1
|
Mohamed SK, Karthikeyan S, A Omran O, Ahsin A, Salah H, Mague JT, Al-Salahi R, El Bakri Y. Insights into the crystal structure investigation and virtual screening approach of quinoxaline derivatives as potent against c-Jun N-terminal kinases 1. J Biomol Struct Dyn 2024:1-20. [PMID: 38321917 DOI: 10.1080/07391102.2024.2305317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (βo) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
| | - Subramani Karthikeyan
- Center for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai, India
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Atazaz Ahsin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanan Salah
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|
2
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Schepetkin IA, Karpenko OS, Kovrizhina AR, Kirpotina LN, Khlebnikov AI, Chekal SI, Radudik AV, Shybinska MO, Quinn MT. Novel Tryptanthrin Derivatives with Selectivity as c-Jun N-Terminal Kinase (JNK) 3 Inhibitors. Molecules 2023; 28:4806. [PMID: 37375361 DOI: 10.3390/molecules28124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Oleksander S Karpenko
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
| | | | - Liliya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Stepan I Chekal
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 65082 Odesa, Ukraine
| | - Alevtyna V Radudik
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 65082 Odesa, Ukraine
| | - Maryna O Shybinska
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
4
|
Blocking GSDME-mediated pyroptosis in renal tubular epithelial cells alleviates disease activity in lupus mice. Cell Death Dis 2022; 8:113. [PMID: 35279675 PMCID: PMC8918340 DOI: 10.1038/s41420-022-00848-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
An increase in apoptosis and/or defects in the clearance of apoptotic cells resulting in massive secondary necrosis have been recognized as the main causes of systemic lupus erythematosus (SLE). Recent findings have revealed that gasdermin E (GSDME)-mediated pyroptosis is a mechanism associated with secondary necrosis. We aimed to investigate the effects of GSDME-mediated pyroptosis on disease activity in lupus mice. In vivo, high levels of GSDME expression were observed in the renal tubules of pristane-induced lupus (PIL) mice and SLE patients. In lupus mice, GSDME knockout or SP600125 administration effectively ameliorated lupus-like features by inhibiting GSDME-mediated renal tubular epithelial cell pyroptosis. In vitro, treatment with tumour necrosis factor-α (TNF-α) plus cycloheximide (CHX) or SLE sera induced HK2 cells to undergo pyroptosis in a caspase-3- and GSDME-dependent manner. Likewise, SP600125 significantly reduced GSDME expression and decreased pyroptosis in HK2 cells. GSDME-mediated pyroptosis may be associated with SLE pathogenesis, and targeting GSDME may be a potential strategy for treating SLE.
Collapse
|
5
|
Liakhov SA, Schepetkin IA, Karpenko OS, Duma HI, Haidarzhy NM, Kirpotina LN, Kovrizhina AR, Khlebnikov AI, Bagryanskaya IY, Quinn MT. Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11 H-Indeno[1,2- b]quinoxalin-11-one Scaffold. Molecules 2021; 26:molecules26185688. [PMID: 34577159 PMCID: PMC8464905 DOI: 10.3390/molecules26185688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Serhii A. Liakhov
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Olexander S. Karpenko
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | - Hanna I. Duma
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | | | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Anastasia R. Kovrizhina
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.R.K.); (A.I.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.R.K.); (A.I.K.)
| | - Irina Y. Bagryanskaya
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
- Correspondence: ; Tel.: +406-994-4707; Fax: +406-994-4303
| |
Collapse
|
6
|
Le A, Azouz A, Thomas S, Istaces N, Nguyen M, Goriely S. JNK1 Signaling Downstream of the EGFR Pathway Contributes to Aldara ®-Induced Skin Inflammation. Front Immunol 2021; 11:604785. [PMID: 33613525 PMCID: PMC7892463 DOI: 10.3389/fimmu.2020.604785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal protein kinase 1 (JNK1) is involved in multiple biological processes but its implication in inflammatory skin diseases is still poorly defined. Herein, we studied the role of JNK1 in the context of Aldara®-induced skin inflammation. We observed that constitutive ablation of JNK1 reduced Aldara®-induced acanthosis and expression of inflammatory markers. Conditional deletion of JNK1 in myeloid cells led to reduced skin inflammation, a finding that was associated with impaired Aldara®-induced inflammasome activation in vitro. Next, we evaluated the specific role of JNK1 in epidermal cells. We observed reduced Aldara®-induced acanthosis despite similar levels of inflammatory markers. Transcriptomic and epigenomic analysis of keratinocytes revealed the potential involvement of JNK1 in the EGFR signaling pathway. Finally, we show that inhibition of the EGFR pathway reduced Aldara®-induced acanthosis. Taken together, these data indicate that JNK1 plays a dual role in the context of psoriasis by regulating the production of inflammatory cytokines by myeloid cells and the sensitivity of keratinocytes to EGFR ligands. These results suggest that JNK1 could represent a valuable therapeutic target in the context of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislas Goriely
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
7
|
El-Serwy WS, El-Serwy WS, Mohamed NA, Kassem EMM, Mostafa RE, Mohamed HS. Synthesis, Biological Evaluation, Molecular Docking, ADME Predictions and QSAR Studies of Novel 1,2-Diazet and Pyrrole Derivatives as Anti-Inflammatory Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Activation of c-Jun N-Terminal Kinase, a Potential Therapeutic Target in Autoimmune Arthritis. Cells 2020; 9:cells9112466. [PMID: 33198301 PMCID: PMC7696795 DOI: 10.3390/cells9112466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun-N-terminal kinase (JNK) is a critical mediator involved in various physiological processes, such as immune responses, and the pathogenesis of various diseases, including autoimmune disorders. JNK is one of the crucial downstream signaling molecules of various immune triggers, mainly proinflammatory cytokines, in autoimmune arthritic conditions, mainly including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. The activation of JNK is regulated in a complex manner by upstream kinases and phosphatases. Noticeably, different subtypes of JNKs behave differentially in immune responses. Furthermore, aside from biologics targeting proinflammatory cytokines, small-molecule inhibitors targeting signaling molecules such as Janus kinases can act as very powerful therapeutics in autoimmune arthritis patients unresponsiveness to conventional synthetic antirheumatic drugs. Nevertheless, despite these encouraging therapies, a population of patients with an inadequate therapeutic response to all currently available medications still remains. These findings identify the critical signaling molecule JNK as an attractive target for investigation of the immunopathogenesis of autoimmune disorders and for consideration as a potential therapeutic target for patients with autoimmune arthritis to achieve better disease control. This review provides a useful overview of the roles of JNK, how JNK is regulated in immunopathogenic responses, and the potential of therapeutically targeting JNK in patients with autoimmune arthritis.
