1
|
Al-Haidose A, Hassan S, Elhassan M, Ahmed E, Al-Riashi A, Alharbi YM, Ghunaim M, Alhejaili T, Abdallah AM. Role of ncRNAs in the Pathogenesis of Sjögren's Syndrome. Biomedicines 2024; 12:1540. [PMID: 39062113 PMCID: PMC11274537 DOI: 10.3390/biomedicines12071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome is a multisystemic autoimmune disease that mainly affects the exocrine glands, causing dryness of the eyes and the mouth as the principal symptoms. Non-coding RNAs (ncRNAs), once regarded as genomic "junk", are now appreciated as important molecular regulators of gene expression, not least in Sjögren's syndrome and other autoimmune diseases. Here we review research into the causative roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on immunological responses, inflammation, and salivary gland epithelial cell function in Sjögren's syndrome patients. These ncRNAs represent promising new therapeutic targets for treating the disease and possibly as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Sondoss Hassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Mahmoud Elhassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Eiman Ahmed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Abdulla Al-Riashi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Yazeed M. Alharbi
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Monther Ghunaim
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Talal Alhejaili
- Department of Gastroenterology, King Salman Medical City, Madinah 42319, Saudi Arabia;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| |
Collapse
|
2
|
Wu KY, Serhan O, Faucher A, Tran SD. Advances in Sjögren's Syndrome Dry Eye Diagnostics: Biomarkers and Biomolecules beyond Clinical Symptoms. Biomolecules 2024; 14:80. [PMID: 38254680 PMCID: PMC10812982 DOI: 10.3390/biom14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Sjögren's syndrome dry eye (SSDE) is a subset of Sjögren's syndrome marked by dry eye symptoms that is distinct from non-Sjögren's syndrome dry eye (NSSDE). As SSDE can lead to severe complications, its early detection is imperative. However, the differentiation between SSDE and NSSDE remains challenging due to overlapping clinical manifestations. This review endeavors to give a concise overview of the classification, pathophysiology, clinical features and presentation, ocular and systemic complications, clinical diagnosis, and management of SSDE. Despite advancements, limitations in current diagnostic methods underscore the need for novel diagnostic modalities. Thus, the current review examines various diagnostic biomarkers utilized for SSDE identification, encompassing serum, salivary, and tear analyses. Recent advancements in proteomic research and exosomal biomarkers offer promising diagnostic potential. Through a comprehensive literature review spanning from 2016 to 2023, we highlight molecular insights and advanced diagnostic modalities that have the potential to enhance our understanding and diagnosis of SSDE.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.); (A.F.)
| | - Olivia Serhan
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.); (A.F.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
5
|
Ferrant J, Pontis A, Zimmermann F, Dingli F, Poullet P, Loew D, Tarte K, Dumontet E. Phenotypic and proteomic analysis of plasma extracellular vesicles highlights them as potential biomarkers of primary Sjögren syndrome. Front Immunol 2023; 14:1207545. [PMID: 37529039 PMCID: PMC10388367 DOI: 10.3389/fimmu.2023.1207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/14/2023] [Indexed: 08/03/2023] Open
Abstract
Sjögren syndrome (SjS) is an autoimmune disease characterized by the destruction of the exocrine gland epithelia, causing a dryness of mucosa called sicca symptoms, and whose main life-threatening complication is lymphoma. There is a need for new biomarkers in this disease, notably diagnostic biomarkers for patients with genuine sicca symptoms that do not meet current criteria, and prognostic biomarkers for patients at risk of lymphoma. Plasma extracellular vesicles (EVs) are promising biomarker candidates in several diseases, but their potential has not yet been explored in SjS. In this proof-of-concept study, we characterized EVs from primary SjS patients (pSS, n=12) at the phenotypic and proteomic levels, compared to EVs from healthy donor (HD, n=8) and systemic lupus erythematosus patients (SLE, n=12). Specific plasma EVs subpopulations, derived from neutrophils, endothelial, and epithelial cells, were found increased in pSS. We also identified a pSS proteomic signature in plasma EVs, including neutrophil-, epithelial-, and endothelial-related proteins, such as integrin alpha M (ITGAM), olfactomedin-4 (OLFM4), Ras-related protein RAB10, and CD36. Overall, our results support the relevance of plasma EVs as biomarkers in SjS.
Collapse
Affiliation(s)
- Juliette Ferrant
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| | - Adeline Pontis
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - François Zimmermann
- Département de Médecine Interne et Immunologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Patrick Poullet
- Institut Curie, PSL Research University, INSERM, Mines Paris Tech, Bioinformatics core facility (CUBIC), Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Karin Tarte
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| | - Erwan Dumontet
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| |
Collapse
|
6
|
Carvajal P, Aguilera S, Jara D, Indo S, Barrera MJ, González S, Molina C, Heathcote B, Hermoso M, Castro I, González MJ. hsa-miR-424-5p and hsa-miR-513c-3p dysregulation mediated by IFN-γ is associated with salivary gland dysfunction in Sjögren's syndrome patients. J Autoimmun 2023; 138:103037. [PMID: 37229808 DOI: 10.1016/j.jaut.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Salivary secretory dysfunction in SS-patients is associated with altered proteostasis, upregulation of ATF6α and components of the ERAD complex, such as SEL1L, and downregulation of XBP-1s and GRP78. Hsa-miR-424-5p is downregulated and hsa-miR-513c-3p is overexpressed in salivary glands from SS-patients. These miRNAs emerged as candidates that could regulate ATF6/SEL1L and XBP-1s/GRP78 levels, respectively. This study aimed to evaluate the effect of IFN-γ on hsa-miR-424-5p and hsa-miR-513c-3p expression and how these miRNAs regulate their targets. In labial salivary glands (LSG) biopsies from 9 SS-patients and 7 control subjects and IFN-γ-stimulated 3D-acini were analyzed. hsa-miR-424-5p and hsa-miR-513c-3p levels were measured by TaqMan assays and their localization by ISH. mRNA, protein levels, and localization of ATF6, SEL1L, HERP, XBP-1s and GRP78 were determined by qPCR, Western blot, or immunofluorescence. Functional and interaction assays were also performed. In LSGs from SS-patients and IFN-γ-stimulated 3D-acini, hsa-miR-424-5p was downregulated and ATF6α and SEL1L were upregulated. ATF6α and SEL1L were decreased after hsa-miR-424-5p overexpression, while ATF6α, SEL1L and HERP increased after hsa-miR-424-5p silencing. Interaction assays revealed that hsa-miR-424-5p targets ATF6α directly. hsa-miR-513c-3p was upregulated and XBP-1s and GRP78 were downregulated. XBP-1s and GRP78 were decreased after hsa-miR-513c-3p overexpression, while increases in XBP-1s and GRP78 were observed after hsa-miR-513c-3p silencing. Furthermore, we determined that hsa-miR-513c-3p targets XBP-1s directly. Significant correlations were found between both miRNA levels and clinical parameters. In conclusion, IFN-γ-dependent hsa-miR-424-5p and hsa-miR-513c-3p levels affect the expression of important factors involved in cellular proteostasis that control secretory function in LSG from SS-patients.
Collapse
Affiliation(s)
- Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Sergio Aguilera
- Clínica INDISA, Av. Sta. María 1810, 7520440, Providencia, Santiago, Chile.
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Sebastián Indo
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Alameda Libertador Bernardo O'Higgins N° 2027 (ex 2013), 8340585, Santiago, Santiago, Chile.
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - Benjamín Heathcote
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| |
Collapse
|
7
|
Kamounah S, Sembler-Møller ML, Nielsen CH, Pedersen AML. Sjögren's syndrome: novel insights from proteomics and miRNA expression analysis. Front Immunol 2023; 14:1183195. [PMID: 37275849 PMCID: PMC10232878 DOI: 10.3389/fimmu.2023.1183195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Sjögren's syndrome (SS) is a systemic autoimmune disease, which affects the exocrine glands leading to glandular dysfunction and, particularly, symptoms of oral and ocular dryness. The aetiology of SS remains unclear, and the disease lacks distinctive clinical features. The current diagnostic work-up is complex, invasive and often time-consuming. Thus, there is an emerging need for identifying disease-specific and, ideally, non-invasive immunological and molecular biomarkers that can simplify the diagnostic process, allow stratification of patients, and assist in monitoring the disease course and outcome of therapeutic intervention in SS. Methods This systematic review addresses the use of proteomics and miRNA-expression profile analyses in this regard. Results and discussion Out of 272 papers that were identified and 108 reviewed, a total of 42 papers on proteomics and 23 papers on miRNA analyses in saliva, blood and salivary gland tissue were included in this review. Overall, the proteomic and miRNA studies revealed considerable variations with regard to candidate biomarker proteins and miRNAs, most likely due to variation in sample size, processing and analytical methods, but also reflecting the complexity of SS and patient heterogeneity. However, interesting novel knowledge has emerged and further validation is needed to confirm their potential role as biomarkers in SS.
