case 1) and 12 years (case 2), who had developed symmetrical weakness in the proximal muscles, muscle pain, elevated muscle enzymes and angioedema. Both cases had abnormal muscle magnetic resonance imaging findings, suggestive of inflammatory myositis. Muscle biopsy was performed only in case 1, and major histocompatibility complex-1 expression on myofibers was shown consistent with JDM. Cases were diagnosed as probable and definite JDM, respectively. Angioedema was prominent, particularly in the lips and extremities of both cases, without laboratory evidence of C1 inhibitor deficiency or capillary leak syndrome, and absence of family history. Mast cell-mediated, acquired angioedema was the most likely diagnosis. In both cases, skin and muscle findings improved significantly with steroid treatment. CONCLUSION We suggest that angioedema may be among the characteristic skin findings in JDM, and may be included in subsequent definitions.
Collapse
Affiliation(s)
- Ömer Karaca
- Kocaeli University Medical Faculty, Division of Child Neurology, Department of Pediatrics, Izmit, Turkey
| | - Mesut Güngör
- Kocaeli University Medical Faculty, Division of Child Neurology, Department of Pediatrics, Izmit, Turkey
| | - Ayfer Sakarya Güneş
- Division of Child Neurology, Department of Pediatrics, Sakarya Education and Research Hospital, Sakarya, Turkey
| | - Işıl Eser Şimşek
- Kocaeli University Medical Faculty, Division of Child Allergy and Immunology, Department of Pediatrics, Izmit, Turkey
| | - Yonca Anık
- Kocaeli University Medical Faculty, Department of Radiology, Izmit, Turkey
| | - Bülent Kara
- Kocaeli University Medical Faculty, Division of Child Neurology, Department of Pediatrics, Izmit, Turkey
| |
Collapse
|
4
|
Fernandez-Ruiz R, Niewold TB. Type I Interferons in Autoimmunity. J Invest Dermatol 2022; 142:793-803. [PMID: 35016780 PMCID: PMC8860872 DOI: 10.1016/j.jid.2021.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Dysregulated IFN-1 responses play crucial roles in the development of multiple forms of autoimmunity. Many patients with lupus, systemic sclerosis, Sjogren's syndrome, and dermatomyositis demonstrate enhanced IFN-1 signaling. IFN-1 excess is associated with disease severity and autoantibodies and could potentially predict response to newer therapies targeting IFN-1 pathways. In this review, we provide an overview of the signaling pathway and immune functions of IFN-1s in health and disease. We also review the systemic autoimmune diseases classically associated with IFN-1 upregulation and current therapeutic strategies targeting the IFN-1 system.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy B Niewold
- Judith & Stewart Colton Center for Autoimmunity, Department of Medicine Research, NYU Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
5
|
Van Buren K, Li Y, Zhong F, Ding Y, Puranik A, Loomis CA, Razavian N, Niewold TB. Artificial intelligence and deep learning to map immune cell types in inflamed human tissue. J Immunol Methods 2022; 505:113233. [DOI: 10.1016/j.jim.2022.113233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
|
6
|
Roberson EDO, Mesa RA, Morgan GA, Cao L, Marin W, Pachman LM. Transcriptomes of peripheral blood mononuclear cells from juvenile dermatomyositis patients show elevated inflammation even when clinically inactive. Sci Rep 2022; 12:275. [PMID: 34997119 PMCID: PMC8741808 DOI: 10.1038/s41598-021-04302-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
In juvenile dermatomyositis (JDM), the most common pediatric inflammatory myopathy, weakness is accompanied by a characteristic rash that often becomes chronic and is associated with vascular damage. We hoped to understand the molecular underpinnings of JDM, particularly when untreated, which would facilitate the identification of novel mechanisms and clinical targets that might disrupt disease progression. We studied the RNA-Seq data from untreated JDM peripheral blood mononuclear cells (PBMCs; n = 11), PBMCs from a subset of the same patients when clinically inactive (n = 8/11), and separate samples of untreated JDM skin and muscle (n = 4 each). All JDM samples were compared to non-inflammatory control tissues. The untreated JDM PBMCs showed a strong signature for type1 interferon response, along with IL-1, IL-10, and NF-κB. Surprisingly, PBMCs from clinically inactive JDM individuals had persistent immune activation that was enriched for IL-1 signaling. JDM skin and muscle both showed evidence for type 1 interferon activation and genes related to antigen presentation and decreased expression of cellular respiration genes. Additionally, we found that PBMC gene expression correlates with disease activity scores (DAS; skin, muscle, and total domains) and with nailfold capillary end row loop number (an indicator of microvascular damage). This included otoferlin, which was significantly increased in untreated JDM PBMCs and correlated with all 3 DAS domains. Overall, these data demonstrate that PBMC transcriptomes are informative of molecular disruptions in JDM and provide transcriptional evidence of chronic inflammation despite clinical quiescence.
Collapse
Affiliation(s)
- Elisha D O Roberson
- Division of Rheumatology, Department of Medicine, Washington University, 660 South Euclid Avenue, MSC 8045-0020-10, St. Louis, MO, 63110, USA. .,Department of Genetics, Washington University, St. Louis, MO, USA.
| | - Rosana A Mesa
- Division of Rheumatology, Department of Medicine, Washington University, 660 South Euclid Avenue, MSC 8045-0020-10, St. Louis, MO, 63110, USA
| | - Gabrielle A Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
| | - Li Cao
- Division of Rheumatology, Department of Medicine, Washington University, 660 South Euclid Avenue, MSC 8045-0020-10, St. Louis, MO, 63110, USA
| | - Wilfredo Marin
- Cure JM Center of Excellence in Juvenile Myositis (JM) Research and Care, Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA. .,Cure JM Center of Excellence in Juvenile Myositis (JM) Research and Care, Stanley Manne Children's Research Institute, Chicago, IL, USA. .,Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review provides updates regarding the role of interferon (IFN) in juvenile dermatomyositis (JDM), including comparison to interferonopathies and therapeutic implications. RECENT FINDINGS Transcriptomic and protein-based studies in different tissues and peripheral IFN-α assessment have demonstrated the importance of the dysregulated IFN pathway in JDM. Additional studies have validated IFN-regulated gene and protein expression correlation with disease activity in blood and muscle, with potential to predict flares. Type I and II IFN both are dysregulated in peripheral blood and muscle, with more type I IFN in skin. Muscle studies connects hypoxia to IFN production and IFN to vascular dysfunction and muscle atrophy. JDM overlaps with interferonopathy phenotype and IFN signature. There are multiple case reports and case series noting decreased IFN markers and clinical improvement in refractory JDM with Janus kinase (JAK) inhibitors. SUMMARY Studies confirm IFN, particularly type I and II IFN, is an important part of JDM pathogenesis by the level of dysregulation and correlation with disease activity, as well as IFN recapitulating key JDM muscle pathology. Smaller studies indicate there may be differences by myositis-specific autoantibody group, but validation is needed. JAK inhibitors are a promising therapy as they can inhibit IFN signaling, but further study is needed regarding which patients will benefit, dosing, and safety monitoring.