Collapse
|
9
|
Masoumi M, Bashiri H, Khorramdelazad H, Barzaman K, Hashemi N, Sereshki HA, Sahebkar A, Karami J. Destructive Roles of Fibroblast-like Synoviocytes in Chronic Inflammation and Joint Damage in Rheumatoid Arthritis. Inflammation 2020; 44:466-479. [PMID: 33113036 DOI: 10.1007/s10753-020-01371-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are important non-immune cells located mostly in the inner layer of the synovium. Indeed, these cells are specialized mesenchymal cells, implicated in collagen homeostasis of the articular joint and provide extracellular matrix (ECM) materials for cartilage and contribute to joint destruction via multiple mechanisms. RA FLS interactions with immune and non-immune cells lead to the development and organization of tertiary structures such as ectopic lymphoid-like structures (ELSs), tertiary lymphoid organs (TLOs), and secretion of proinflammatory cytokines. The interaction of RA FLS cells with immune and non-immune cells leads to stimulation and activation of effector immune cells. Pathological role of RA FLS cells has been reported for many years, while molecular and cellular mechanisms are not completely understood yet. In this review, we tried to summarize the latest findings about the role of FLS cells in ELS formation, joint destruction, interactions with immune and non-immune cells, as well as potential therapeutic options in rheumatoid arthritis (RA) treatment. Our study revealed data about interactions between RA FLS and immune/non-immune cells as well as the role of RA FLS cells in joint damage, ELS formation, and neoangiogenesis, which provide useful information for developing new approaches for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Hamidreza Bashiri
- Department of Rheumatology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hale Abdoli Sereshki
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
10
|
Duong MTH, Lee JH, Ahn HC. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Comput Struct Biotechnol J 2020; 18:1440-1457. [PMID: 32637042 PMCID: PMC7327381 DOI: 10.1016/j.csbj.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of c-Jun N-terminal kinases (JNKs) plays an important role in physiological processes including neuronal function, immune activity, and development, and thus, JNKs have been a therapeutic target for various diseases such as neurodegenerative diseases, inflammation, and cancer. Efforts to develop JNK-specific inhibitors have been ongoing for several decades. In this process, the structures of JNK in complex with various inhibitors have contributed greatly to the design of novel compounds and to the elucidation of structure-activity relationships. Almost 100 JNK structures with various compounds have been determined. Here we summarize the information gained from these structures and classify the inhibitors into several groups based on the binding mode. These groups include inhibitors in the open conformation and closed conformation of the gatekeeper residue, non-ATP site binders, peptides, covalent inhibitors, and type II kinase inhibitors. Through this work, deep insight into the interaction of inhibitors with JNKs can be gained and this will be helpful for developing novel, potent, and selective inhibitors.
Collapse
Affiliation(s)
- Men Thi Hoai Duong
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| |
Collapse
|
11
|
Kibler E, Lavrinenko A, Kolesnik I, Stankevich K, Bolbasov E, Kudryavtseva V, Leonov A, Schepetkin I, Khlebnikov A, Quinn MT, Tverdokhlebov S. Electrosprayed poly(lactic-co-glycolic acid) particles as a promising drug delivery system for the novel JNK inhibitor IQ-1. Eur Polym J 2020; 127:109598. [PMID: 32372769 PMCID: PMC7199471 DOI: 10.1016/j.eurpolymj.2020.109598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), play important role in the regulation of pro-inflammatory cytokine secretion and signaling cascades. Therefore, JNKs are key targets for the treatment of cytokine/JNK-driven diseases. Herein, we developed electrospray poly(lactic-co-glycolic acid) (PLGA) microparticles doped with novel JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1). Optimized electrospray parameters allowed us to produce IQ-1-doped microparticles with round shape, smooth and non-porous surface, and mean diameter of 0.9-1.3 μm. We have shown that IQ-1 was well integrated into the polymer matrix and had a prolonged release in two steps via non-Fickian release. The fabricated particles doped with IQ-1 exhibited anti-inflammatory effects, as indicated by inhibited neutrophil activation and cytokine secretion by human monocytic MonoMac-6 cells. Overall, our study demonstrates that PLGA microparticles doped with a novel JNK inhibitor (IQ-1) could be a promising delivery system for treatment of JNK-mediated diseases.