Collapse
Affiliation(s)
- Sarah Kamounah
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne Marie Lynge Pedersen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
9
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
12
|
Wu KY, Kulbay M, Tanasescu C, Jiao B, Nguyen BH, Tran SD. An Overview of the Dry Eye Disease in Sjögren's Syndrome Using Our Current Molecular Understanding. Int J Mol Sci 2023; 24:1580. [PMID: 36675090 PMCID: PMC9866656 DOI: 10.3390/ijms24021580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious auto-immune disease characterized by lymphocyte infiltration of exocrine glands. The patients typically present with ocular surface diseases related to dry eye and other systemic manifestations. However, due to the high prevalence of dry eye disease and the lack of objective and clinically reliable diagnostic tools, discriminating Sjögren's syndrome dry eye (SSDE) from non-Sjögren's syndrome dry eye (NSSDE) remains a challenge for clinicians. Diagnosing SS is important to improve the quality of life of patients through timely referral for systemic workups, as SS is associated with serious systemic complications such as lymphoma and other autoimmune diseases. The purpose of this article is to describe the current molecular understanding of Sjögren's syndrome and its implications for novel diagnostic modalities on the horizon. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. The SSDE pathophysiology and immunology pathways have become better understood in recent years. Novel diagnostic modalities, such as tear and saliva proteomics as well as exosomal biomarkers, provide hope on the horizon.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Cristina Tanasescu
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
| | - Belinda Jiao
- Department of Medicine, Division of Internal Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Bich H. Nguyen
- CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Zhao J, An Q, Zhu X, Yang B, Gao X, Niu Y, Zhang L, Xu K, Ma D. Research status and future prospects of extracellular vesicles in primary Sjögren's syndrome. Stem Cell Res Ther 2022; 13:230. [PMID: 35659085 PMCID: PMC9166483 DOI: 10.1186/s13287-022-02912-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a diffuse connective tissue disease characterized by the invasion of exocrine glands such as lacrimal and salivary glands, abnormal proliferation of T and B lymphocytes, and infiltration of tissue lymphocytes. With the development of modern medicine, although research on the pathogenesis, diagnosis, and treatment of pSS has made significant progress, its pathogenesis has not been fully understood. Meanwhile, in the era of individualized treatment, it remains essential to further explore early diagnosis and treatment methods. Exosomes, small vesicles containing proteins and nucleic acids, are a subtype of extracellular vesicles secreted by various cells and present in various body fluids. Exosomes contribute to a variety of biological functions, including intercellular signal transduction and pathophysiological processes, and may play a role in immune tolerance. Therefore, exosomes are key to understanding the pathogenesis of diseases. Exosomes can also be used as a therapeutic tool for pSS because of their biodegradability, low immunogenicity and toxicity, and the ability to bypass the blood–brain barrier, implying the prospect of a broad application in the context of pSS. Here, we systematically review the isolation, identification, tracing, and mode of action of extracellular vesicles, especially exosomes, as well as the research progress in the pathogenesis, diagnosis, and treatment of pSS.
Collapse
Affiliation(s)
- Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhu Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56, Xinjian South Rd., Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
14
|
Li P, Han M, Zhao X, Ren G, Mei S, Zhong C. Abnormal Epigenetic Regulations in the Immunocytes of Sjögren's Syndrome Patients and Therapeutic Potentials. Cells 2022; 11:1767. [PMID: 35681462 PMCID: PMC9179300 DOI: 10.3390/cells11111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren's syndrome (SjS), characterized by keratoconjunctivitis sicca and dry mouth, is a common autoimmune disease, especially in middle-aged women. The immunopathogenesis of SjS is caused by the sequential infiltration of T and B cells into exocrine glands, including salivary and lacrimal glands. Effector cytokines produced by these immunocytes, such as interferons (IFNs), IL-17, IL-22, IL-21, IL-4, TNF-α, BAFF and APRIL, play critical roles in promoting autoimmune responses and inducing tissue damages. Epigenetic regulations, including DNA methylation, histone modification and non-coding RNAs, have recently been comprehensively studied during the activation of various immunocytes. The deficiency of key epigenetic enzymes usually leads to aberrant immune activation. Epigenetic modifications in T and B cells are usually found to be altered during the immunopathogenesis of SjS, and they are closely correlated with autoimmune responses. In particular, the important role of methylation in activating IFN pathways during SjS progression has been revealed. Thus, according to the involvement of epigenetic regulations in SjS, target therapies to reverse the altered epigenetic modifications in auto-responsive T and B cells are worthy of being considered as a potential therapeutic strategy for SjS.
Collapse
Affiliation(s)
- Peng Li
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Mengwei Han
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Xingyu Zhao
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Guanqun Ren
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Si Mei
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Chao Zhong
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
15
|
Syed NH, Shahidan WNS, Shatriah I, Zunaina E. MicroRNA Profiling of the Tears of Children With Vernal Keratoconjunctivitis. Front Genet 2022; 13:847168. [PMID: 35495169 PMCID: PMC9039132 DOI: 10.3389/fgene.2022.847168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vernal Keratoconjunctivitis (VKC) is a chronic conjunctival inflammatory condition that typically affects children. Extracellular microRNAs (miRNAs) are small noncoding RNA molecules, the expression of which is reported to regulate cellular processes implicated in several eye diseases. The aim of this preliminary study is to identify the miRNA expression profile in the tears of children with VKC vis-à-vis controls, and to statistically evaluate these miRNAs as potential diagnostic biomarkers of VKC. The study involved a VKC group and a control group. Tear specimens were collected using Schirmer’s strips. RNA was isolated using miRNeasy Micro kit and quantification was performed using an Agilent Bioanalyzer RNA 6000 Nano kit and Small RNA kit. miRNA profiling was performed using the Agilent microarray technique. A total of 51 miRNAs (48 upregulated and three downregulated) were differentially expressed in the tears of children with VKC and controls. The three most significantly upregulated miRNAs were hsa-miR-1229-5p, hsa-miR-6821-5p, and hsa-miR-6800-5p, and the three most significantly downregulated miRNAs were hsa-miR-7975, hsa-miR-7977, and hsa-miR-1260a. All the upregulated miRNAs are potential diagnostic biomarkers of VKC pending validation due to their larger discriminatory area under the curve (AUC) values. miRNA target prediction analysis revealed multiple overlapping genes that are known to play a role in conjunctival inflammation. We identified a set of differentially expressed miRNAs in the tears of children with VKC that may play a role in VKC pathogenesis. This study serves as the platform study for future miRNA studies that will provide a deeper understanding of the pathophysiology of VKC.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Nazatul Shima Shahidan
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ismail Shatriah
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
- *Correspondence: Ismail Shatriah,
| | - Embong Zunaina
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
| |
Collapse
|
16
|
Kakan SS, Edman MC, Yao A, Okamoto CT, Nguyen A, Hjelm BE, Hamm-Alvarez SF. Tear miRNAs Identified in a Murine Model of Sjögren's Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol 2022; 13:833254. [PMID: 35309364 PMCID: PMC8931289 DOI: 10.3389/fimmu.2022.833254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexander Yao
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Annie Nguyen
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Beretta F, Huang YF, Punga AR. Towards Personalized Medicine in Myasthenia Gravis: Role of Circulating microRNAs miR-30e-5p, miR-150-5p and miR-21-5p. Cells 2022; 11:cells11040740. [PMID: 35203389 PMCID: PMC8870722 DOI: 10.3390/cells11040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fatigable skeletal muscle weakness with a fluctuating unpredictable course. One main concern in MG is the lack of objective biomarkers to guide individualized treatment decisions. Specific circulating serum microRNAs (miRNAs) miR-30e-5p, miR-150-5p and miR-21-5p levels have been shown to correlate with clinical course in specific MG patient subgroups. The aim of our study was to better characterize these miRNAs, regardless of the MG subgroup, at an early stage from diagnosis and determine their sensitivity and specificity for MG diagnosis, as well as their predictive power for disease relapse. Serum levels of these miRNAs in 27 newly diagnosed MG patients were compared with 245 healthy individuals and 20 patients with non-MG neuroimmune diseases. Levels of miR-30e-5p and miR-150-5p significantly differed between MG patients and healthy controls; however, no difference was seen compared with patients affected by other neuroimmune diseases. High levels of miR-30e-5p predicted MG relapse (p = 0.049) with a hazard ratio of 2.81. In summary, miR-150-5p is highly sensitive but has low specificity for MG, while miR-30e-5p has the greatest potential as a predictive biomarker for the disease course in MG, regardless of subgroup.