Collapse
Affiliation(s)
- Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Turnier JL, Pachman LM, Lowe L, Tsoi LC, Elhaj S, Menon R, Amoruso MC, Morgan GA, Gudjonsson JE, Berthier CC, Kahlenberg JM. Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis Rheumatol 2021; 73:1062-1072. [PMID: 33305541 DOI: 10.1002/art.41615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Skin inflammation heralds systemic disease in juvenile myositis, yet we lack an understanding of pathogenic mechanisms driving skin inflammation in this disease. We undertook this study to define cutaneous gene expression signatures in juvenile myositis and identify key genes and pathways that differentiate skin disease in juvenile myositis from childhood-onset systemic lupus erythematosus (SLE). METHODS We used formalin-fixed paraffin-embedded skin biopsy samples from 15 patients with juvenile myositis (9 lesional, 6 nonlesional), 5 patients with childhood-onset SLE, and 8 controls to perform transcriptomic analysis and identify significantly differentially expressed genes (DEGs; q ≤ 5%) between patient groups. We used Ingenuity Pathway Analysis (IPA) to highlight enriched biologic pathways and validated DEGs by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Comparison of lesional juvenile myositis to control samples revealed 221 DEGs, with the majority of up-regulated genes representing interferon (IFN)-stimulated genes. CXCL10, CXCL9, and IFI44L represented the top 3 DEGs (fold change 23.2, 13.3, and 13.0, respectively; q < 0.0001). IPA revealed IFN signaling as the top canonical pathway. When compared to childhood-onset SLE, lesional juvenile myositis skin shared a similar gene expression pattern, with only 28 unique DEGs, including FBLN2, CHKA, and SLURP1. Notably, patients with juvenile myositis who were positive for nuclear matrix protein 2 (NXP-2) autoantibodies exhibited the strongest IFN signature and also demonstrated the most extensive Mx-1 immunostaining, both in keratinocytes and perivascular regions. CONCLUSION Lesional juvenile myositis skin demonstrates a striking IFN signature similar to that previously reported in juvenile myositis muscle and peripheral blood. Further investigation into the association of a higher IFN score with NXP-2 autoantibodies may provide insight into disease endotypes and pathogenesis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Maria C Amoruso
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
9
|
Bolko L, Jiang W, Tawara N, Landon‐Cardinal O, Anquetil C, Benveniste O, Allenbach Y. The role of interferons type I, II and III in myositis: A review. Brain Pathol 2021; 31:e12955. [PMID: 34043262 PMCID: PMC8412069 DOI: 10.1111/bpa.12955] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
The classification of idiopathic inflammatory myopathies (IIM) is based on clinical, serological and histological criteria. The identification of myositis-specific antibodies has helped to define more homogeneous groups of myositis into four dominant subsets: dermatomyositis (DM), antisynthetase syndrome (ASyS), sporadic inclusion body myositis (sIBM) and immune-mediated necrotising myopathy (IMNM). sIBM and IMNM patients present predominantly with muscle involvement, whereas DM and ASyS patients present additionally with other extramuscular features, such as skin, lung and joints manifestations. Moreover, the pathophysiological mechanisms are distinct between each myositis subsets. Recently, interferon (IFN) pathways have been identified as key players implicated in the pathophysiology of myositis. In DM, the key role of IFN, especially type I IFN, has been supported by the identification of an IFN signature in muscle, blood and skin of DM patients. In addition, DM-specific antibodies are targeting antigens involved in the IFN signalling pathways. The pathogenicity of type I IFN has been demonstrated by the identification of mutations in the IFN pathways leading to genetic diseases, the monogenic interferonopathies. This constitutive activation of IFN signalling pathways induces systemic manifestations such as interstitial lung disease, myositis and skin rashes. Since DM patients share similar features in the context of an acquired activation of the IFN signalling pathways, we may extend underlying concepts of monogenic diseases to acquired interferonopathy such as DM. Conversely, in ASyS, available data suggest a role of type II IFN in blood, muscle and lung. Indeed, transcriptomic analyses highlighted a type II IFN gene expression in ASyS muscle tissue. In sIBM, type II IFN appears to be an important cytokine involved in muscle inflammation mechanisms and potentially linked to myodegenerative features. For IMNM, currently published data are scarce, suggesting a minor implication of type II IFN. This review highlights the involvement of different IFN subtypes and their specific molecular mechanisms in each myositis subset.
Collapse
Affiliation(s)
- Loïs Bolko
- Division of RheumatologyHopital Maison BlancheReimsFrance
| | - Wei Jiang
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Nozomu Tawara
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Océane Landon‐Cardinal
- Division of RheumatologyCentre hospitalier de l'Université de Montréal (CHUM)CHUM Research CenterMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Yves Allenbach
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| |
Collapse
|
10
|
Pachman LM, Nolan BE, DeRanieri D, Khojah AM. Juvenile Dermatomyositis: New Clues to Diagnosis and Therapy. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021; 7:39-62. [PMID: 34354904 PMCID: PMC8336914 DOI: 10.1007/s40674-020-00168-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To identify clues to disease activity and discuss therapy options. RECENT FINDINGS The diagnostic evaluation includes documenting symmetrical proximal muscle damage by exam and MRI, as well as elevated muscle enzymes-aldolase, creatine phosphokinase, LDH, and SGOT-which often normalize with a longer duration of untreated disease. Ultrasound identifies persistent, occult muscle inflammation. The myositis-specific antibodies (MSA) and myositis-associated antibodies (MAA) are associated with specific disease course variations. Anti-NXP-2 is found in younger children and is associated with calcinosis; anti-TIF-1γ+ juvenile dermatomyositis has a longer disease course. The diagnostic rash-involving the eyelids, hands, knees, face, and upper chest-is the most persistent symptom and is associated with microvascular compromise, reflected by loss of nailfold (periungual) end row capillaries. This loss is associated with decreased bioavailability of oral prednisone; the bioavailability of other orally administered medications should also be considered. At diagnosis, at least 3 days of intravenous methyl prednisolone may help control the HLA-restricted and type 1/2 interferon-driven inflammatory process. The requirement for avoidance of ultraviolet light exposure mandates vitamin D supplementation. SUMMARY This often chronic illness targets the cardiovascular system; mortality has decreased from 30 to 1-2% with corticosteroids. New serological biomarkers indicate occult inflammation: ↑CXCL-10 predicts a longer disease course. Some biologic therapies appear promising.
Collapse
Affiliation(s)
- Lauren M. Pachman
- Northwestern Feinberg School of Medicine, Divisions of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Cure JM Center of Excellence in Juvenile Myositis Research and Care, The Stanley Manne Research Center for Children, Chicago, IL, USA
| | - Brian E. Nolan
- Northwestern Feinberg School of Medicine, Divisions of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Deidre DeRanieri
- Northwestern Feinberg School of Medicine, Divisions of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Amer M. Khojah
- Northwestern Feinberg School of Medicine, Divisions of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Division of Allergy/Immunology, Chicago, IL, USA, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Wang A, Morgan GA, Paller AS, Pachman LM. Skin disease is more recalcitrant than muscle disease: A long-term prospective study of 184 children with juvenile dermatomyositis. J Am Acad Dermatol 2020; 84:1610-1618. [PMID: 33359787 DOI: 10.1016/j.jaad.2020.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Persistent skin manifestations, especially calcinoses, contribute to morbidity in children with juvenile dermatomyositis. OBJECTIVE To compare the course of skin and muscle involvement and document frequency of calcinosis in juvenile dermatomyositis. METHODS Prospective cohort study of 184 untreated children with juvenile dermatomyositis (July 1971 to May 2019) at a single children's hospital. RESULTS Disease Activity Scores (DASs) were persistently higher for skin versus muscle at all points; clinical inactivity (DAS ≤2) occurred earlier for muscle than skin. Among vascular features for DAS for skin, eyelid margin capillary dilatation was most frequent (54.3%) and persisted longest. Intravenous methylprednisolone reduced DAS for skin more than oral prednisone at 12 months (P = .04). Overall, 16.8% of patients (n = 31) had calcifications, with 4.9% at enrollment. Despite therapy, 25.0% of calcifications recurred and 22.6% failed to resolve; of the latter, 71.4% (n = 5) were present at enrollment. Children with persistent calcifications had longer duration of untreated disease than those whose calcifications resolved (mean 12.5 months) (P < .001). Hydroxychloroquine did not improve DAS for skin (P = .89). LIMITATIONS DAS does not quantify nailfold capillary dropout. CONCLUSIONS In juvenile dermatomyositis, skin disease presents with greater activity and is more recalcitrant to therapies than muscle disease. Early and aggressive treatment can limit the severity and persistence of calcifications identified later in the disease course.