Collapse
Affiliation(s)
- Elina Kibler
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
| | | | - Ilya Kolesnik
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
| | - Ksenia Stankevich
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | - Evgeny Bolbasov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Microwave Photonics Lab, Institute of Atmospheric Optics
V.E. Zuev SB RAS, Tomsk 634055, Russia
| | - Valeriya Kudryavtseva
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- School of Engineering and Materials Science, Queen Mary
University of London, London E1 4NS, United Kingdom
| | - Andrey Leonov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Institute of High Current Electronics, Siberian Branch,
Russian Academy of Sciences, Tomsk 634055, Russia
| | - Igor Schepetkin
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | - Andrei Khlebnikov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Faculty of Chemistry, National Research Tomsk State
University, Tomsk 634050, Russia
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | | |
Collapse
|
12
|
Role of c-Jun N-Terminal Kinases (JNKs) in Epilepsy and Metabolic Cognitive Impairment. Int J Mol Sci 2019; 21:ijms21010255. [PMID: 31905931 PMCID: PMC6981493 DOI: 10.3390/ijms21010255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have reported that the regulatory function of the different c-Jun N-terminal kinases isoforms (JNK1, JNK2, and JNK3) play an essential role in neurological disorders, such as epilepsy and metabolic-cognitive alterations. Accordingly, JNKs have emerged as suitable therapeutic strategies. In fact, it has been demonstrated that some unspecific JNK inhibitors exert antidiabetic and neuroprotective effects, albeit they usually show high toxicity or lack therapeutic value. In this sense, natural specific JNK inhibitors, such as Licochalcone A, are promising candidates. Nonetheless, research on the understanding of the role of each of the JNKs remains mandatory in order to progress on the identification of new selective JNK isoform inhibitors. In the present review, a summary on the current gathered data on the role of JNKs in pathology is presented, as well as a discussion on their potential role in pathologies like epilepsy and metabolic-cognitive injury. Moreover, data on the effects of synthetic small molecule inhibitors that modulate JNK-dependent pathways in the brain and peripheral tissues is reviewed.
Collapse
|
13
|
Stankevich KS, Schepetkin IA, Goreninskii SI, Lavrinenko AK, Bolbasov EN, Kovrizhina AR, Kirpotina LN, Filimonov VD, Khlebnikov AI, Tverdokhlebov SI, Quinn MT. Poly(ε-caprolactone) Scaffolds Doped with c-Jun N-terminal Kinase Inhibitors Modulate Phagocyte Activation. ACS Biomater Sci Eng 2019; 5:5990-5999. [DOI: 10.1021/acsbiomaterials.9b01401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ksenia S. Stankevich
- National Research Tomsk Polytechnic University, 36 Lenin Avenue, Tomsk 634050, Russia
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, Montana 59717, United States
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, Montana 59717, United States
| | - Semen I. Goreninskii
- National Research Tomsk Polytechnic University, 36 Lenin Avenue, Tomsk 634050, Russia
| | | | - Evgeniy N. Bolbasov
- National Research Tomsk Polytechnic University, 36 Lenin Avenue, Tomsk 634050, Russia
- National Research Tomsk State University, 30 Lenin Avenue, Tomsk 634050, Russia
| | | | - Liliya N. Kirpotina
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, Montana 59717, United States
| | - Victor D. Filimonov
- National Research Tomsk Polytechnic University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Andrei I. Khlebnikov
- National Research Tomsk Polytechnic University, 36 Lenin Avenue, Tomsk 634050, Russia
- Scientific Research Institute of Biological Medicine, Altai State University, 61 Lenin Avenue, Barnaul 656049, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, Montana 59717, United States
| |
Collapse
|
14
|
Yao Y, Cai X, Yu H, Xu Q, Li X, Yang Y, Meng X, Huang C, Li J. PSTPIP2 attenuates joint damage and suppresses inflammation in adjuvant-induced arthritis. Eur J Pharmacol 2019; 859:172558. [PMID: 31325437 DOI: 10.1016/j.ejphar.2019.172558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) is related to inflammation. In this study, we investigated the function of PSTPIP2 in adjuvant-induced arthritis (AIA) by using adeno-associated virus (AAV) to overexpress PSTPIP2 in rat. AIA rats were developed by injecting Lewis rats with complete Freund's adjuvant (CFA) on day 0. AAV-empty or AAV-PSTPIP2, or PBS was administered intraarticularly into each knee joint on day 8 postinduction. All animals were killed at day 18 after adjuvant injection. WB was used to detect the expression of PSTPIP2 in rat synovial tissues. Fluorescence microscopy showed the transduction efficiency in synovial tissue. The morphology of arthritic joints was examined by HE, safranin O/fast green, or Toluidine blue staining. The bone destruction was examined via X-ray and micro-CT analysis. Immunohistochemical analysis or TRAP staining were used to investigate the role of PSTPIP2 in osteoclasts and the expression of PSTPIP2 in synovial tissue. RT-qPCR and ELISA were used to examine the expression of pro-inflammatory cytokines in synovial tissue or serum. AIA rats were found to have decreased PSTPIP2 expression and AIA-associated bone loss and inflammatory infiltration. We showed that administration of AAV-PSTPIP2 before arthritis onset significantly reduces the severity of AIA. PSTPIP2 was highly expressed in synovial cells. In addition, inflammatory responses and the number of osteoclasts were reduced with AAV-PSTPIP2 treatment. These findings demonstrate that PSTPIP2 may improve the severity of AIA by inhibiting the function of fibroblast-like synoviocytes, suppressing inflammation and reducing the number of osteoclasts.