Collapse
Affiliation(s)
- Francesca Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Yu-Fang Huang
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
| | - Anna Rostedt Punga
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|
18
|
Pontarini E, Coleby R, Bombardieri M. Cellular and molecular diversity in Sjogren's syndrome salivary glands: Towards a better definition of disease subsets. Semin Immunol 2021; 58:101547. [PMID: 34876330 DOI: 10.1016/j.smim.2021.101547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
19
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Imgenberg-Kreuz J, Rasmussen A, Sivils K, Nordmark G. Genetics and epigenetics in primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:2085-2098. [PMID: 30770922 PMCID: PMC8121440 DOI: 10.1093/rheumatology/key330] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren’s syndrome (pSS) is considered to be a multifactorial disease, where underlying genetic predisposition, epigenetic mechanisms and environmental factors contribute to disease development. In the last 5 years, the first genome-wide association studies in pSS have been completed. The strongest signal of association lies within the HLA genes, whereas the non-HLA genes IRF5 and STAT4 show consistent associations in multiple ethnicities but with a smaller effect size. The majority of the genetic risk variants are found at intergenic regions and their functional impact has in most cases not been elucidated. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs play a role in the pathogenesis of pSS by their modulating effects on gene expression and may constitute a dynamic link between the genome and phenotypic manifestations. This article reviews the hitherto published genetic studies and our current understanding of epigenetic mechanisms in pSS.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Astrid Rasmussen
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy Sivils
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Jara D, Carvajal P, Castro I, Barrera MJ, Aguilera S, González S, Molina C, Hermoso M, González MJ. Type I Interferon Dependent hsa-miR-145-5p Downregulation Modulates MUC1 and TLR4 Overexpression in Salivary Glands From Sjögren's Syndrome Patients. Front Immunol 2021; 12:685837. [PMID: 34149728 PMCID: PMC8208490 DOI: 10.3389/fimmu.2021.685837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease that mainly affects salivary glands (SG) and is characterized by overactivation of the type I interferon (IFN) pathway. Type I IFNs can decrease the levels of hsa-miR-145-5p, a miRNA with anti-inflammatory roles that is downregulated in SG from SS-patients. Two relevant targets of hsa-miR-145-5p, mucin 1 (MUC1) and toll-like receptor 4 (TLR4) are overexpressed in SS-patients and contribute to SG inflammation and dysfunction. This study aimed to evaluate if hsa-miR-145-5p modulates MUC1 and TLR4 overexpression in SG from SS-patients in a type I IFN dependent manner. Labial SG (LSG) biopsies from 9 SS-patients and 6 controls were analyzed. We determined hsa-miR-145-5p levels by TaqMan assays and the mRNA levels of MUC1, TLR4, IFN-α, IFN-β, and IFN-stimulated genes (MX1, IFIT1, IFI44, and IFI44L) by real time-PCR. We also performed in vitro assays using type I IFNs and chemically synthesized hsa-miR-145-5p mimics and inhibitors. We validated the decreased hsa-miR-145-5p levels in LSG from SS-patients, which inversely correlated with the type I IFN score, mRNA levels of IFN-β, MUC1, TLR4, and clinical parameters of SS-patients (Ro/La autoantibodies and focus score). IFN-α or IFN-β stimulation downregulated hsa-miR-145-5p and increased MUC1 and TLR4 mRNA levels. Hsa-miR-145-5p overexpression decreased MUC1 and TLR4 mRNA levels, while transfection with a hsa-miR-145-5p inhibitor increased mRNA levels. Our findings show that type I IFNs decrease hsa-miR-145-5p expression leading to upregulation of MUC1 and TLR4. Together, this suggests that type I interferon-dependent hsa-miR-145-5p downregulation contributes to the perpetuation of inflammation in LSG from SS-patients.
Collapse
Affiliation(s)
- Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Zhang Z, Liang X, Zhou J, Meng M, Gao Y, Yi G, Fu M. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res 2021; 209:108626. [PMID: 34087205 DOI: 10.1016/j.exer.2021.108626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Exosomes have diverse functions and rich content and are involved in intercellular communication, immune regulation, viral infection, tissue regeneration, and the occurrence, development and metastasis of tumours. Notably, various stem cell-derived exosomes are expected to become new therapeutic approaches for inflammatory diseases and tumours and have good clinical application prospects. However, few studies have examined exosomes in ophthalmic diseases. Therefore, based on the functions of exosomes, this paper summarizes progress in the possible use of exosomes as treatment for specific ophthalmic diseases, aiming to determine the pathogenesis of exosomes to achieve more effective clinical diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihan Zhang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotian Liang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhou
- Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Meng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Ya Gao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063203. [PMID: 33801157 PMCID: PMC8004153 DOI: 10.3390/ijms22063203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable interest in delineating the molecular mechanisms of action of transforming growth factor-β (TGF-β), considered as central player in a plethora of human conditions, including cancer, fibrosis and autoimmune disease. TGF-β elicits its biological effects through membrane bound serine/threonine kinase receptors which transmit their signals via downstream signalling molecules, SMADs, which regulate the transcription of target genes in collaboration with various co-activators and co-repressors. Until now, therapeutic strategy for primary Sjögren’s syndrome (pSS) has been focused on inflammation, but, recently, the involvement of TGF-β/SMADs signalling has been demonstrated in pSS salivary glands (SGs) as mediator of the epithelial-mesenchymal transition (EMT) activation. Although EMT seems to cause pSS SG fibrosis, TGF-β family members have ambiguous effects on the function of pSS SGs. Based on these premises, this review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in pSS that are dictated by orchestrations of SMADs, and describe TGF-β/SMADs value as both disease markers and/or therapeutic target for pSS.
Collapse
|
25
|
Roszkowska AM, Oliverio GW, Aragona E, Inferrera L, Severo AA, Alessandrello F, Spinella R, Postorino EI, Aragona P. Ophthalmologic Manifestations of Primary Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12030365. [PMID: 33806489 PMCID: PMC7998625 DOI: 10.3390/genes12030365] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic, progressive, inflammatory, autoimmune disease, characterized by the lymphocyte infiltration of exocrine glands, especially the lacrimal and salivary, with their consequent destruction. The onset of primary SS (pSS) may remain misunderstood for several years. It usually presents with different types of severity, e.g., dry eye and dry mouth symptoms, due to early involvement of the lacrimal and salivary glands, which may be associated with parotid enlargement and dry eye; keratoconjunctivitis sicca (KCS) is its most common ocular manifestation. It is still doubtful if the extent ocular surface manifestations are secondary to lacrimal or meibomian gland involvement or to the targeting of corneal and conjunctival autoantigens. SS is the most representative cause of aqueous deficient dry eye, and the primary role of the inflammatory process was evidenced. Recent scientific progress in understanding the numerous factors involved in the pathogenesis of pSS was registered, but the exact mechanisms involved still need to be clarified. The unquestionable role of both the innate and adaptive immune system, participating actively in the induction and evolution of the disease, was recognized. The ocular surface inflammation is a central mechanism in pSS leading to the decrease of lacrimal secretion and keratoconjunctival alterations. However, there are controversies about whether the ocular surface involvement is a direct autoimmune target or secondary to the inflammatory process in the lacrimal gland. In this review, we aimed to present actual knowledge relative to the pathogenesis of the pSS, considering the role of innate immunity, adaptive immunity, and genetics.