Collapse
Affiliation(s)
- Andi Wang
- Division of Pediatric Rheumatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gabrielle A Morgan
- Cure JM Center of Excellence in Juvenile Dermatomyositis Care and Research, Stanley Manne Children's Research Institute; and The Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Cure JM Myositis Center, Chicago, Illinois
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Cure JM Center of Excellence in Juvenile Dermatomyositis Care and Research, Stanley Manne Children's Research Institute; and The Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Cure JM Myositis Center, Chicago, Illinois.
| |
Collapse
|
12
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Psoriasis and Connective Tissue Diseases. Int J Mol Sci 2020; 21:ijms21165803. [PMID: 32823524 PMCID: PMC7460816 DOI: 10.3390/ijms21165803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease with various co-morbidities, having been recently considered as a comprehensive disease named psoriatic disease or psoriatic syndrome. Autoimmune diseases are one form of its co-morbidities. In addition to the genetic background, shared pathogenesis including innate immunity, neutrophil extracellular trap (NETs), and type I interferon, as well as acquitted immunity such as T helper-17 (Th17) related cytokines are speculated to play a significant role in both psoriasis and connective tissue diseases. On the other hand, there are definite differences between psoriasis and connective tissue diseases, such as their pathomechanisms and response to drugs. Therefore, we cannot expect that one stone kills two birds, and thus caution is necessary when considering whether the administered drug for one disease is effective or not for another disease. In this review, several connective tissue diseases and related diseases are discussed from the viewpoint of their coexistence with psoriasis.
Collapse
|
14
|
Wienke J, Bellutti Enders F, Lim J, Mertens JS, van den Hoogen LL, Wijngaarde CA, Yeo JG, Meyer A, Otten HG, Fritsch-Stork RDE, Kamphuis SSM, Hoppenreijs EPAH, Armbrust W, van den Berg JM, Hissink Muller PCE, Tekstra J, Hoogendijk JE, Deakin CT, de Jager W, van Roon JAG, van der Pol WL, Nistala K, Pilkington C, de Visser M, Arkachaisri T, Radstake TRDJ, van der Kooi AJ, Nierkens S, Wedderburn LR, van Royen-Kerkhof A, van Wijk F. Galectin-9 and CXCL10 as Biomarkers for Disease Activity in Juvenile Dermatomyositis: A Longitudinal Cohort Study and Multicohort Validation. Arthritis Rheumatol 2019; 71:1377-1390. [PMID: 30861625 PMCID: PMC6973145 DOI: 10.1002/art.40881] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Objective Objective evaluation of disease activity is challenging in patients with juvenile dermatomyositis (DM) due to a lack of reliable biomarkers, but it is crucial to avoid both under‐ and overtreatment of patients. Recently, we identified 2 proteins, galectin‐9 and CXCL10, whose levels are highly correlated with the extent of juvenile DM disease activity. This study was undertaken to validate galectin‐9 and CXCL10 as biomarkers for disease activity in juvenile DM, and to assess their disease specificity and potency in predicting the occurrence of flares. Methods Levels of galectin‐9 and CXCL10 were measured by multiplex immunoassay in serum samples from 125 unique patients with juvenile DM in 3 international cross‐sectional cohorts and a local longitudinal cohort. The disease specificity of both proteins was examined in 50 adult patients with DM or nonspecific myositis (NSM) and 61 patients with other systemic autoimmune diseases. Results Both cross‐sectionally and longitudinally, galectin‐9 and CXCL10 outperformed the currently used laboratory marker, creatine kinase (CK), in distinguishing between juvenile DM patients with active disease and those in remission (area under the receiver operating characteristic curve [AUC] 0.86–0.90 for galectin‐9 and CXCL10; AUC 0.66–0.68 for CK). The sensitivity and specificity for active disease in juvenile DM was 0.84 and 0.92, respectively, for galectin‐9 and 0.87 and 1.00, respectively, for CXCL10. In 10 patients with juvenile DM who experienced a flare and were prospectively followed up, continuously elevated or rising biomarker levels suggested an imminent flare up to several months before the onset of symptoms, even in the absence of elevated CK levels. Galectin‐9 and CXCL10 distinguished between active disease and remission in adult patients with DM or NSM (P = 0.0126 for galectin‐9 and P < 0.0001 for CXCL10) and were suited for measurement in minimally invasive dried blood spots (healthy controls versus juvenile DM, P = 0.0040 for galectin‐9 and P < 0.0001 for CXCL10). Conclusion In this study, galectin‐9 and CXCL10 were validated as sensitive and reliable biomarkers for disease activity in juvenile DM. Implementation of these biomarkers into clinical practice as tools to monitor disease activity and guide treatment might facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Judith Wienke
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Felicitas Bellutti Enders
- Lausanne University Hospital, Lausanne, Switzerland, and University Hospital Basel, Basel, Switzerland
| | - Johan Lim
- Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Jorre S Mertens
- University Medical Centre Utrecht, Utrecht, The Netherlands, and Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Joo Guan Yeo
- KK Women's and Children's Hospital, Duke-NUS Medical School, SingHealth Duke-NUS Academic Medical Center, Singapore
| | | | - Henny G Otten
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- University Medical Centre Utrecht, Utrecht, The Netherlands, Sigmund Freud Private University, Vienna, Austria, and Hanusch Krankenhaus und Ludwig Boltzmann Institut für Osteologie, Vienna, Austria
| | - Sylvia S M Kamphuis
- Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Wineke Armbrust
- Beatrix Children's Hospital, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Petra C E Hissink Muller
- Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands, and Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Claire T Deakin
- University College London, University College London Hospital, the NIHR Biomedical Research Centre at Great Ormond Street Hospital, and Great Ormond Street Hospital, London, UK
| | - Wilco de Jager
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Thaschawee Arkachaisri
- KK Women's and Children's Hospital, Duke-NUS Medical School, SingHealth Duke-NUS Academic Medical Center, Singapore
| | | | | | | | - Lucy R Wedderburn
- University College London, University College London Hospital, the NIHR Biomedical Research Centre at Great Ormond Street Hospital, and Great Ormond Street Hospital, London, UK
| | | | - Femke van Wijk
- University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Alculumbre S, Raieli S, Hoffmann C, Chelbi R, Danlos FX, Soumelis V. Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association. Semin Cell Dev Biol 2019; 86:24-35. [DOI: 10.1016/j.semcdb.2018.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/28/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
16
|
Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and Tissue Inflammation in Juvenile Dermatomyositis: From Pathogenesis to the Quest for Monitoring Tools. Front Immunol 2018; 9:2951. [PMID: 30619311 PMCID: PMC6305419 DOI: 10.3389/fimmu.2018.02951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Juvenile Dermatomyositis (JDM) is a systemic immune-mediated disease of childhood, characterized by muscle weakness, and a typical skin rash. Other organ systems and tissues such as the lungs, heart, and intestines can be involved, but may be under-evaluated. The inflammatory process in JDM is characterized by an interferon signature and infiltration of immune cells such as T cells and plasmacytoid dendritic cells into the affected tissues. Vasculopathy due to loss and dysfunction of endothelial cells as a result of the inflammation is thought to underlie the symptoms in most organs and tissues. JDM is a heterogeneous disease, and several disease phenotypes, each with a varying combination of affected tissues and organs, are linked to the presence of myositis autoantibodies. These autoantibodies have therefore been extensively studied as biomarkers for the disease phenotype and its associated prognosis. Next to identifying the JDM phenotype, monitoring of disease activity and disease-inflicted damage not only in muscle and skin, but also in other organs and tissues, is an important part of clinical follow-up, as these are key determinants for the long-term outcomes of patients. Various monitoring tools are currently available, among which clinical assessment, histopathological investigation of muscle and skin biopsies, and laboratory testing of blood for specific biomarkers. These investigations also give novel insights into the underlying immunological processes that drive inflammation in JDM and suggest a strong link between the interferon signature and vasculopathy. New tools are being developed in the quest for minimally invasive, but sensitive and specific diagnostic methods that correlate well with clinical symptoms or reflect local, low-grade inflammation. In this review we will discuss the types of (extra)muscular tissue inflammation in JDM and their relation to vasculopathic changes, critically assess the available diagnostic methods including myositis autoantibodies and newly identified biomarkers, and reflect on the immunopathogenic implications of identified markers.