Collapse
Affiliation(s)
- Yao Yao
- The Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Haixia Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yang Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
15
|
Gao G, Cheng X, Wei Q, Chen W, Huang W. Long noncoding RNA MALAT‐1 inhibits apoptosis and matrix metabolism disorder in interleukin‐1β‐induced inflammation in articular chondrocytes via the JNK signaling pathway. J Cell Biochem 2019; 120:17167-17179. [PMID: 31111559 DOI: 10.1002/jcb.28977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Gui‐Cheng Gao
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Xi‐Gao Cheng
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Qiang‐Qiang Wei
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Wei‐Cai Chen
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Wen‐Zhou Huang
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang China
| |
Collapse
|
16
|
Schepetkin IA, Khlebnikov AI, Potapov AS, Kovrizhina AR, Matveevskaya VV, Belyanin ML, Atochin DN, Zanoza SO, Gaidarzhy NM, Lyakhov SA, Kirpotina LN, Quinn MT. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur J Med Chem 2018; 161:179-191. [PMID: 30347329 DOI: 10.1016/j.ejmech.2018.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
c-Jun N-terminal kinases (JNKs) play a central role in many physiologic and pathologic processes. We synthesized novel 11H-indeno[1,2-b]quinoxalin-11-one oxime analogs and tryptanthrin-6-oxime (indolo[2,1-b]quinazoline-6,12-dion-6-oxime) and evaluated their effects on JNK activity. Several compounds exhibited sub-micromolar JNK binding affinity and were selective for JNK1/JNK3 versus JNK2. The most potent compounds were 10c (11H-indeno[1,2-b]quinoxalin-11-one O-(O-ethylcarboxymethyl) oxime) and tryptanthrin-6-oxime, which had dissociation constants (Kd) for JNK1 and JNK3 of 22 and 76 nM and 150 and 275 nM, respectively. Molecular modeling suggested a mode of binding interaction at the JNK catalytic site and that the selected oxime derivatives were potentially competitive JNK inhibitors. JNK binding activity of the compounds correlated with their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation in human monocytic THP-1Blue cells and interleukin-6 (IL-6) production by human MonoMac-6 cells. Thus, oximes with indenoquinoxaline and tryptanthrin nuclei can serve as specific small-molecule modulators for mechanistic studies of JNK, as well as potential leads for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Scientific Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | - Andrei S Potapov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | | | - Vladislava V Matveevskaya
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Department of Chemistry, Siberian State Medical University, Tomsk, 634050, Russia
| | - Maxim L Belyanin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Svitlana O Zanoza
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Nadiya M Gaidarzhy
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Sergiy A Lyakhov
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
17
|
Marchetti C, Swartzwelter B, Koenders MI, Azam T, Tengesdal IW, Powers N, de Graaf DM, Dinarello CA, Joosten LAB. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther 2018; 20:169. [PMID: 30075804 PMCID: PMC6091035 DOI: 10.1186/s13075-018-1664-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome in gout amplifies the inflammatory response and mediates further damage. In the current study, we assessed the therapeutic effect of OLT1177, an orally active NLRP3 inflammasome inhibitor that is safe in humans, in murine acute arthritis models. METHODS Zymosan or monosodium urate (MSU) crystals were injected intra-articularly (i.a.) into mouse knee joints to induce reactive or gouty arthritis. Joint swelling, articular cell infiltration, and synovial cytokines were evaluated 25 hours and 4 hours following zymosan or MSU challenge, respectively. OLT1177 was administrated intraperitoneally by oral gavage or in the food by an OLT1177-enriched diet. RESULTS OLT1177 reduced zymosan-induced joint swelling (p < 0.001), cell influx (p < 0.01), and synovial levels of interleukin (IL)-1β, IL-6, and chemokine (C-X-C motif) ligand 1 (CXCL1) (p < 0.05), respectively, when compared with vehicle-treated mice. Plasma OLT1177 levels correlated (p < 0.001) dose-dependently with reduction in joint inflammation. Treatment of mice with OLT1177 limited MSU crystal articular inflammation (p > 0.0001), which was associated with decreased synovial IL-1β, IL-6, myeloperoxidase, and CXCL1 levels (p < 0.01) compared with vehicle-treated mice. When administrated orally 1 hour after MSU challenge, OLT1177 reduced joint inflammation, processing of IL-1β, and synovial phosphorylated c-Jun N-terminal kinase compared with the vehicle group. Mice were fed an OLT1177-enriched diet for 3 weeks and then challenged i.a. with MSU crystals. Joint swelling, synovial IL-1β, and expression of Nlrp3 and Il1b were significantly reduced in synovial tissues in mice fed an OLT1177-enriched diet when compared with the standard diet group. CONCLUSIONS Oral OLT1177 is highly effective in ameliorating reactive as well as gouty arthritis.