Collapse
Affiliation(s)
- Anna Maria Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
- Correspondence:
| | - Giovanni William Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Leandro Inferrera
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Alice Antonella Severo
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Federica Alessandrello
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Elisa Imelde Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| |
Collapse
|
26
|
Chatzis L, Vlachoyiannopoulos PG, Tzioufas AG, Goules AV. New frontiers in precision medicine for Sjogren's syndrome. Expert Rev Clin Immunol 2021; 17:127-141. [PMID: 33478279 DOI: 10.1080/1744666x.2021.1879641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Sjögren's syndrome is a unique systemic autoimmune disease, placed in the center of systemic autoimmunity and at the crossroads of autoimmunity and lymphoproliferation. The diverse clinical picture of the disease, the inefficacy of current biologic treatments, and the co-existence with lymphoma conferring to the patients' morbidity and mortality force the scientific community to review disease pathogenesis and reveal the major implicated cellular and molecular elements.Areas covered: Biomarkers for early diagnosis, prediction, stratification, monitoring, and targeted treatments can serve as a tool to interlink and switch from the clinical phenotyping of the disease into a more sophisticated classification based on the underlying critical molecular pathways and endotypes. Such a transition may define the establishment of the so-called precision medicine era in which patients' management will be based on grouping according to pathogenetically related biomarkers. In the current work, literature on Sjogren's syndrome covering several research fields including clinical, translational, and basic research has been reviewed.Expert opinion: The perspectives of clinical and translational research are anticipated to define phenotypic clustering of high-risk pSS patients and link the clinical picture of the disease with fundamental molecular mechanisms and molecules implicated in pathogenesis.
Collapse
Affiliation(s)
- Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Li F, Liu Z, Zhang B, Jiang S, Wang Q, Du L, Xue H, Zhang Y, Jin M, Zhu X, Brown MA, Wu J, Wang X. Circular RNA sequencing indicates circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers of primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 59:2603-2615. [PMID: 32250392 DOI: 10.1093/rheumatology/keaa163] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aims to characterize the expression profiles of circRNAs in primary Sjogren's Syndrome (pSS) and examine the potential of noninvasive circular RNAs (circRNAs) as biomarkers of pSS. METHODS We performed RNA sequencing of minor salivary gland (MSG) biopsies from four pSS and four non-pSS individuals (subjects undergoing MSG biopsies but not meeting 2012 or 2016 ACR classification criteria for SS). Differentially expressed circRNAs were identified by DESeq2, and confirmed by quantitative real-time PCR in the MSGs as well as in plasma exosomes in 37 pSS and 14 non-pSS subjects. Discriminatory capacity testing using receiver operating characteristic analysis was used to evaluate the performance of circRNAs as diagnostic biomarkers for pSS. RESULTS Circ-IQGAP2 and circ-ZC3H6 had significantly upregulated expression in the MSGs of pSS patients, and this elevated expression was confirmed by quantitative real-time PCR of plasma exosome RNA. The expression of these circRNAs also showed significant correlation with both clinical features, serum IgG level and MSG focus scores. Receiver operating characteristic analysis showed that the indices comprised of both the two circRNAs and clinical features were better able to distinguish pSS from non-pSS subjects with high mean areas under the curve of 0.93 in the MSGs and 0.92 in the plasma exosomes. CONCLUSION This study indicated the potential roles of circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers for the diagnosis of pSS.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Bing Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Qiongdan Wang
- Institute of Genomic Medicine, Wenzhou Medical University.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Huangqi Xue
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Mengmeng Jin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Matthew A Brown
- Guy's & St Thomas NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK.,Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Oyelakin A, Horeth E, Song EAC, Min S, Che M, Marzullo B, Lessard CJ, Rasmussen A, Radfar L, Scofield RH, Lewis DM, Stone DU, Grundahl K, De Rossi SS, Kurago Z, Farris AD, Sivils KL, Sinha S, Kramer JM, Romano RA. Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome. Front Immunol 2021; 11:606268. [PMID: 33488608 PMCID: PMC7821166 DOI: 10.3389/fimmu.2020.606268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized primarily by immune-mediated destruction of exocrine tissues, such as those of the salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively. This disease predominantly affects middle-aged women, often in an insidious manner with the accumulation of subtle changes in glandular function occurring over many years. Patients commonly suffer from pSS symptoms for years before receiving a diagnosis. Currently, there is no effective cure for pSS and treatment options and targeted therapy approaches are limited due to a lack of our overall understanding of the disease etiology and its underlying pathology. To better elucidate the underlying molecular nature of this disease, we have performed RNA-sequencing to generate a comprehensive global gene expression profile of minor salivary glands from an ethnically diverse cohort of patients with pSS. Gene expression analysis has identified a number of pathways and networks that are relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a primary Sjögren’s syndrome molecular signature that may represent important players acting as potential drivers of this disease. Finally, we have established that the global transcriptomic changes in pSS are likely to be attributed not only to various immune cell types within the salivary gland but also epithelial cells which are likely playing a contributing role. Overall, our comprehensive studies provide a database-enriched framework and resource for the identification and examination of key pathways, mediators, and new biomarkers important in the pathogenesis of this disease with the long-term goals of facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this debilitating disease.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brandon Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher J Lessard
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Lida Radfar
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - R Hal Scofield
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veteran's Affairs Medical Center, Oklahoma City, OK, United States
| | - David M Lewis
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donald U Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kiely Grundahl
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Scott S De Rossi
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Zoya Kurago
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - A Darise Farris
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kathy L Sivils
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Xu K, Liu Q, Wu K, Liu L, Zhao M, Yang H, Wang X, Wang W. Extracellular vesicles as potential biomarkers and therapeutic approaches in autoimmune diseases. J Transl Med 2020; 18:432. [PMID: 33183315 PMCID: PMC7664085 DOI: 10.1186/s12967-020-02609-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are heterogeneous populations of naturally occurring secreted small vesicles. EVs function as signaling platforms to facilitate intracellular communication, which indicates the physiological or pathophysiological conditions of cells or tissues. Considering that EVs can be isolated from most body fluids and that molecular constituents could be reprogrammed according to the physiological status of the secreting cells, EVs are regarded as novel diagnostic and prognostic biomarkers for many diseases. The ability to protect encapsulated molecules from degradation in body fluids suggests the potential of EVs as biological medicines or drug delivery systems. This article focuses on the EV-associated biomarkers and therapeutic approaches in autoimmune diseases.
Collapse
Affiliation(s)
- Kaiyuan Xu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qin Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Kaihui Wu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Liu Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hui Yang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
30
|
Gong B, Zheng L, Lu Z, Huang J, Pu J, Pan S, Zhang M, Liu J, Tang J. Mesenchymal stem cells negatively regulate CD4<sup>+</sup> T cell activation in patients with primary Sjögren syndrome through the miRNA‑125b and miRNA‑155 TCR pathway. Mol Med Rep 2020; 23:43. [PMID: 33179091 DOI: 10.3892/mmr.2020.11681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment with mesenchymal stem cells (MSCs) has been revealed to suppress CD4<sup>+</sup> T cells and autoimmunity in both mouse models and patients with primary Sjögren syndrome (pSS); however, the underlying mechanism remains unclear. MicroRNAs (miRNAs or miRs) mediate CD4<sup>+</sup> T cell activation, but the mechanism is not understood, particularly for CD4<sup>+</sup> T cells treated with MSCs. Characterization of miRNAs may reveal pSS pathogenesis, guide MSC treatment and provide more personalized management options. The present study aimed to perform an miRNome analysis of quiescent and T cell receptor (TCR)‑activated CD4<sup>+</sup> T cells treated with MSCs via miRNA profiles and bioinformatics. Following 72 h of co‑culture, MSCs inhibited TCR‑induced CD4<sup>+</sup> T cell activation and decreased IFN‑γ levels. The numbers of aberrant miRNAs in pSS naïve (vs. healthy naïve), pSS activation (vs. pSS naïve), MSC treatment and pre‑IFN‑γ MSC treatment (vs. pSS activation) groups were 42, 55, 27 and 32, respectively. Gene enrichment analysis revealed that 259 pathways were associated with CD4<sup>+</sup> T cell stimulation, and 240 pathways were associated with MSC treatment. Increased miRNA‑7150 and miRNA‑5096 and decreased miRNA‑125b‑5p and miRNA‑22‑3p levels in activated CD4<sup>+</sup> T cells from patients with pSS were reversed by MSC treatment. Notably, the proliferation of CD4<sup>+</sup> T cells and CD4<sup>+</sup> IFN‑γ<sup>+</sup> cells, expression levels of miRNA‑125b‑5p and miRNA‑155 in CD4<sup>+</sup> T cells and supernatant IFN‑γ secretion were associated with disease activity. miRNA may play a vital role in MSC treatment for activated CD4<sup>+</sup> T cells. The results indicated that the expression levels of miRNA‑125b‑5p and miRNA‑155 in TCR‑activated CD4<sup>+</sup> T cells from patients with pSS may provide insight regarding autoimmune diseases and offer a novel target for prospective treatment. Therefore, these results may be crucial in providing MSC treatment for pSS.