Collapse
Affiliation(s)
- Judith Wienke
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Claire T Deakin
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Lucy R Wedderburn
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
17
|
Expression of the OAS Gene Family Is Highly Modulated in Subjects Affected by Juvenile Dermatomyositis, Resembling an Immune Response to a dsRNA Virus Infection. Int J Mol Sci 2018; 19:ijms19092786. [PMID: 30227596 PMCID: PMC6163680 DOI: 10.3390/ijms19092786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Juvenile dermatomyositis (JDM) is a systemic, autoimmune, interferon (IFN)-mediated inflammatory muscle disorder that affects children younger than 18 years of age. JDM primarily affects the skin and the skeletal muscles. Interestingly, the role of viral infections has been hypothesized. Mammalian 2′-5′-oligoadenylate synthetase (OAS) genes have been thoroughly characterized as components of the IFN-induced antiviral system, and they are connected to several innate immune-activated diseases. The main purpose of the paper is to define the potential interrelationship between the OAS gene family network and the molecular events that characterize JDM along with double-stranded RNA (dsRNA) molecular pathways. Methods: We analyzed three microarray datasets obtained from the NCBI in order to verify the expression levels of the OAS gene family network in muscle biopsies (MBx) of JDM patients compared to healthy controls. Furthermore, From GSE51392, we decided to select significant gene expression profiles of primary nasal and bronchial epithelial cells isolated from healthy subjects and treated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of double-stranded RNA (dsRNA), a molecular pattern associated with viral infection. Results: The analysis showed that all OAS genes were modulated in JDM muscle biopsies. Furthermore, 99% of OASs gene family networks were significantly upregulated. Of importance, 39.9% of modulated genes in JDM overlapped with those of primary epithelial cells treated with poly(I:C). Moreover, the microarray analysis showed that the double-stranded dsRNA virus gene network was highly expressed. In addition, we showed that the innate/adaptive immunity markers were significantly expressed in JDM muscles biopsies. and that their levels were positively correlated to OAS gene family expression. Conclusion: OAS gene expression is extremely modulated in JDM as well as in the dsRNA viral gene network. These data lead us to speculate on the potential involvement of a viral infection as a trigger moment for this systemic autoimmune disease. Further in vitro and translational studies are needed to verify this hypothesis in order to strategically plan treatment interventions.
Collapse
|
18
|
Rider LG, Aggarwal R, Machado PM, Hogrel JY, Reed AM, Christopher-Stine L, Ruperto N. Update on outcome assessment in myositis. Nat Rev Rheumatol 2018; 14:303-318. [PMID: 29651119 PMCID: PMC6702032 DOI: 10.1038/nrrheum.2018.33] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The adult and juvenile myositis syndromes, commonly referred to collectively as idiopathic inflammatory myopathies (IIMs), are systemic autoimmune diseases with the hallmarks of muscle weakness and inflammation. Validated, well-standardized measures to assess disease activity, known as core set measures, were developed by international networks of myositis researchers for use in clinical trials. Composite response criteria using weighted changes in the core set measures of disease activity were developed and validated for adult and juvenile patients with dermatomyositis and adult patients with polymyositis, with different thresholds for minimal, moderate and major improvement in adults and juveniles. Additional measures of muscle strength and function are being validated to improve content validity and sensitivity to change. A health-related quality of life measure, which incorporates patient input, is being developed for adult patients with IIM. Disease state criteria, including criteria for inactive disease and remission, are being used as secondary end points in clinical trials. MRI of muscle and immunological biomarkers are promising approaches to discriminate between disease activity and damage and might provide much-needed objective outcome measures. These advances in the assessment of outcomes for myositis treatment, along with collaborations between international networks, should facilitate further development of new therapies for patients with IIM.
Collapse
Affiliation(s)
- Lisa G. Rider
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD
| | - Rohit Aggarwal
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Pedro M. Machado
- Centre for Rheumatology & MRC Centre for Neuromuscular Diseases, University College London, London, UK
| | | | - Ann M. Reed
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Lisa Christopher-Stine
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicolino Ruperto
- Istituto Giannina Gaslini, Clinica Pediatria e Reumatologia, PRINTO, Genoa, Italy
| |
Collapse
|
19
|
Pachman LM, Khojah AM. Advances in Juvenile Dermatomyositis: Myositis Specific Antibodies Aid in Understanding Disease Heterogeneity. J Pediatr 2018; 195:16-27. [PMID: 29576174 PMCID: PMC5881602 DOI: 10.1016/j.jpeds.2017.12.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lauren M Pachman
- Department of Pediatrics , Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Cure JM Center of Excellence in Juvenile Myositis (JM) Research, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Amer M Khojah
- Department of Pediatrics, Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| |
Collapse
|
20
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Ciechomska M, Skalska U. Targeting interferons as a strategy for systemic sclerosis treatment. Immunol Lett 2017; 195:45-54. [PMID: 29106987 DOI: 10.1016/j.imlet.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Systemic Sclerosis (SSc) is an autoimmune disease characterised by vasculopathy, uncontrolled inflammation and enhanced fibrosis which can subsequently lead to the loss of organ function or even premature death. Interferons (IFNs) are pleiotropic cytokines that are critical not only in mounting an effective immune response against viral and bacterial infections but also strongly contribute to the pathogenesis of SSc. Furthermore, elevated levels of IFNs are found in SSc patients and correlate with skin thickness and disease activity suggesting potential role of IFNs as biomarkers. In this review, we summarise existing knowledge regarding all types of IFNs and IFN-inducible genes in the pathogenesis of SSc. We then argue why IFN-blocking strategies are promising therapeutic targets in SSc and other autoimmune diseases.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Urszula Skalska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
22
|
Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford) 2017; 56:1662-1675. [PMID: 28122959 DOI: 10.1093/rheumatology/kew431] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. Apart from their important role in antiviral immunity, IFN-Is are increasingly recognized as key players in autoimmune CTDs such as SLE. Novel therapies that target IFN-I appear effective in SLE in early trials, but effectiveness is related to the presence of IFN-I biomarkers. IFN-I biomarkers may also act as positive or negative predictors of response to other biologics. Despite the high failure rate of clinical trials in SLE, subgroups of patients often respond better. Fully optimizing the potential of these agents is therefore likely to require stratification of patients using IFN-I and other biomarkers. This suggests the unified concept of type I IFN-mediated autoimmune diseases as a grouping including patients with a variety of different traditional diagnoses.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Paul Emery
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Edward M Vital
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
The host defense peptide LL-37 a possible inducer of the type I interferon system in patients with polymyositis and dermatomyositis. J Autoimmun 2017; 78:46-56. [DOI: 10.1016/j.jaut.2016.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022]
|
24
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Yokoyama E, Nakamura Y, Okita T, Nagai N, Muto M. CD34+ dermal dendritic cells and mucin deposition in dermatomyositis. World J Dermatol 2016; 5:65-71. [DOI: 10.5314/wjd.v5.i2.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/19/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Dermal mucinosis is often associated with collagen diseases such as rheumatoid arthritis, lupus erythematosus, and dermatomyositis, in addition to autoimmune thyroiditis. We report eight cases of dermal mucin deposition secondary to typical dermatomyositis with cutaneous lesions known as heliotrope rash and Gottron’s papules. Striking mucin deposition was observed in both the papillary dermis and reticular dermis of all biopsy specimens. Immunohistochemical analysis showed that CD34+ dermal dendritic cells (DDCs) in the perilesional area in combination with vimentin+ cells within the mucinous lesion might be important in giving rise to abnormal deposition of dermal mucin. On the other hand, numbers of factor XIIIa+ DDCs and tryptase+ mast cells were reduced within and surrounding the mucin deposition, as compared with those in the dermis of normal controls. A pathogenic mechanism of dermal mucin deposition is proposed.