Collapse
Affiliation(s)
- Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | | | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Nick Powers
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | - Dennis M. de Graaf
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
18
|
Tu J, Hong W, Zhang P, Wang X, Körner H, Wei W. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy? Front Immunol 2018; 9:1467. [PMID: 29997624 PMCID: PMC6028561 DOI: 10.3389/fimmu.2018.01467] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS) are the two main cellular components of the synovium. It has been widely reported that FLS and MLS play essential roles in the joint pathology of rheumatoid arthritis (RA). Although various studies have analyzed both human and animal tissues and have shown that both cell types are involved in different stages of RA, ontology, and specific functions of both cell populations and their interactions are not well understood. In this review, we will summarize recent research on FLS and MLS in RA and focus on the development and function of two predominant synovial cell types. In addition, we will discuss the communication between FLS or MLS and highlight potential treatments for RA that involve synoviocytes.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Wang J, Tai G. Role of C-Jun N-terminal Kinase in Hepatocellular Carcinoma Development. Target Oncol 2017; 11:723-738. [PMID: 27392951 DOI: 10.1007/s11523-016-0446-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most frequently occurring cancers and the leading causes of cancer mortality worldwide. Identification of the signaling pathways regulating liver carcinogenesis is critical for developing novel chemoprevention and targeted therapies. C-Jun N-terminal kinase (JNK) is a member of a larger group of serine/threonine (Ser/Thr) protein kinases known as the mitogen-activated protein kinase (MAPK) family. JNK is an important signaling component that converts external stimuli into a wide range of cellular responses, including cell proliferation, differentiation, survival, migration, invasion, and apoptosis, as well as the development of inflammation, fibrosis, cancer growth, and metabolic diseases. Because of the essential roles of JNK in these cellular functions, deregulated JNK is often found to contribute to the development of HCC. Recently, the functions and molecular mechanisms of JNK in HCC development have been addressed using mouse models and human HCC cell lines. Furthermore, recent studies demonstrate that the activation of JNK by oncogenes can promote the development of cancers by regulating the transforming growth factor (TGF)-β/Smad pathway, which makes the oncogenes/JNK/Smad signaling pathway an attractive target for cancer therapy. Additionally, JNK-targeted therapy has a broad potential for clinical applications. In summary, we are convinced that promising new avenues for the treatment of HCC by targeting JNK are on the horizon, which will undoubtedly lead to better, more effective, and faster therapies in the years to come.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China.
| |
Collapse
|
20
|
Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages. Mar Drugs 2016; 14:md14090169. [PMID: 27657093 PMCID: PMC5039540 DOI: 10.3390/md14090169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.
Collapse
|
21
|
Effects of sodium selenite on c-Jun N-terminal kinase signalling pathway induced by oxidative stress in human chondrocytes and c-Jun N-terminal kinase expression in patients with Kashin-Beck disease, an endemic osteoarthritis. Br J Nutr 2016; 115:1547-55. [PMID: 26948765 DOI: 10.1017/s0007114516000362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The c-Jun N-terminal kinases (JNK) are members of the mitogen-activated protein kinase family and are activated by environmental stress. Se plays an important role in the biological pathways by forming selenoprotein. Selenoproteins have been shown to exhibit a variety of biological functions including antioxidant functions and maintaining cellular redox balance, and compromise of such important proteins would lead to oxidative stress and apoptosis. We examined the expression levels of JNK in Kashin-Beck disease (KBD) patients, tested the potential protective effects of sodium selenite on tert-butyl hydroperoxide (tBHP)-induced oxidative injury and apoptosis in human chondrocytes as well as its underlying mechanism in this study. We produced an oxidative damage model induced by tBHP in C28/I2 human chondrocytes to test the essential anti-apoptosis effects of Se in vitro. The results indicated that the expression level of phosphorylated JNK was significantly increased in KBD patients. Cell apoptosis was increased and molecule expressions of the JNK signalling pathway were activated in the tBHP-injured chondrocytes. Na2SeO3 protected against tBHP-induced oxidative stress and apoptosis in cells by increasing cell viability, reducing reactive oxygen species generation, increasing Glutathione peroxidase (GPx) activity and down-regulating the JNK pathway. These results demonstrate that apoptosis induced by tBHP in chondrocytes might be mediated via up-regulation of the JNK pathway; Na2SeO3 has an effect of anti-apoptosis by down-regulating the JNK signalling pathway.
Collapse
|
22
|
Chenna Narendra S, Chalise JP, Magnusson M, Uppugunduri S. Local but Not Systemic Administration of Uridine Prevents Development of Antigen-Induced Arthritis. PLoS One 2015; 10:e0141863. [PMID: 26512984 PMCID: PMC4625961 DOI: 10.1371/journal.pone.0141863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Uridine has earlier been show to down modulate inflammation in models of lung inflammation. The aim of this study was to evaluate the anti-inflammatory effect of uridine in arthritis. METHODS Arthritis was induced by intra-articular injection of mBSA in the knee of NMRI mice pre-immunized with mBSA. Uridine was either administered locally by direct injection into the knee joint or systemically. Systemic treatment included repeated injections or implantation of a pellet continuously releasing uridine during the entire experimental procedure. Anti-mBSA specific immune responses were determined by ELISA and cell proliferation and serum cytokine levels were determined by Luminex. Immunohistochemistry was used to identify cells, study expression of cytokines and adhesion molecules in the joint. RESULTS Local administration of 25-100 mg/kg uridine at the time of arthritis onset clearly prevented development of joint inflammation. In contrast, systemic administration of uridine (max 1.5 mg uridine per day) did not prevent development of arthritis. Protection against arthritis by local administration of uridine did not affect the anti-mBSA specific immune response and did not prevent the rise in serum levels of pro-inflammatory cytokines associated with the triggering of arthritis. In contrast, local uridine treatment efficiently inhibited synovial expression of ICAM-1 and CD18, local cytokine production and recruitment of leukocytes to the synovium. CONCLUSION Local, but not systemic administration of uridine efficiently prevented development of antigen-induced arthritis. The protective effect did not involve alteration of systemic immunity to mBSA but clearly involved inhibition of synovial expression of adhesion molecules, decreased TNF and IL-6 production and prevention of leukocyte extravasation. Further, uridine is a small, inexpensive molecule and may thus be a new therapeutic option to treat joint inflammation in RA.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Antigens/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- CD18 Antigens/metabolism