Collapse
Affiliation(s)
- Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ling Zheng
- Division of Respiratory Medicine, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhenhao Lu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jiashu Huang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jincheng Pu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shengnan Pan
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Min Zhang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jie Liu
- Center for Regenerative Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Jianping Tang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
31
|
Sembler-Møller ML, Belstrøm D, Locht H, Pedersen AML. Distinct microRNA expression profiles in saliva and salivary gland tissue differentiate patients with primary Sjögren's syndrome from non-Sjögren's sicca patients. J Oral Pathol Med 2020; 49:1044-1052. [PMID: 32799333 DOI: 10.1111/jop.13099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Increasing evidence suggests that aberrant expression of microRNAs (miRNAs) is involved in the pathogenesis of primary Sjögren's syndrome (pSS). The aim was thus to characterize the miRNA profile in saliva, salivary gland tissue, and plasma from patients with pSS and compare findings with those of patients having Sjögren-like disease (non-pSS). In addition, to correlate miRNA levels and clinicopathological features of pSS. METHODS miRNA real-time quantitative polymerase chain reaction was performed on saliva, plasma, and salivary gland tissue samples from 24 patients with pSS and 16 non-pSS in 384-well plates. T test was used for comparison of miRNA profiles, followed by Benjamini-Hochberg correction. The discriminatory power of miRNAs was evaluated by receiver-operating characteristic curves, and Pearson/Spearman correlation was used for correlation analyses. RESULTS In saliva, 14 miRNAs were significantly differentially expressed between pSS and non-pSS, including downregulation of the miR-17 family in pSS. In salivary gland tissue of patients with pSS, miR-29a-3p was significantly upregulated. Plasma miRNAs did not differ between the two groups, although the miR-17 family tended to be downregulated. The combination of miR-17-5p and let-7i-5p in saliva yielded an area under curve of 97% (CI 92%-100%). Several miRNAs correlated significantly with one another and with salivary flow rates and histopathology. CONCLUSION Our findings indicate that the miRNA expression profile in saliva may enable to discriminate between pSS and non-pSS patients. However, further validation in larger cohorts is needed as well as functional analyses of the miRNAs of interest.
Collapse
Affiliation(s)
- Maria Lynn Sembler-Møller
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Locht
- Department of Rheumatology, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Anne Marie Lynge Pedersen
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Huang Y, Li R, Ye S, Lin S, Yin G, Xie Q. Recent Advances in the Use of Exosomes in Sjögren's Syndrome. Front Immunol 2020; 11:1509. [PMID: 32903777 PMCID: PMC7438915 DOI: 10.3389/fimmu.2020.01509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder of the exocrine glands mediated by lymphocytic infiltrates damaging the body tissues and affecting the life quality of patients. Although traditional methods of diagnosis and treatment for SS are effective, in the time of personalized medicine, new biomarkers, and novel approaches are required for the detection and treatment of SS. Exosomes represent an emerging field in the discovery of biomarkers and the management of SS. Exosomes, a subtype of extracellular vesicles, are secreted by various cell types and can be found in most bodily fluids. Exosomes are packed with cytokines and other proteins, bioactive lipids, and nucleic acids (mRNA, circular RNA, non-coding RNA, tRNA, microRNA, genomic DNA, and ssDNA), and transport such cargo between cells. Evidence has indicated that exosomes may play roles in processes such as the modulation of the immune response and activation of inflammation. Moreover, due to features such as stability, low immunogenicity and toxicity, long half-life, and the capacity to penetrate the blood-brain barrier, exosomes have also emerged as therapeutic tools for SS. In this review, we summarize existing literature regarding the biogenesis, isolation, and function of exosomes, specifically focusing on exosomes as novel biomarkers and their potential therapeutic uses in SS.
Collapse
Affiliation(s)
- Yupeng Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Ye
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Sang Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Yang Y, Hou Y, Li J, Zhang F, Du Q. Characterization of antiapoptotic microRNAs in primary Sjögren's syndrome. Cell Biochem Funct 2020; 38:1111-1118. [PMID: 32575162 DOI: 10.1002/cbf.3569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/02/2023]
Abstract
During the development of primary Sjögren's syndrome (pSS), aberrant expression of autoantigen is a hallmark event. To explore the regulation of autoantigen tripartite motif containing 21 (Ro/SSA, TRIM21), microRNA profiling was performed in our previous study. In which, two TRIM21-targeting microRNAs were identified, namely miR-1207-5p and miR-4695-3p. To further pursue their roles in the development of pSS, assays were performed with cultured human submandibular gland (HSG) cells, and salivary gland tissues. Results showed that transfection of miR-1207-5p or miR-4695-3p mimics down-regulated not only the expression of TRIM21, but also the levels of pro-apoptotic genes B cell lymphoma 2 associated X (BAX), Caspase 9 (CASP-9) and Caspase 8 (CASP-8). This finally led to antiapoptotic phenotypes in HSG cells. Consistent with the antiapoptotic activity, transfection of microRNA inhibitors up-regulated the expression of TRIM21 and led to a pro-apoptotic phenotype. These therefore propose miR-1207-5p and miR-4695-3p as two antiapoptotic microRNAs functioning through apoptosis pathway. Supporting this speculation, assays performed with salivary gland tissues revealed down-regulation of miR-1207-5p and miR-4695-3p, as well as up-regulation of TRIM21 and pro-apoptotic CASP-8 gene in pSS samples. SIGNIFICANCE OF THE STUDY: For pSS patients, apoptosis of acinar and ductal epithelial cells has been proposed to be a potential mechanism that impairs the secretion of salivary glands. In our study, two autoantigen-targeting microRNAs were characterized as antiapoptotic microRNAs functioning through apoptosis pathway, which may be potential targets for the treatment of pSS.
Collapse
Affiliation(s)
- Ying Yang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingzi Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jinghui Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fangming Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Cortes-Troncoso J, Jang SI, Perez P, Hidalgo J, Ikeuchi T, Greenwell-Wild T, Warner BM, Moutsopoulos NM, Alevizos I. T cell exosome-derived miR-142-3p impairs glandular cell function in Sjögren's syndrome. JCI Insight 2020; 5:133497. [PMID: 32376798 DOI: 10.1172/jci.insight.133497] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease that mainly affects exocrine salivary and lacrimal glands. Local inflammation in the glands is thought to trigger glandular dysfunction and symptoms of dryness. However, the mechanisms underlying these processes are incompletely understood. Our work suggests T cell exosome-derived miR-142-3p as a pathogenic driver of immunopathology in SS. We first document miR-142-3p expression in the salivary glands of patients with SS, both in epithelial gland cells and within T cells of the inflammatory infiltrate, but not in healthy volunteers. Next, we show that activated T cells secreted exosomes containing miR-142-3p, which transferred into glandular cells. Finally, we uncover a functional role of miR-142-3p-containing exosomes in glandular cell dysfunction. We find that miR-142-3p targets key elements of intracellular Ca2+ signaling and cAMP production - sarco(endo)plasmic reticulum Ca2+ ATPase 2b (SERCA2B), ryanodine receptor 2 (RyR2), and adenylate cyclase 9 (AC9) - leading to restricted cAMP production, altered calcium signaling, and decreased protein production from salivary gland cells. Our work provides evidence for a functional role of the miR-142-3p in SS pathogenesis and promotes the concept that T cell activation may directly impair epithelial cell function through secretion of miRNA-containing exosomes.