Collapse
|
26
|
Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun 2016; 4:45. [PMID: 27121733 PMCID: PMC4847347 DOI: 10.1186/s40478-016-0308-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Dermatomyositis (DM) can occur in both adults and juveniles with considerable clinical differences. The links between immune-mediated mechanisms and vasculopathy with respect to development of perifascicular pathology are incompletely understood. We investigated skeletal muscle from newly diagnosed, treatment-naïve juvenile (jDM) and adult dermatomyositis (aDM) patients focusing on hypoxia-related pathomechanisms, vessel pathology, and immune mechanisms especially in the perifascicular region. Therefore, we assessed the skeletal muscle biopsies from 21 aDM, and 15 jDM patients by immunohistochemistry and electron microscopy. Transcriptional analyses of genes involved in hypoxia, as well as in innate and adaptive immunity were performed by quantitative Polymerase chain reaction (qPCR) of whole tissue cross sections including perifascicular muscle fibers.Through these analysis, we found that basic features of DM, like perifascicular atrophy and inflammatory infiltrates, were present at similar levels in jDM and aDM patients. However, jDM was characterized by predominantly hypoxia-driven pathology in perifascicular small fibers and by macrophages expressing markers of hypoxia. A more pronounced regional loss of capillaries, but no relevant activation of type-1 Interferon (IFN)-associated pathways was noted. Conversely, in aDM, IFN-related genes were expressed at significantly elevated levels, and Interferon-stimulated gene (ISG)15 was strongly positive in small perifascicular fibers whereas hypoxia-related mechanisms did not play a significant role.In our study we could provide new molecular data suggesting a conspicuous pathophysiological 'dichotomy' between jDM and aDM: In jDM, perifascicular atrophy is tightly linked to hypoxia-related pathology, and poorly to innate immunity. In aDM, perifascicular atrophy is prominently associated with molecules driving innate immunity, while hypoxia-related mechanisms seem to be less relevant.
Collapse
|
27
|
Saadeh D, Kurban M, Abbas O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. Exp Dermatol 2016; 25:415-21. [PMID: 26837058 DOI: 10.1111/exd.12957] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, blood-derived dendritic cell antigen-2 (BDCA-2) and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. When activated, pDCs are capable of producing large quantities of type I IFNs (mainly IFN-α/β), which provide antiviral resistance and link the innate and adaptive immunity. While generally lacking from normal skin, pDCs infiltrate the skin and appear to be involved in the pathogenesis of several inflammatory, infectious (especially viral) and neoplastic entities. In recent years, pDC role in inflammatory/autoimmune skin conditions has been extensively studied. Unlike type I IFN-mediated protective immunity that pDCs provide at the level of the skin by regulated sensing of microbial or self-nucleic acids upon skin damage, excessive sensing may elicit IFN-driven inflammatory/autoimmune diseases. In this review, focus will be on the role of pDCs in cutaneous inflammatory/autoimmune dermatoses.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
28
|
Xu D, Huang CC, Kachaochana A, Morgan GA, Bonaldo MF, Soares MB, Costa F, Sarwark J, Sredni ST, Pachman LM. MicroRNA-10a Regulation of Proinflammatory Mediators: An Important Component of Untreated Juvenile Dermatomyositis. J Rheumatol 2015; 43:161-8. [DOI: 10.3899/jrheum.141474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
Objective.To identify differentially expressed microRNA (miRNA) in muscle biopsies (MBx) from 15 untreated children with juvenile dermatomyositis (JDM) compared with 5 controls.Methods.Following MBx miRNA profiling, differentially expressed miRNA and their protein targets were validated by quantitative real-time PCR (qRT-PCR) and immunological assay. The association of miRNA-10a and miRNA-10b with clinical data was evaluated, including Disease Activity Score (DAS), von Willebrand factor antigen (vWF:Ag), nailfold capillary end row loops, duration of untreated disease, and tumor necrosis factor (TNF)-α-308A allele.Results.In JDM, 16/362 miRNA were significantly differentially expressed [false discovery rate (FDR) < 0.05]. Among these, miRNA-10a was the most downregulated miRNA in both FDR and ranking of fold change: miRNA-10a = −2.27-fold, miRNA-10b = −1.80-fold. Decreased miRNA-10a and miRNA-10b expressions were confirmed using qRT-PCR: −4.16 and −2.59 fold, respectively. The qRT-PCR documented that decreased miRNA-10a expression was related to increased vascular cell adhesion molecule 1 in 13 of these JDM cases (correlation −0.67, p = 0.012), unlike miRNA-10b data (not significant). Concurrent JDM plasma contained increased levels of interleukin (IL) 6 (p = 0.0363), IL-8 (p = 0.0005), TNF-α (p = 0.0011), and monocyte chemoattractant proteins 1 (p = 0.0139). Decreased miRNA-10a, but not miRNA-10b, was associated with the TNF-α-308A allele (p = 0.015). In the 15 JDM, a trend of association of miRNA-10a (but not miRNA-10b) with vWF:Ag and DAS was observed.Conclusion.MiRNA-10a downregulation is an important element in untreated JDM muscle pathophysiology. We speculate that muscle miRNA expression in adult dermatomyositis differs from muscle miRNA expression in untreated childhood JDM.
Collapse
|
29
|
López de Padilla CM, Niewold TB. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 2015; 576:14-21. [PMID: 26410416 DOI: 10.1016/j.gene.2015.09.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023]
Abstract
There is increasing scientific and clinical interest in elucidating the biology of type I Interferons, which began approximately 60 years ago with the concept of "viral interference", a property that reduces the ability of a virus to infect cells. Although our understanding of the multiple cellular and molecular functions of interferons has advanced significantly, much remains to be learned and type I Interferons remain an active and fascinating area of inquiry. In this review, we cover some general aspects of type I interferon genes, with emphasis on interferon-alpha, and various aspects of molecular mechanisms triggered by type I interferons and toll-like receptor signaling by the Janus activated kinase/signal transducer activation of transcription (JAK-STAT) pathway and interferon regulatory factor pathway. We will also describe the role of type I interferons in autoimmune and inflammatory diseases, and its potential use as therapeutic agent.
Collapse
Affiliation(s)
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Moran EM, Mastaglia FL. Cytokines in immune-mediated inflammatory myopathies: cellular sources, multiple actions and therapeutic implications. Clin Exp Immunol 2015; 178:405-15. [PMID: 25171057 DOI: 10.1111/cei.12445] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
The idiopathic inflammatory myopathies are a heterogeneous group of disorders characterised by diffuse muscle weakness and inflammation. A common immunopathogenic mechanism is the cytokine-driven infiltration of immune cells into the muscle tissue. Recent studies have further dissected the inflammatory cell types and associated cytokines involved in the immune-mediated myopathies and other chronic inflammatory and autoimmune disorders. In this review we outline the current knowledge of cytokine expression profiles and cellular sources in the major forms of inflammatory myopathy and detail the known mechanistic functions of these cytokines in the context of inflammatory myositis. Furthermore, we discuss how the application of this knowledge may lead to new therapeutic strategies for the treatment of the inflammatory myopathies, in particular for cases resistant to conventional forms of therapy.