- Cytokines/blood
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Immunoglobulin G/immunology
- Immunohistochemistry
- Injections, Intra-Articular
- Intercellular Adhesion Molecule-1/metabolism
- Mice
- Serum Albumin, Bovine/adverse effects
- Serum Albumin, Bovine/immunology
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Uridine/administration & dosage
Collapse
Affiliation(s)
- Sudeep Chenna Narendra
- Autoimmunity & Immune Regulation (AIR), Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| | - Jaya Prakash Chalise
- Autoimmunity & Immune Regulation (AIR), Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Magnusson
- Autoimmunity & Immune Regulation (AIR), Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden
| | - Srinivas Uppugunduri
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Kim DH, Lee DH, Jo MR, Son DJ, Park MH, Hwang CJ, Park JH, Yuk DY, Yoon DY, Jung YS, Kim Y, Jeong JH, Han SB, Hong JT. Exacerbation of Collagen Antibody-Induced Arthritis in Transgenic Mice Overexpressing Peroxiredoxin 6. Arthritis Rheumatol 2015. [DOI: 10.1002/art.39284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dae Hwan Kim
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Hun Lee
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Mi Ran Jo
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Ju Son
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Mi Hee Park
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Chul Ju Hwang
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Ju Ho Park
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Yeon Yuk
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | | | | | - Youngsoo Kim
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Jae Hwang Jeong
- Chungbuk Provincial College; Okcheon Chungbuk Republic of Korea
| | - Sang Bae Han
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Jin Tae Hong
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| |
Collapse
|
24
|
JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem 2015; 7:2065-86. [PMID: 26505831 DOI: 10.4155/fmc.15.132] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
JNK pathway regulates various physiological processes including inflammatory responses, cell differentiation, cell proliferation, cell death, cell survival and expression of proteins. Deregulation of JNK is linked with various diseases including neurodegenerative disease, autoimmune disease, diabetes, cancer, cardiac hypertrophy and asthma. Three distinct genes JNK1, JNK2 and JNK3 have been identified as regulator of JNK pathway. JNK1 and JNK2 have broad tissue distribution and play a potential role in insulin resistance, inflammation and cell signaling. JNK3 is predominantly found in the CNS neurons, making it an attractive target for neurodegenerative disorders. In this review, we summarize the evidence supporting JNK as a potent therapeutic target, and small molecules from various chemical classes as JNK inhibitors.
Collapse
|
25
|
Gehringer M, Muth F, Koch P, Laufer SA. c-JunN-terminal kinase inhibitors: a patent review (2010 – 2014). Expert Opin Ther Pat 2015; 25:849-72. [DOI: 10.1517/13543776.2015.1039984] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA, Firestein GS, Quinn MT. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor. J Pharmacol Exp Ther 2015; 353:505-16. [PMID: 25784649 DOI: 10.1124/jpet.114.220251] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Deepa Hammaker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Andrei I Khlebnikov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Sergey A Lyakhov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Gary S Firestein
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| |
Collapse
|
27
|
Development of non-traumatic osteonecrosis of the femoral head requires toll-like receptor 7 and 9 stimulations and is boosted by repression on nuclear factor kappa B in rats. J Transl Med 2015; 95:92-9. [PMID: 25384124 PMCID: PMC7100527 DOI: 10.1038/labinvest.2014.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022] Open
Abstract
Non-traumatic osteonecrosis of the femoral head (ONFH) often occurs after corticosteroid therapy in patients with inflammatory diseases. Recent studies suggest that toll-like receptor (TLR) signaling may contribute to the pathogenesis of inflammatory diseases, and that the reason for corticosteroid therapy for inflammatory diseases is related to the anti-inflammatory activities of corticosteroids through the reduction of NF-κB. We hypothesized that the administration of TLR ligands in combination with corticosteroid causes ONFH and that transcription factors may contribute to the pathogenesis of ONFH. The aim of the study was to evaluate (1) the incidence of ONFH in rats after the administration of TLR7 or TLR9 ligands together with methylprednisolone (MPSL) and (2) whether transcription factors contribute to the development of ONFH. Male Wistar rats (n=148) were divided into five groups as follows: Group 1: Saline+MPSL, Group 2: Imiquimod+Saline, Group 3: Imiquimod+MPSL, Group 4: CpG-C+MPSL, Group 5: Imiquimod+BAY11-7082+MPSL. As a result, ONFH was observed in 0 of 12 rats in Group 1, in 1 of 10 in Group 2, in 6 of 12 in Group 3, in 4 of 12 in Group 4, in 0 of 9 in Group 5. MPSL treatment did not significantly affect IRF7 activity, whereas NF-κB activity was significantly repressed in Group 2 and Group 3. Furthermore, the repression in interferon regulatory factor 7 (IRF7) activity by BAY11-7082 interfered with the development of ONFH simultaneously with the MPSL treatment-induced repression in NF-κB activity. In conclusion, in the present study, corticosteroid treatment after the administration of TLR7 or TLR9 ligands caused ONFH. Repression in NF-κB activity by corticosteroid treatment boosted the development of ONFH.