Collapse
Affiliation(s)
- Juan Cortes-Troncoso
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit.,Oral Immunity and Inflammation Section, and
| | - Shyh-Ing Jang
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit
| | - Paola Perez
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Jorge Hidalgo
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
35
|
Pilson Q, Smith S, Jefferies CA, Ní Gabhann-Dromgoole J, Murphy CC. miR-744-5p contributes to ocular inflammation in patients with primary Sjogrens Syndrome. Sci Rep 2020; 10:7484. [PMID: 32366870 PMCID: PMC7198540 DOI: 10.1038/s41598-020-64422-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023] Open
Abstract
In primary Sjögren’s syndrome (pSS) the exocrine glands become infiltrated with lymphocytes instigating severe damage to the salivary and lacrimal glands causing dry eyes and dry mouth. Previous investigations have suggested that dysregulated localized and systemic inflammation contributes to the development and pathogenesis of pSS. A miR microarray performed in primary human conjunctival epithelial cells (PECs) demonstrated significant differences in miR expression at the ocular surface between pSS patients and healthy controls. MicroRNA-744-5p (miR-744-5p) was identified as being of particular interest, as its top predicted target is Pellino3 (PELI3), a known negative regulator of inflammation. Validation studies confirmed that miR-744-5p expression is significantly increased in PECs from pSS patients, whilst PELI3 was significantly reduced. We validated the miR-744 binding site in the 3’ untranslated region (UTR) of PELI3 and demonstrated that increasing PELI3 levels with a miR-744-5p antagomir in an inflammatory environment resulted in reduced levels of IFN dependent chemokines Rantes (CCL5) and CXCL10. These results reveal a novel role for miR-744-5p in mediating ocular inflammation via Pellino3 expression in pSS patients and suggest that miR-744-5p may be a potential therapeutic target for the management of severe dry eye disease and ocular inflammation in pSS patients.
Collapse
Affiliation(s)
- Qistina Pilson
- Department of Ophthalmology, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Siobhan Smith
- School of Pharmacy and Biomolecular Sciences (PBS) and RSCI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, California, 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, California, 90048, USA
| | - Joan Ní Gabhann-Dromgoole
- School of Pharmacy and Biomolecular Sciences (PBS) and RSCI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Department of Ophthalmology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor C Murphy
- Department of Ophthalmology, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland.
| |
Collapse
|
36
|
Hillen MR, Chouri E, Wang M, Blokland SLM, Hartgring SAY, Concepcion AN, Kruize AA, Burgering BMT, Rossato M, van Roon JAG, Radstake TRDJ. Dysregulated miRNome of plasmacytoid dendritic cells from patients with Sjögren's syndrome is associated with processes at the centre of their function. Rheumatology (Oxford) 2020; 58:2305-2314. [PMID: 31131409 PMCID: PMC6880856 DOI: 10.1093/rheumatology/kez195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Objective A considerable body of evidence supports a role for type-I IFN in the pathogenesis of primary SS (pSS). As plasmacytoid dendritic cells (pDCs) are a major source of type-I IFN, we investigated their molecular regulation by measuring expression of a large set of miRNAs. Methods pDCs were isolated from peripheral blood of pSS patients (n = 30) and healthy controls (n = 16) divided into two independent cohorts (discovery and replication). Screening of 758 miRNAs was assessed by an OpenArray quantitative PCR-based technique; replication of a set of identified miRNAs was performed by custom array. Functional annotation of miRNA targets was performed using pathway enrichment. Novel targets of miR-29a and miR-29c were identified using a proteomic approach (stable isotope labelling with amino acids in cell culture). Results In the discovery cohort, 20 miRNAs were differentially expressed in pSS pDCs compared with healthy control pDCs. Of these, differential expression of 10 miRNAs was confirmed in the replication cohort. The dysregulated miRNAs were involved in phosphoinositide 3-kinase-Ak strain transforming and mammalian target of rapamycin signalling, as well as regulation of cell death. In addition, a set of novel protein targets of miR-29a and miR-29c were identified, including five targets that were regulated by both miRs. Conclusion The dysregulated miRNome in pDCs of patients with pSS is associated with aberrant regulation of processes at the centre of pDC function, including type-I IFN production and cell death. As miR-29a and miR-29c are pro-apoptotic factors and several of the novel targets identified here are regulators of apoptosis, their downregulation in patients with pSS is associated with enhanced pDC survival.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maojie Wang
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arno N Concepcion
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Sabre L, Punga T, Punga AR. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front Immunol 2020; 11:213. [PMID: 32194544 PMCID: PMC7065262 DOI: 10.3389/fimmu.2020.00213] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies which attack receptors at the neuromuscular junction. One of the main difficulties in predicting the clinical course of MG is the heterogeneity of the disease, where disease progression differs greatly depending on the subgroup that the patient is classified into. MG subgroups are classified according to: age of onset [early-onset MG (EOMG; onset ≤ 50 years) versus late-onset MG (LOMG; onset > 50 years]; the presence of a thymoma (thymoma-associated MG); antibody subtype [acetylcholine receptor antibody seropositive (AChR+) and muscle-specific tyrosine kinase antibody seropositive (MuSK+)]; as well as clinical subtypes (ocular versus generalized MG). The diagnostic tests for MG, such as antibody titers, neurophysiological tests, and objective clinical fatigue score, do not necessarily reflect disease progression. Hence, there is a great need for reliable objective biomarkers in MG to follow the disease course as well as the individualized response to therapy toward personalized medicine. In this regard, circulating microRNAs (miRNAs) have emerged as promising potential biomarkers due to their accessibility in body fluids and unique profiles in different diseases, including autoimmune disorders. Several studies on circulating miRNAs in MG subtypes have revealed specific miRNA profiles in patients’ sera. In generalized AChR+ EOMG, miR-150-5p and miR-21-5p are the most elevated miRNAs, with lower levels observed upon treatment with immunosuppression and thymectomy. In AChR+ generalized LOMG, the miR-150-5p, miR-21-5p, and miR-30e-5p levels are elevated and decrease in accordance with the clinical response after immunosuppression. In ocular MG, higher levels of miR-30e-5p discriminate patients who will later generalize from those remaining ocular. In contrast, in MuSK+ MG, the levels of the let-7 miRNA family members are elevated. Studies of circulating miRNA profiles in Lrp4 or agrin antibody-seropositive MG are still lacking. This review summarizes the present knowledge of circulating miRNAs in different subgroups of MG.
Collapse
Affiliation(s)
- Liis Sabre
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Martina E, Campanati A, Diotallevi F, Offidani A. Saliva and Oral Diseases. J Clin Med 2020; 9:E466. [PMID: 32046271 PMCID: PMC7074457 DOI: 10.3390/jcm9020466] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Saliva is a fascinating biological fluid which has all the features of a perfect diagnostic tool. In fact, its collection is rapid, simple, and noninvasive. Thanks to several transport mechanisms and its intimate contact with crevicular fluid, saliva contains hundreds of proteins deriving from plasma. Advances in analytical techniques have opened a new era-called "salivaomics"-that investigates the salivary proteome, transcriptome, microRNAs, metabolome, and microbiome. In recent years, researchers have tried to find salivary biomarkers for oral and systemic diseases with various protocols and technologies. The review aspires to provide an overall perspective of salivary biomarkers concerning oral diseases such as lichen planus, oral cancer, blistering diseases, and psoriasis. Saliva has proved to be a promising substrate for the early detection of oral diseases and the evaluation of therapeutic response. However, the wide variation in sampling, processing, and measuring of salivary elements still represents a limit for the application in clinical practice.