Collapse
Affiliation(s)
- E M Moran
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
31
|
Yokota M, Suzuki K, Tokoyoda K, Meguro K, Hosokawa J, Tanaka S, Ikeda K, Mikata T, Nakayama T, Kohsaka H, Nakajima H. Roles of mast cells in the pathogenesis of inflammatory myopathy. Arthritis Res Ther 2014; 16:R72. [PMID: 24636001 PMCID: PMC4060256 DOI: 10.1186/ar4512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/05/2014] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION In addition to the pivotal roles of mast cells in allergic diseases, recent data suggest that mast cells play crucial roles in a variety of autoimmune responses. However, their roles in the pathogenesis of autoimmune skeletal muscle diseases have not been clarified despite their distribution in skeletal muscle. Therefore, the objective of this study is to determine the roles of mast cells in the development of autoimmune skeletal muscle diseases. METHODS The number of mast cells in the affected muscle was examined in patients with dermatomyositis (DM) or polymyositis (PM). The susceptibility of mast cell-deficient WBB6F1-Kit(W)/Kit(Wv) mice (W/W(v) mice) to a murine model of polymyositis, C protein-induced myositis (CIM), was compared with that of wild-type (WT) mice. The effect of mast cell reconstitution with bone marrow-derived mast cells (BMMCs) on the susceptibility of W/W(v) mice to CIM was also evaluated. RESULTS The number of mast cells in the affected muscle increased in patients with PM as compared with patients with DM. W/W(v) mice exhibited significantly reduced disease incidence and histological scores of CIM as compared with WT mice. The number of CD8⁺ T cells and macrophages in the skeletal muscles of CIM decreased in W/W(v) mice compared with WT mice. Engraftment of BMMCs restored the incidence and histological scores of CIM in W/W(v) mice. Vascular permeability in the skeletal muscle was elevated in WT mice but not in W/W(v) mice upon CIM induction. CONCLUSION Mast cells are involved in the pathogenesis of inflammatory myopathy.
Collapse
|
32
|
Abstract
Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
33
|
Moret FM, Radstake TRDJ, van Roon JAG. Targeting Th2-typified immune responses to prevent immunopathology in rheumatic diseases: belittled therapeutic strategies? Ann Rheum Dis 2013; 73:477-9. [PMID: 24323396 DOI: 10.1136/annrheumdis-2013-204285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Frederique M Moret
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, , Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Rider LG, Katz JD, Jones OY. Developments in the classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheum Dis Clin North Am 2013; 39:877-904. [PMID: 24182859 PMCID: PMC3817412 DOI: 10.1016/j.rdc.2013.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review updates recent trends in the classification of the juvenile idiopathic inflammatory myopathies (JIIM) and the emerging standard of treatment of the most common form of JIIM, juvenile dermatomyositis. The JIIM are rare, heterogeneous autoimmune diseases that share chronic muscle inflammation and weakness. A growing spectrum of clinicopathologic groups and serologic phenotypes defined by the presence of myositis autoantibodies are now recognized, each with differing demographics, clinical manifestations, laboratory findings, and prognoses. Although daily oral corticosteroids remain the backbone of treatment, disease-modifying anti-rheumatic drugs are almost always used adjunctively and biologic therapies may benefit patients with recalcitrant disease.
Collapse
Affiliation(s)
- Lisa G Rider
- Environmental Autoimmunity Group, Program of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health, CRC 4-2352, MSC 1301, 10 Center Drive, Bethesda, MD 20892-1301, USA; Myositis Center, Division of Rheumatology, Department of Medicine, George Washington University, G-400, 2150 Pennsylvania Avenue Northwest, Washington, DC 20037, USA.
| | | | | |
Collapse
|
35
|
Di Domizio J, Cao W. Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Rev Clin Immunol 2013; 9:201-10. [PMID: 23445195 DOI: 10.1586/eci.12.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, active research using genomic, cellular and animal modeling approaches has revealed the fundamental forces driving the development of autoimmune diseases. Type I interferon imprints unique molecular signatures in a list of autoimmune diseases. Interferon is induced by diverse nucleic acid-containing complexes, which trigger innate immune activation of plasmacytoid dendritic cells. Interferon primes, activates or differentiates various leukocyte populations to promote autoimmunity. Accordingly, interferon signaling is essential for the initiation and/or progression of lupus in several experimental models. However, the heterogeneous nature of systemic lupus erythematosus requires better characterization on how interferon pathways are activated and subsequently promote the advancement of autoimmune diseases. Given the central role of type I interferon, various strategies are devised to target these cytokines or related pathways to curtail the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | |
Collapse
|
36
|
Type 1 interferons inhibit myotube formation independently of upregulation of interferon-stimulated gene 15. PLoS One 2013; 8:e65362. [PMID: 23750257 PMCID: PMC3672209 DOI: 10.1371/journal.pone.0065362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction Type 1 interferon (IFN)-inducible genes and their inducible products are upregulated in dermatomyositis muscle. Of these, IFN-stimulated gene 15 (ISG15) is one of the most upregulated, suggesting its possible involvement in the pathogenesis of this disease. To test this postulate, we developed a model of type 1 IFN mediated myotube toxicity and assessed whether or not downregulation of ISG15 expression prevents this toxicity. Methods Mouse myoblasts (C2C12 cell line) were cultured in the presence of type 1 or type 2 IFNs and ISG15 expression assessed by microarray analysis. The morphology of newly formed myotubes was assessed by measuring their length, diameter, and area on micrographs using imaging software. ISG15 expression was silenced through transfection with small interference RNA. Results Type 1 IFNs, especially IFN-beta, increased ISG15 expression in C2C12 cells and impaired myotube formation. Silencing of ISG15 resulted in knockdown of ISG15 protein, but without phenotypic rescue of myotube formation. Discussion IFN-beta affects myoblast differentiation ability and myotube morphology in vitro.These studies provide evidence that ISG15, which is highly upregulated in dermatomyositis muscle, does not appear to play a key role in IFN-beta-mediated C2C12 myoblast cell fusion.
Collapse
|
37
|
Abstract
Idiopathic inflammatory myopathies (IIM) are chronic inflammatory diseases of muscle characterized by proximal muscle weakness. There are three main groups of diseases, dermatomyositis, polymyositis and inclusion body myositis. The muscle tissue is invaded by the humoral autoantibody producing immune system (B-cells) and by the cellular immune system with autoaggressive and inflammation modulating cells (e.g. dendritic cells, monocytes/macrophages, CD4 + and CD8 + T-cells and natural killer cells). The presence of specific or associated autoantibodies and inflammatory cellular infiltrates with cytotoxic and immune autoreactive properties are characteristic for IIM diseases. The pathogenesis is still unknown; nevertheless, there are several hints that exogenic factors might be involved in initiation and disease progression and bacterial, fungal and viral infections are thought to be possible initiators. Up to now information on prognostic markers to help with decision-making for individual treatment are limited. In addition, there has been only limited therapeutic success including conventional or novel drugs and biologicals and comparative validation studies are needed using similar outcome measurements. Moreover, to facilitate the use and development of novel therapies, elaboration of intracellular and cell-specific regulation could be useful to understand the etiopathogenesis and allow a better diagnosis, prognosis and possibly also a prediction for individualized subgroup treatment.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review will provide the clinician with an update on the pathogenesis, clinical manifestations, and therapy for skin disease in dermatomyositis. Recent insights into the role for interferon in skin disease as well as the development and validation of quantitative tools to measure skin disease activity allow the possibility that, for the first time, dermatomyositis skin disease can serve as a valid outcome for clinical trials of targeted therapies. Also, the increasing appreciation of the heterogeneity of skin disease in dermatomyositis has already provided evidence that clinical subtypes of disease can provide important prognostic and diagnostic information to the clinician. RECENT FINDINGS It is becoming apparent that the skin inflammation alone has implications for systemic and malignancy risk in dermatomyositis patients, and that there may be several pathogenic similarities between muscle and skin inflammation in dermatomyositis. Recent data on therapy for calcinosis cutis highlights that more prospective studies are needed to evaluate how best to manage all manifestations of skin inflammation in dermatomyositis. SUMMARY A more careful description and classification of skin disease in dermatomyositis may allow the clinician to predict more accurately which patients will be at higher risk for cancer, lung disease, or muscle inflammation. In addition, given the similarities in perturbed gene expression between skin and muscle tissue, it is likely that analysis of a more readily evaluable target organ such as skin might shed light on mechanisms of disease propagation throughout the body.