Collapse
|
28
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
29
|
Zhang Y, Li X, Zhang Q, Li J, Ju J, Du N, Liu X, Chen X, Cheng F, Yang L, Xu C, Bilal MU, Wei Y, Lu Y, Yang B. Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J Pharmacol Exp Ther 2014; 349:417-26. [PMID: 24676878 DOI: 10.1124/jpet.114.212795] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal adhesion, characterized by connection of the loops of the intestine with other abdominal organs by fibrous tissue bands, remains an inevitable event of abdominal operations and can cause a number of complications. Berberine hydrochloride (berberine), a natural plant alkaloid derived from Chinese herbal medicine, is characterized by diverse pharmacological effects, such as anticancer and lower elevated blood glucose. This study is designed to investigate the effects of berberine on adhesion and inflammation after abdominal surgeries and the underlying molecular mechanisms. Adhesion severity grades and collagen deposition were assessed 14 days after surgery. We evaluated the levels of intercellular adhesion molecule-1 (ICAM-1) and inflammatory cytokines interleukin-1β (IL-1β), IL-6, transforming growth factor β (TGF-β), tumor necrosis factor-α (TNF-α), and examined transforming growth factor-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) and TAK1/nuclear factor κB (NF-κB) signaling. The surgery group experienced the most severe adhesions, and berberine strikingly reduced the density and severity of adhesion. Results showed significant lower expression of IL-1β, IL-6, TGF-β, TNF-α, and ICAM-1, in berberine groups compared with the operation group. Activities of phosphorylated JNK and phosphorylated NF-κB were inhibited in the berberine groups compared with the surgery group. Our novel findings identified berberine hydrochloride as a promising strategy to prevent adhesion by downregulating ICAM-1 and reduce inflammation by inhibiting the TAK1/JNK and TAK1/NF-κB signaling after abdominal surgery, which brought out a good therapeutic approach for the development of clinical application for postoperative abdominal adhesion and inflammation.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) (Y.Z., X.Li, Q.Z., J.L., J.J., N.D., X.Liu, X.C., F.C., C.X., M.U.B., Y.L., B.Y.), and Institute of Cardiovascular Research (Y.Z., Y.L., B.Y.), Harbin Medical University, Harbin, Heilongjiang, China; and Department of Bone Surgery (L.Y.) and Department of General Surgery (Y.W.), the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deloche C, Lopez-Lazaro L, Mouz S, Perino J, Abadie C, Combette JM. XG-102 administered to healthy male volunteers as a single intravenous infusion: a randomized, double-blind, placebo-controlled, dose-escalating study. Pharmacol Res Perspect 2014; 2:e00020. [PMID: 25505576 PMCID: PMC4186400 DOI: 10.1002/prp2.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of the study is to evaluate the safety, tolerability and pharmacokinetics (PK) of the JNK inhibitor XG-102 in a randomized, double blind, placebo controlled, sequential ascending dose parallel group Phase 1 Study. Three groups of male subjects received as randomly assigned ascending single XG-102 doses (10, 40, and 80 μg/kg; 6 subjects per dose) or placebo (2 subjects per dose) as an intravenous (IV) infusion over 60 min. Safety and tolerability were assessed by physical examination, vital signs, electrocardiography, eye examination, clinical laboratory tests and adverse events (AEs). PK was analyzed using noncompartmental methods. All reported AEs were mild to moderate and neither their number nor their distribution by System Organ Class suggest a dose relationship. Only headache and fatigue were considered probably or possibly study drug related. Headache frequency was similar for active and placebo, consequently this was not considered to be drug related but probably to study conditions. The other examinations did not show clinically relevant deviations or trends suggesting a XG-102 relationship. Geometric mean half-life was similar among doses, ranging from 0.36 to 0.65 h. Geometric mean XG-102 AUC0–last increased more than linearly with dose, 90% confidence intervals (CIs) did not overlap for the two highest doses. Geometric mean dose normalized Cmax values suggest a more than linear increase with dose but 90% CIs overlap. It may be concluded that XG-102 single IV doses of 10–80 μg/kg administered over 1 h to healthy male subjects were safe and well tolerated.
Collapse
|
31
|
Abstract
JNK is involved in a broad range of physiological processes. Several inflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's and Parkinson's disease have been linked with the dysregulated JNK pathway. Research on disease models using the relevant knockout mice has highlighted the importance of specific JNK isoformsin-particular disorders and has stimulated further efforts in the drug-discovery area. However, most of the experimental evidence for the efficacy of JNK inhibition in animal models is from studies using JNK inhibitors, which are not isoform selective. Some of the more recent compounds exhibit good oral bioavailability, CNS penetration and selectivity against the rest of the kinome. Efforts to design isoform-selective inhibitors have produced a number of examples with various selectivity profiles. This article presents recent progress in this area and comment on the role of isoform selectivity for efficacy.
Collapse
|
32
|
Rogers JL, Serafin DS, Timoshchenko RG, Tarrant TK. Cellular targeting in autoimmunity. Curr Allergy Asthma Rep 2013; 12:495-510. [PMID: 23054625 DOI: 10.1007/s11882-012-0307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren's syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | | | | | | |
Collapse
|
33
|
c-Jun N-terminal kinase (JNK)-phospho-c-JUN (ser63/73) pathway is essential for FOXP3 nuclear translocation in psoriasis. J Dermatol Sci 2013. [DOI: 10.1016/j.jdermsci.2012.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Kanbe K, Chiba J, Nakamura A. Inhibition of JNK in synovium by treatment with golimumab in rheumatoid arthritis. Rheumatol Int 2013; 34:125-30. [PMID: 23334372 DOI: 10.1007/s00296-012-2626-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/09/2012] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate immunohistological changes in mitogen-activated protein kinases (MAPKs) in the synovium following treatment with golimumab, compared with methotrexate (MTX). We assessed synovial tissues for 13 different molecules to detect cytokine levels histologically from 10 methotrexate (MTX)-treated rheumatoid arthritis (RA) patients as controls and 10 golimumab plus MTX-treated RA patients. Synovium samples from both groups were assessed by hematoxylin and eosin (HE) staining and analyzed for expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), CD4 (T cells), CD8 (T cells), CD20 (B cells), CD68 (macrophages), receptor activator of nuclear (kappa) B ligand (RANKL), bromodeoxyuridine (BrdU), CD29 (β-1 integrin), phospho-p38 MAPK (Tyr180/Tyr182), phospho-p44/42 MAPK (ERK1/ERK2), and phospho-c-Jun N-terminal kinase (JNK), by an immunohistological examination. HE staining showed that there was a significant decrease in cell proliferation in the synovium in RA patients who received golimumab compared with the controls. TNF-α, IL-6, MMP3, BrdU, p38, and ERK were not seen at significant levels in either group. On the other hand, CD4, CD8, CD20, CD29, CD68, RANKL, and JNK were significantly decreased in the golimumab group compared with the control. Based on a histological analysis of the synovium, it appears that the efficacy of the treatment with golimumab may involve the inhibition of cell proliferation, with decreases in T cells, B cells, macrophages, β-1 integrin, RANKL, and JNK in the synovium, compared with MTX treatment, in RA.