Collapse
|
39
|
Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Sung YK, Kim DR, Lim HW, Kang MH. Comparison of MicroRNA Expression in Tears of Normal Subjects and Sjögren Syndrome Patients. Invest Ophthalmol Vis Sci 2020; 60:4889-4895. [PMID: 31752018 DOI: 10.1167/iovs.19-27062] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Deregulated expression of several microRNAs (miRNAs) in sera or salivary glands of patients with Sjögren syndrome (SS) has been reported. However, none have investigated miRNAs in samples that can represent lacrimal glands. We compared the miRNAs expression in the tears of SS patients and healthy controls. Moreover, we investigated the correlation between miRNAs expression and ocular staining score (OSS). Methods Individual tear samples were collected from 18 SS patients and 8 age-matched controls. Clinical ophthalmologic assessments included Schirmer I test, tear film breakup time (tBUT), and OSS. The expression of 43 different miRNAs in tears was measured using real-time polymerase chain reaction, and compared between the SS patients and controls. And we also compared between the three groups of control, primary SS, and secondary SS patients. The correlation between the miRNA expression and OSS was evaluated. Results The expression levels of miR-16-5p, miR-34a-5p, miR-142-3p, and miR-223-3p were significantly upregulated in patients with SS when compared with those in the control group (P < 0.05). The expression of 10 miRNAs (miR-30b-5p, miR-30c-5p, miR-30d-5p, miR-92a-3p, miR-134-5p, miR-137, miR-302d-5p, miR-365b-3p, miR-374c-5p, miR-487b-3p) was significantly downregulated in the SS patients (P < 0.05). Eight miRNAs showed statistically significant differences between the three groups of control, primary SS and secondary SS. All 14 miRNAs with significant differences in SS patients and control group were not significantly correlated with OSSs. Conclusions The 14 differentially expressed miRNAs may be involved in the pathogenesis of SS, in particular, related to autoimmunity and neuropathy.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Du Roo Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea.,Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| |
Collapse
|
40
|
Lee NH, Lee E, Kim YS, Kim WK, Lee YK, Kim SH. Differential expression of microRNAs in the saliva of patients with aggressive periodontitis: a pilot study of potential biomarkers for aggressive periodontitis. J Periodontal Implant Sci 2020; 50:281-290. [PMID: 33124206 PMCID: PMC7606899 DOI: 10.5051/jpis.2000120006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The aim of this study was to compare microRNA (miRNA) gene expression in saliva using miRNA polymerase chain reaction (PCR) arrays in healthy and aggressive periodontitis (AP) patients. Methods PCR arrays of 84 miRNAs related to the human inflammatory response and autoimmunity from the saliva samples of 4 patients with AP and 4 healthy controls were performed. The functions and diseases related to the miRNAs were obtained using TAM 2.0. Experimentally validated targets of differentially expressed miRNAs were obtained from mirTarBase. Gene ontology terms and pathways were analyzed using ConsensusPathDB. Results Four downregulated miRNAs (hsa-let-7a-5p, hsa-let-7f-5p, hsa-miR-181b-5p, and hsa-miR-23b-3p) were identified in patients with AP. These miRNAs are associated with cell death and innate immunity, and they target genes associated with osteoclast development and function. Conclusions This study is the first analysis of miRNAs in the saliva of patients with AP. Identifying discriminatory human salivary miRNA biomarkers reflective of periodontal disease in a non-invasive screening assay is crucial for the development of salivary diagnostics. These data provide a first step towards the discovery of key salivary miRNA biomarkers for AP.
Collapse
Affiliation(s)
- Nam Hun Lee
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Eunhye Lee
- Department of Conservative Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young Sung Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea.,Department of Dentistry, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Kyung Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Young Kyoo Lee
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Su Hwan Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea.,Department of Dentistry, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Abstract
Primary Sjögren's syndrome (SjS) is a chronic and systemic autoimmune epithelitis with predominant female incidence, which is characterized by exocrine gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial and evidence is growing to consider that epigenetic factors are playing a crucial role in its development. Independent from DNA sequence mutations, epigenetics is described as inheritable and reversible processes that modify gene expression. Epigenetic modifications reported in minor salivary gland and lymphocytes from SjS patients are related to (i) an abnormal DNA methylation process inducing in turn defective control of normally repressed genes involving such matters as autoantigens, retrotransposons, and the X chromosome in women; (ii) altered nucleosome positioning associated with autoantibody production; and (iii) altered control of microRNA. Results from epigenome-wide association studies have further revealed the importance of the interferon pathway in disease progression, the calcium signaling pathway for controlling fluid secretions, and a cell-specific cross talk with risk factors associated with SjS. Importantly, epigenetic modifications are reversible thus opening opportunities for therapeutic procedures in this currently incurable disease.
Collapse
|
42
|
Marrone A, Ciotti M, Rinaldi L, Adinolfi LE, Ghany M. Hepatitis B and C virus infection and risk of haematological malignancies. J Viral Hepat 2020; 27:4-12. [PMID: 31325404 DOI: 10.1111/jvh.13183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are classified as oncogenic human viruses. Chronic HBV and HCV infections are associated with higher risk of haematological malignancy development. Direct and indirect oncogenic mechanisms have been demonstrated for both HBV and HCV in several studies. HCV and overt/occult HBV infections in patients with oncohaematological disease constitute an impediment and a threat during immunosuppressive chemotherapy treatment. We review the HBV and HCV oncogenic mechanisms and the impact and the safety of antiviral treatment in patients with haematological malignancies.
Collapse
Affiliation(s)
- Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Ciotti
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marc Ghany
- Liver Diseases Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
43
|
Epigenetic Modifications in Generalized Autoimmune Epithelitis: Sjögren's Syndrome and Primary Biliary Cholangitis. EPIGENOMES 2019; 3:epigenomes3030015. [PMID: 34968227 PMCID: PMC8594719 DOI: 10.3390/epigenomes3030015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
Sjögren's syndrome (SjS) and primary biliary cholangitis (PBC) can be classified as a model of generalized autoimmune epithelitis based on their frequent coexistence in clinical practice and the highly specific immune mediated injury of target epithelial cells. Both of these autoimmune diseases are characterized by female predominance, highly specific circulating autoantibodies, and immune-mediated destruction of the salivary and lachrymal glands and the biliary epithelial cells, respectively. Although the genetic predisposition has been well described for both diseases, genetic studies have failed to completely elucidate their pathogenesis. The recent integration of epigenetic data, analyzing the different cellular partners, opens new perspectives and allows for better understanding of these complex and still incurable diseases. Epigenetic studies on SjS have elucidated the role of DNA methylation alterations in disease pathogenesis, while epigenetic changes that influence expression of genes on the X chromosome have been implicated in the geo-variability and occurrence of PBC. The aim of this review is to describe the advances in epigenetics in the field of autoimmune epithelitis as well as to highlight how epigenetic changes could contribute to better understanding of disease pathogenesis and progression. These advances could yield insights on novel therapeutic interventions.
Collapse
|
44
|
Brown AL, Al-Samadi A, Sperandio M, Soares AB, Teixeira LN, Martinez EF, Demasi APD, Araújo VC, Leivo I, Salo T, Passador-Santos F. MiR-455-3p, miR-150 and miR-375 are aberrantly expressed in salivary gland adenoid cystic carcinoma and polymorphous adenocarcinoma. J Oral Pathol Med 2019; 48:840-845. [PMID: 31165496 DOI: 10.1111/jop.12894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adenoid cystic carcinoma (AdCC) and polymorphous adenocarcinoma (PAC) are included among the most common salivary gland cancers. They share clinical and histological characteristics, making their diagnosis challenging in specific cases. MicroRNAs (miRNA) are short, non-coding RNA sequences of 19-25 nucleotides in length that are involved in post-transcriptional protein expression. They have been shown to play important roles in neoplastic and non-neoplastic processes and have been suggested as diagnostic and prognostic markers. METHODS This study, using quantitative RT-PCR, investigated miR-150, miR-455-3p and miR-375 expression, in order to identify a possible molecular distinction between AdCC and PAC. RESULTS miRNA-150 and miRNA-375 expression was significantly decreased in AdCC and PAC compared with salivary gland tissue controls, whilst miRNA-455-3p showed significantly increased expression in AdCC when compared to PAC, (P < 0.05). miR-150, miR-357 and miR-455-3p expression in AdCC, PAC and control was not associated with age, gender nor with anatomic site (major and minor salivary glands) (P > 0.05). CONCLUSION MiR-455-3p could be used as a complimentary tool in the diagnosis of challenging AdCC cases.
Collapse
Affiliation(s)
- Amy L Brown
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marcelo Sperandio
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Andresa Borges Soares
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Lucas Novaes Teixeira
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Elizabeth F Martinez
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Ana Paula Dias Demasi
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Vera Cavalcanti Araújo
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Ilmo Leivo
- Institute of Biomedicine, Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Fabricio Passador-Santos
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil
| |
Collapse
|
45
|
Lopes AP, van Roon JAG, Blokland SLM, Wang M, Chouri E, Hartgring SAY, van der Wurff-Jacobs KMG, Kruize AA, Burgering BMT, Rossato M, Radstake TRDJ, Hillen MR. MicroRNA-130a Contributes to Type-2 Classical DC-activation in Sjögren's Syndrome by Targeting Mitogen- and Stress-Activated Protein Kinase-1. Front Immunol 2019; 10:1335. [PMID: 31281310 PMCID: PMC6595962 DOI: 10.3389/fimmu.2019.01335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: Considering the critical role of microRNAs (miRNAs) in regulation of cell activation, we investigated their role in circulating type-2 conventional dendritic cells (cDC2s) of patients with primary Sjögren's syndrome (pSS) compared to healthy controls (HC). Methods: CD1c-expressing cDC2s were isolated from peripheral blood. A discovery cohort (15 pSS, 6 HC) was used to screen the expression of 758 miRNAs and a replication cohort (15 pSS, 11 HC) was used to confirm differential expression of 18 identified targets. Novel targets for two replicated miRNAs were identified by SILAC in HEK-293T cells and validated in primary cDC2s. Differences in cytokine production between pSS and HC cDC2s were evaluated by intracellular flow-cytometry. cDC2s were cultured in the presence of MSK1-inhibitors to investigate their effect on cytokine production. Results: Expression of miR-130a and miR-708 was significantly decreased in cDC2s from pSS patients compared to HC in both cohorts, and both miRNAs were downregulated upon stimulation via endosomal TLRs. Upstream mediator of cytokine production MSK1 was identified as a novel target of miR-130a and overexpression of miR-130a reduced MSK1 expression in cDC2s. pSS cDC2s showed higher MSK1 expression and an increased fraction of IL-12 and TNF-α-producing cells. MSK1-inhibition reduced cDC2 activation and production of IL-12, TNF-α, and IL-6. Conclusions: The decreased expression of miR-130a and miR-708 in pSS cDC2s seems to reflect cell activation. miR-130a targets MSK1, which regulates pro-inflammatory cytokine production, and we provide proof-of-concept for MSK1-inhibition as a therapeutic avenue to impede cDC2 activity in pSS.