Collapse
|
39
|
Wang M, Xie H, Shrestha S, Sredni S, Morgan GA, Pachman LM. Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity. ACTA ACUST UNITED AC 2013; 64:3478-85. [PMID: 22674142 DOI: 10.1002/art.34573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the effect of methylation alteration in inflamed muscles from children with juvenile dermatomyositis (DM) and other idiopathic inflammatory myopathies (IIMs). METHODS Magnetic resonance imaging-directed diagnostic muscle biopsies yielded samples from 20 children with juvenile DM, which were used for genome-wide DNA methylation profiling, as were muscle biopsy samples from 4 healthy controls. Bisulfite treatment followed by pyrosequencing confirmed methylation status in juvenile DM and other IIMs. Immunohistochemistry defined localization and expression levels of WT1. RESULTS Comparison of genome-wide DNA methylation profiling between juvenile DM muscle and normal control muscle revealed 27 genes with a significant methylation difference between the groups. These genes were enriched with transcription factors and/or cell cycle regulators and were unrelated to duration of untreated disease. Six homeobox genes were among them; ALX4, HOXC11, HOXD3, and HOXD4 were hypomethylated, while EMX2 and HOXB1 were hypermethylated. WT1 was significantly hypomethylated in juvenile DM (Δβ = -0.41, P < 0.001). Bisulfite pyrosequencing verification in samples from 56 patients with juvenile DM confirmed the methylation alterations of these genes. Similar methylation alterations were observed in juvenile polymyositis (n = 5) and other IIMs (n = 9). Concordant with the other findings, WT1 protein was increased in juvenile DM muscle, with average positive staining of 11.6%, but was undetectable in normal muscle (P < 0.001). CONCLUSION These results suggest that affected muscles of children with juvenile DM and IIMs have the capacity to be repaired, and that homeobox and WT1 genes are epigenetically marked to facilitate this repair process, potentially suggesting new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Min Wang
- Children's Hospital of Chicago Research Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
40
|
Malmström V, Venalis P, Albrecht I. T cells in myositis. Arthritis Res Ther 2012; 14:230. [PMID: 23270751 PMCID: PMC3674618 DOI: 10.1186/ar4116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 12/12/2012] [Indexed: 12/13/2022] Open
Abstract
T cells of both the CD4 and CD8 lineage are commonly found in affected tissues of patients with idiopathic inflammatory myopathies, but understanding the contribution of these cells to immunopathogenesis remains challenging. Given recent advances in identifying more myositis-associated autoantibodies and their putative targets, we suggest that studies on autoreactive T cells targeting those autoantigens are one way forward. Another (so far, more frequently used) approach comes from studies on effector T cells in the context of myositis. This review summarizes recent advances and current hypotheses in both of these contexts.
Collapse
|
41
|
Martin N, Li CK, Wedderburn LR. Juvenile dermatomyositis: new insights and new treatment strategies. Ther Adv Musculoskelet Dis 2012; 4:41-50. [PMID: 22870494 DOI: 10.1177/1759720x11424460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare but complex and potentially life-threatening autoimmune disease of childhood, primarily affecting proximal muscles and skin. Although the cause of JDM remains unknown it is clear that genetic and environmental influences play a role in the aetiology. In contrast to adults with dermatomyositis, children with JDM are more likely to have complications that are thought to indicate a vasculopathic process, such as severe skin disease, with ulceration or calcinosis, gut vasculopathy or central nervous system disease. New treatments are much needed and are becoming available and being tested through international multicentre trials. This review will focus on recent insights into pathogenesis, the assessment of the disease in children and the modern approach to its treatment.
Collapse
|
42
|
Goldbach-Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol 2012; 167:391-404. [PMID: 22288582 DOI: 10.1111/j.1365-2249.2011.04533.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED OTHER THEMES PUBLISHED IN THIS IMMUNOLOGY IN THE CLINIC REVIEW SERIES Allergy, Host Responses, Cancer, Type 1 diabetes and viruses, Metabolic diseases. SUMMARY The disease-based discovery of the molecular basis for autoinflammatory diseases has led not only to a rapidly growing number of clinically and genetically identifiable disorders, but has unmantled key inflammatory pathways such as the potent role of the alarm cytokine interleukin (IL)-1 in human disease. Following its initial failures in the treatment of sepsis and the moderate success in the treatment of rheumatoid arthritis, IL-1 blocking therapies had a renaissance in the treatment of a number of autoinflammatory conditions, and IL-1 blocking therapies have been Food and Drug Administration (FDA)-approved for the treatment of the autoinflammatory conditions: cryopyrin-associated periodic syndromes (CAPS). CAPS and deficiency of the IL-1 receptor antagonist (DIRA), both genetic conditions with molecular defects in the IL-1 pathway, have provided a pathogenic rationale to IL-1 blocking therapies, and the impressive clinical results confirmed the pivotal role of IL-1 in human disease. Furthermore, IL-1 blocking strategies have shown clinical benefit in a number of other genetically defined autoinflammatory conditions, and diseases with clinical similarities to the monogenic disorders and not yet identified genetic causes. The discovery that IL-1 is not only triggered by infectious danger signals but also by danger signals released from metabolically 'stressed' or even dying cells has extended the concept of autoinflammation to disorders such as gout, and those that were previously not considered inflammatory, such as type 2 diabetes, coronary artery disease, obesity and some degenerative diseases, and provided the conceptual framework to target IL-1 in these diseases. Despite the tremendous success of IL-1 blocking therapy, the use of these agents in a wider spectrum of autoinflammatory conditions has uncovered disease subsets that are not responsive to IL-1 blockade, including the recently discovered proteasome-associated autoinflammatory syndromes such as chronic atypical neutrophilic dermatitis with lipodystrophy and elevated temperatures (CANDLE), Japanese autoinflammatory syndrome with lipodystrophy (JASL), Nakajo-Nishimura syndrome (NNS) and joint contractures, muscle atrophy, panniculitis induced lipodystrophy (JMP), and urge the continued quest to characterize additional dysregulated innate immune pathways that cause autoinflammatory conditions.
Collapse
Affiliation(s)
- R Goldbach-Mansky
- Translational Autoinflammatory Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Wong D, Kea B, Pesich R, Higgs BW, Zhu W, Brown P, Yao Y, Fiorentino D. Interferon and biologic signatures in dermatomyositis skin: specificity and heterogeneity across diseases. PLoS One 2012; 7:e29161. [PMID: 22235269 PMCID: PMC3250414 DOI: 10.1371/journal.pone.0029161] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/22/2011] [Indexed: 01/08/2023] Open
Abstract
Background Dermatomyositis (DM) is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. Methodology and Findings We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN)-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN)-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN) transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. Conclusions and Significance As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue.