Collapse
Affiliation(s)
- Katsuaki Kanbe
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa, Tokyo, 116-8567, Japan,
| | | | | |
Collapse
|
35
|
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2012; 9:24-33. [PMID: 23147896 DOI: 10.1038/nrrheum.2012.190] [Citation(s) in RCA: 663] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by hyperplastic synovial pannus tissue, which mediates destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS) are a key component of this invasive synovium and have a major role in the initiation and perpetuation of destructive joint inflammation. The pathogenic potential of FLS in RA stems from their ability to express immunomodulating cytokines and mediators as well as a wide array of adhesion molecule and matrix-modelling enzymes. FLS can be viewed as 'passive responders' to the immunoreactive process in RA, their activated phenotype reflecting the proinflammatory milieu. However, FLS from patients with RA also display unique aggressive features that are autonomous and vertically transmitted, and these cells can behave as primary promoters of inflammation. The molecular bases of this 'imprinted aggressor' phenotype are being clarified through genetic and epigenetic studies. The dual behaviour of FLS in RA suggests that FLS-directed therapies could become a complementary approach to immune-directed therapies in this disease. Pathophysiological characteristics of FLS in RA, as well as progress in targeting these cells, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Guma M, Firestein GS. c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatol J 2012; 6:220-31. [PMID: 23028407 PMCID: PMC3460413 DOI: 10.2174/1874312901206010220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 01/24/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress. JNK is also activated by proinflammatory cytokines, such as TNF and IL-1, and Toll-like receptor ligands. This pathway, therefore, can act as a critical convergence point in immune system signaling for both adaptive and innate responses. Like other MAPKs, the JNKs are activated via the sequential activation of protein kinases that includes two dual-specificity MAP kinase kinases (MKK4 and MKK7) and multiple MAP kinase kinase kinases. MAPKs, including JNKs, can be deactivated by a specialized group of phosphatases, called MAP kinase phosphatases. JNK phosphorylates and regulates the activity of transcription factors other than c-Jun, including ATF2, Elk-1, p53 and c-Myc and non-transcription factors, such as members of the Bcl-2 family. The pathway plays a critical role in cell proliferation, apoptosis, angiogenesis and migration. In this review, an overview of the functions that are related to rheumatic diseases is presented. In addition, some diseases in which JNK participates will be highlighted.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, CA, USA
| | | |
Collapse
|
37
|
|
38
|
Lee SI, Boyle DL, Berdeja A, Firestein GS. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-terminal kinase pathway. Arthritis Res Ther 2012; 14:R38. [PMID: 22353730 PMCID: PMC3392838 DOI: 10.1186/ar3750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis. Methods Three 2'-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis. Results MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01). Conclusions MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.
Collapse
Affiliation(s)
- Sang-il Lee
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | | | | | | |
Collapse
|
39
|
Denninger K, Rasmussen S, Larsen JM, Orskov C, Seier Poulsen S, Sørensen P, Christensen JP, Illges H, Odum N, Labuda T. JNK1, but not JNK2, is required in two mechanistically distinct models of inflammatory arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1884-93. [PMID: 21839715 DOI: 10.1016/j.ajpath.2011.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 06/09/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022]
Abstract
The roles of the c-Jun N-terminal kinases (JNKs) in inflammatory arthritis have been investigated; however, the roles of each isotype (ie, JNK1 and JNK2) in rheumatoid arthritis and conclusions about whether inhibition of one or both is necessary for amelioration of disease are unclear. By using JNK1- or JNK2-deficient mice in the collagen-induced arthritis and the KRN T-cell receptor transgenic mouse on C57BL/6 nonobese diabetic (K/BxN) serum transfer arthritis models, we demonstrate that JNK1 deficiency results in protection from arthritis, as judged by clinical score and histological evaluation in both models of inflammatory arthritis. In contrast, abrogation of JNK2 exacerbates disease. In collagen-induced arthritis, the distinct roles of the JNK isotypes can, at least in part, be explained by altered regulation of CD86 expression in JNK1- or JNK2-deficient macrophages in response to microbial products, thereby affecting T-cell-mediated immunity. The protection from K/BxN serum-induced arthritis in Jnk1(-/-) mice can also be explained by inept macrophage function because adoptive transfer of wild-type macrophages to Jnk1(-/-) mice restored disease susceptibility. Thus, our results provide a possible explanation for the modest therapeutic effects of broad JNK inhibitors and suggest that future therapies should selectively target the JNK1 isoform.
Collapse
Affiliation(s)
- Katja Denninger
- Department of Pharmacology and Pharmacotherapy, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|