Collapse
Affiliation(s)
- Ana P Lopes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maojie Wang
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kim M G van der Wurff-Jacobs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Abstract
Rheumatic diseases are a group of chronic heterogeneous autoimmune disorders characterized by abnormal regulation of the innate and adaptive immune systems. Despite extensive efforts, the full spectrum of molecular factors that contribute to the pathogenesis of rheumatic diseases remains unclear. ncRNAs can govern gene expression at the transcriptional and post-transcriptional levels in multiple diseases. Recent studies have demonstrated an important role for ncRNAs, such as miRNAs and lncRNAs, in the development of immune cells and rheumatic diseases. Here, we focus on the epigenetic regulatory roles of ncRNAs in the pathogenesis of rheumatic diseases and as biomarkers of disease state.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Quan-Zhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| |
Collapse
|
47
|
Cron MA, Maillard S, Truffault F, Gualeni AV, Gloghini A, Fadel E, Guihaire J, Behin A, Berrih-Aknin S, Le Panse R. Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Front Immunol 2019; 10:539. [PMID: 30984166 PMCID: PMC6450174 DOI: 10.3389/fimmu.2019.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Autoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms. Here, we investigated the causes and consequences of the miR-150 increase in the serum of early-onset MG patients. We observed that miR-150 expression was upregulated in MG thymuses in correlation with the presence of thymic B cells and showed by in situ hybridization experiments, that miR-150 was mainly expressed by cells of the mantle zone of GCs. However, we did not observe any correlation between the degree of thymic hyperplasia and the serum levels in MG patients. In parallel, we also investigated the expression of miR-150 in peripheral blood mononuclear cells (PBMCs) from MG patients. We observed that miR-150 was down-regulated, especially in CD4+ T cells compared to controls. These results suggest that the increased serum levels of miR-150 could result from a release from activated peripheral CD4+ T cells. Next, we demonstrated that the in vitro treatment of PBMCs with miR-150 or antimiR-150 oligonucleotides, respectively, decreased or increased the expression of one of its major target gene: the proto-oncogene MYB, a well-known actor of hematopoiesis. These results revealed that increased serum levels of miR-150 in MG patients could have a functional effect on PBMCs. We also showed that antimiR-150 caused increased cellular death of CD4+ and CD8+ T cells, along with the overexpression of pro-apoptotic genes targeted by miR-150 suggesting that miR-150 controlled the survival of these cells. Altogether, these results showed that miR-150 could play a role in MG both at the thymic level and in periphery by modulating the expression of target genes and peripheral cell survival.
Collapse
Affiliation(s)
- Mélanie A Cron
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Solène Maillard
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Frédérique Truffault
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Ambra Vittoria Gualeni
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Anthony Behin
- Neuromuscular Disease Center, AIM, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Rozen Le Panse
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| |
Collapse
|
48
|
Asam S, Neag G, Berardicurti O, Gardner D, Barone F. The role of stroma and epithelial cells in primary Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:3503-3512. [PMID: 30945742 DOI: 10.1093/rheumatology/kez050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Primary SS (pSS) is a chronic autoimmune condition characterized by infiltration of the exocrine glands and systemic B cell hyperactivation. This glandular infiltration is associated with loss of glandular function, with pSS patients primarily presenting with severe dryness of the eyes and mouth. Within the affected glands, the infiltrating lymphocytes are organized in tertiary lymphoid structures. Tertiary lymphoid structures subvert normal tissue architecture and impact on organ function, by promoting the activation and maintenance of autoreactive lymphocytes. This review summarizes the current knowledge about the role of stromal cells (including endothelium, epithelium, nerves and fibroblasts) in the pathogenesis of pSS, in particular the interactions taking place between stromal cells and infiltrating lymphocytes. We will provide evidences pointing towards the driving role of stromal cells in the orchestration of the local inflammatory milieu, thus highlighting the need for therapies aimed at targeting this compartment alongside classical immunosuppression in pSS.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Abstract
Exosomes have generated significant interest in the last few decades owing to their important roles in a diverse range of biological pathways. They are nano-sized lipid bilayer membrane vesicles of endosomal origin, and are produced by a vast number of cell types. They are released into the extracellular environment and are found in most biological fluids. Exosomes can contain proteins, lipids and nucleic acids. The cargo of exosomes allows them to play roles in cell communication, antigen presentation, as biomarkers and in immune regulation. Substantial efforts have been made to understand their biology and potential clinical use in various diseases, including autoimmune connective tissue diseases (ACTD). In this review, we highlight the known functions of exosomes and detail recent advances made in the elucidation of the roles of exosomes in ACTDs with an emphasis on their potential use as a biomarker for disease diagnosis and as a therapeutic target. Key messages Exosome with the function of cell communication, antigen presentation, biomarkers, immune responses and immune regulation have become a hot area and have played an important role in several areas of science and technology especially in medicine. Exosomes play important roles in numerous biological processes as well as in the pathogenesis of ACTDs. Exosome comes into being the non-invasive procedure as potential biomarkers and excellent treatment means in ACTDs.
Collapse
Affiliation(s)
- Tian Zhu
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Yiman Wang
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Hongzhong Jin
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Li Li
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
50
|
Gallo A, Vella S, Tuzzolino F, Cuscino N, Cecchettini A, Ferro F, Mosca M, Alevizos I, Bombardieri S, Conaldi PG, Baldini C. MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in Sjögren Syndrome. J Rheumatol 2019; 46:1485-1494. [PMID: 30824638 DOI: 10.3899/jrheum.180549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate microRNA (miRNA) that is potentially implicated in primary Sjögren syndrome (pSS)-related salivary hypofunction in labial salivary glands and to study miRNA-mediated mechanisms underlying oral dryness and altered rheology, focusing on the mucin O-glycosylation pathway. METHODS We performed miRNA expression profiling in minor salivary gland samples of patients with pSS presenting a different impairment in their unstimulated salivary flow rate. A computational in silico analysis was performed to identify genes and pathways that might be modulated by the deregulated miRNA that we had identified. To confirm in silico analysis, expression levels of genes encoding for glycosyltransferases and glycan-processing enzymes were investigated using Human Glycosylation-RT2 Profiler PCR Array. RESULTS Among 754 miRNA analyzed, we identified 126 miRNA that were significantly deregulated in pSS compared to controls, with a trend that was inversely proportional with the impairment of salivary flow rates. An in silico approach pinpointed that several upregulated miRNA in patients with pSS target important genes in the mucin O-glycosylation. We confirmed this prediction by quantitative real-time PCR, highlighting the downregulation of some glycosyltransferase and glycosidase genes in pSS samples compared to controls, such as GALNT1, responsible for mucin-7 glycosylation. CONCLUSION Collectively, our data suggest that the expression of different predicted miRNA-target genes in the mucin type O-glycan biosynthesis pathway is altered in pSS patients with low salivary flow and that the miRNA expression profile could influence the glycosidase expression levels and consequently the rheology in pSS.
Collapse
Affiliation(s)
- Alessia Gallo
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Serena Vella
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Fabio Tuzzolino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Nicola Cuscino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Antonella Cecchettini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Francesco Ferro
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Marta Mosca
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Ilias Alevizos
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Stefano Bombardieri
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Pier Giulio Conaldi
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Chiara Baldini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA. .,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa.
| |
Collapse
|