Collapse
Affiliation(s)
- David Wong
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bory Kea
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rob Pesich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Brandon W. Higgs
- MedImmune, Translational Sciences, One MedImmune Way, Gaithersburg, Maryland, United States of America
| | - Wei Zhu
- MedImmune, Translational Sciences, One MedImmune Way, Gaithersburg, Maryland, United States of America
| | - Patrick Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yihong Yao
- MedImmune, Translational Sciences, One MedImmune Way, Gaithersburg, Maryland, United States of America
| | - David Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Baechler EC, Bilgic H, Reed AM. Type I interferon pathway in adult and juvenile dermatomyositis. Arthritis Res Ther 2011; 13:249. [PMID: 22192711 PMCID: PMC3334651 DOI: 10.1186/ar3531] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene expression profiling and protein studies of the type I interferon pathway have revealed important insights into the disease process in adult and juvenile dermatomyositis. The most prominent and consistent feature has been a characteristic whole blood gene signature indicating upregulation of the type I interferon pathway. Upregulation of the type I interferon protein signature has added additional markers of disease activity and insight into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Emily C Baechler
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
45
|
Robinson AB, Reed AM. Clinical features, pathogenesis and treatment of juvenile and adult dermatomyositis. Nat Rev Rheumatol 2011; 7:664-75. [PMID: 21947177 DOI: 10.1038/nrrheum.2011.139] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Juvenile and adult dermatomyositis (DM) have multiple commonalities, yet display differing prevalence of features, outcomes and comorbidities. In general, compared with the disease in adults, children with DM have more vasculopathy and a greater likelihood of calcinosis, periungual and gingival telangiectasias, and ulceration, but have a better long-term prognosis with improved survival. Adults with DM are more likely to have myositis-specific antibodies, develop interstitial lung disease, have amyopathic disease, and have a marked association with malignancy and other comorbidities. Both diseases have similar features on muscle biopsy and interferon gene signature, although subtle differences can exist in pathogenesis and pathology, such as more capillary loss and a greater degree of C5b-9 complement deposition in affected muscle of juvenile patients. Initiatives are underway to improve classification, markers of disease activity and ability to predict outcome of juvenile and adult DM. The purpose of this Review is to compare and contrast the unique features between juvenile and adult disease and to outline new initiatives in the field.
Collapse
Affiliation(s)
- Angela B Robinson
- Department of Pediatrics, Case Western Reserve University Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
46
|
Chiu YE, Co DO. Juvenile dermatomyositis: immunopathogenesis, role of myositis-specific autoantibodies, and review of rituximab use. Pediatr Dermatol 2011; 28:357-67. [PMID: 21793879 DOI: 10.1111/j.1525-1470.2011.01501.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Juvenile dermatomyositis (JDM) is an autoimmune disease of the skin and muscle that affects children. The etiology is poorly understood, but genetic susceptibility, environmental triggers, and abnormal immune responses are each thought to play a part. T cells have traditionally been implicated in the immunopathogenesis of JDM, but dendritic cells, B cells, and microchimerism are increasingly associated. Additionally, myositis-specific autoantibodies (MSA) can be present in the sera of affected patients and may correlate with distinct clinical phenotypes. Given the role of humoral immunity and MSA, there has been recent interest in the use of rituximab to treat JDM. Early results are mixed, but it is hoped that a prospective clinical trial will shed light on the issue in the near future.
Collapse
Affiliation(s)
- Yvonne E Chiu
- Division of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
47
|
Futata E, Azor M, Dos Santos J, Maruta C, Sotto M, Guedes F, Rivitti E, Duarte A, Sato M. Impaired IFN-α secretion by plasmacytoid dendritic cells induced by TLR9 activation in chronic idiopathic urticaria. Br J Dermatol 2011; 164:1271-9. [PMID: 21198536 DOI: 10.1111/j.1365-2133.2010.10198.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Understanding the early events of the immune response, through the activation of plasmacytoid dendritic cells (pDC) by Toll-like receptor (TLR)9-sensing, could contribute to the evaluation of immune dysregulation in chronic idiopathic urticaria (CIU). OBJECTIVES We decided to investigate innate immunity in CIU and the mechanisms implicated in the modulation of interferon (IFN)-α production by pDC upon TLR9 activation. METHODS Patients with CIU (n = 31) and healthy control subjects (HC, n = 36) were enrolled in the study. Leucocytes cultured with the TLR9 ligand, CpG type A, or with inhibitory-oligodeoxynucleotide (ODN) were used to determine IFN-α secretion by enzyme-linked immunosorbent assay. Enumeration of pDC, intracellular IFN-α and signal transducers and activators of transcription protein (STAT) (1 and 4) phosphorylation were assessed by flow cytometry. TLR9 and regulatory factor-7 mRNA transcripts were evaluated by real-time polymerase chain reaction. Evidence of pDC in the skin lesions of patients was analysed with immunohistochemistry staining. RESULTS The findings show a decreased IFN-α secretion induced by CpG A by leucocytes, due to the diminished IFN-α expression on pDC in CIU. It was mediated by TLR9-activation since inhibitory-ODN further suppressed TLR9-induced IFN-α secretion. A normal pDC percentage and degree of activation by the expression of costimulatory molecules was observed in CIU, with the rare presence of pDC in the skin lesion. In addition, an increased constitutive STAT1 phosphorylation on nonstimulated lymphocytes and a downregulation of TLR9 mRNA transcripts after CpG A activation were verified in patients with CIU. CONCLUSIONS The findings showed an innate immune response in CIU disturbed by impairment of the pDC response to TLR9 activation.
Collapse
Affiliation(s)
- E Futata
- University of São Paulo, Department of Dermatology, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Niewold TB, Wu SC, Smith M, Morgan GA, Pachman LM. Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics 2011; 127:e1239-46. [PMID: 21502224 PMCID: PMC3081190 DOI: 10.1542/peds.2010-3022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Familial aggregation of autoimmune diseases likely reflects shared pathogenic factors between different diseases. Familial aggregation of autoimmunity has not been examined in juvenile dermatomyositis. Interferon-α is thought to be a pathogenic factor in both systemic lupus erythematosus and juvenile dermatomyositis, and we have previously demonstrated familial aggregation of serum interferon-α. METHODS Family histories were obtained from 304 families of children with juvenile dermatomyositis via 3-generation structured interviews performed by the same person. Rates of autoimmune disease in families of children with juvenile dermatomyositis were compared with published population rates. Serum interferon-α, tumor necrosis factor-α, and neopterin were measured using standard techniques. RESULTS A total of 51% of families of children with juvenile dermatomyositis reported at least 1 additional member affected by an autoimmune disease. In particular, both type 1 diabetes and systemic lupus erythematosus were significantly more common than would be expected (odds ratio >5, P ≤ 1 × 10(-7) for both). Pedigree analysis showed particularly strong familial clustering of systemic lupus erythematosus with little decrease in incidence across generations, suggesting the possibility of rare causal genes with large effect. Untreated subjects with juvenile dermatomyositis with a family history of systemic lupus erythematosus had higher serum interferon-α than those who did not (P = .047). CONCLUSIONS We find strong familial aggregation of specific autoimmune diseases in families of children with juvenile dermatomyositis, suggesting that these conditions share pathogenic factors. Higher serum interferon-α in juvenile dermatomyositis patients with a family history of systemic lupus erythematosus suggesting that interferon-α is one such shared factor.
Collapse
Affiliation(s)
- Timothy B. Niewold
- Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Stephanie C. Wu
- University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Molly Smith
- Cure JM Program of Excellence, Children's Memorial Research Center, Chicago, Illinois; ,Wellesley College, Wellesley, Massachusetts; and
| | - Gabrielle A. Morgan
- Cure JM Program of Excellence, Children's Memorial Research Center, Chicago, Illinois
| | - Lauren M. Pachman
- Cure JM Program of Excellence, Children's Memorial Research Center, Chicago, Illinois; ,Division of Rheumatology, Department of Pediatrics, Feinberg School of Medicine, Children's Memorial Hospital, Northwestern University, Chicago, Illinois
| |
Collapse
|
49
|
|
50
|
Rider LG, Miller FW. Mast cells and type I interferon responses in the skin of patients with juvenile dermatomyositis: are current therapies just scratching the surface? ACTA ACUST UNITED AC 2010; 62:2619-22. [PMID: 20506242 DOI: 10.1002/art.27525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|