1
|
Asadikorayem M, Weber P, Zhang S, Surman F, Fercher D, Fonti M, Bevc K, Kauppinen S, Frondelius T, Finnilä MAJ, Zenobi-Wong M. In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo. BIOMATERIALS ADVANCES 2025; 169:214151. [PMID: 39700642 DOI: 10.1016/j.bioadv.2024.214151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Shipin Zhang
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - David Fercher
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marina Fonti
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Kajetana Bevc
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sami Kauppinen
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Tuomas Frondelius
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; Biocenter Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Fukui D, Nishiyama D, Yamanaka M, Tamai H, Nishio N, Kawakami M, Yamada H. Development of a Novel Rat Knee Osteoarthritis Model Induced by Medial Meniscus Extrusion. Cartilage 2025; 16:108-117. [PMID: 37837194 PMCID: PMC11744626 DOI: 10.1177/19476035231205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE The medial meniscus extrusion (MME) is associated with increased stress on the knee joint, which leads to cartilage degeneration. To evaluate the etiology of knee osteoarthritis, it is extremely important to create animal models of the disease that more closely resemble actual clinical conditions in terms of symptomatology, molecular biology, and histology. This study aimed to create a clinically relevant model of MME in rats. DESIGN Behavioral, molecular biological, and histological changes in the newly developed rat MME model were compared with those in sham and medial meniscus transection and medial collateral ligament transection (MMT) models to examine the characteristics of this model. RESULTS In the MME rat model, behavioral evaluation shows abnormalities in gait compared with the other 2 groups, and molecular biological evaluation of the infrapatellar synovia of rats shows that gene expression of inflammatory cytokines, matrix-degrading enzymes, and pain-related nerve growth factor was increased compared with the sham group. Furthermore, histological evaluation reveals that cartilage degeneration was the most severe in the MME group. CONCLUSIONS The newly developed MME model reproduced the characteristic pathology of MME in clinical practice, such as severe pain, inflammation, and rapid progression of osteoarthritis. The MME model, which might more closely mimic human knee osteoarthritis (OA), could be a useful model for elucidating the pathophysiology and considering therapeutic management for knee OA.
Collapse
Affiliation(s)
- Daisuke Fukui
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Nishiyama
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Yamanaka
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hidenobu Tamai
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Naoko Nishio
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Mamoru Kawakami
- Department of Orthopedic Surgery, Saiseikai Wakayama Hospital, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Wang X, Xu L, Wu Z, Lou L, Xia C, Miao H, Dai J, Fei W, Wang J. Exosomes of stem cells: a potential frontier in the treatment of osteoarthritis. PRECISION CLINICAL MEDICINE 2025; 8:pbae032. [PMID: 39781279 PMCID: PMC11705996 DOI: 10.1093/pcmedi/pbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
The aging population has led to a global issue of osteoarthritis (OA), which not only impacts the quality of life for patients but also poses a significant economic burden on society. While biotherapy offers hope for OA treatment, currently available treatments are unable to delay or prevent the onset or progression of OA. Recent studies have shown that as nanoscale bioactive substances that mediate cell communication, exosomes from stem cell sources have led to some breakthroughs in the treatment of OA and have important clinical significance. This paper summarizes the mechanism and function of stem cell exosomes in delaying OA and looks forward to the development prospects and challenges of exosomes.
Collapse
Affiliation(s)
- Xiaofei Wang
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Lei Xu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Zhimin Wu
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Linbing Lou
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Cunyi Xia
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenyong Fei
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
4
|
Labarre KW, Zimmermann G. Long-term effects of infrapatellar fat pad SVF infiltration in knee osteoarthritis management: A prospective cohort study. Bone Rep 2025; 24:101827. [PMID: 39911147 PMCID: PMC11795827 DOI: 10.1016/j.bonr.2025.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Background Knee osteoarthritis (OA) is a prevalent and debilitating condition that significantly impacts patients' quality of life and poses a substantial socioeconomic burden. Current treatments, including nonsteroidal anti-inflammatory drugs (NSAIDs) and physical therapy, often provide only temporary relief and fail to halt disease progression, particularly in advanced stages where knee replacement surgery becomes the primary option. Regenerative cell therapies, particularly those utilizing mesenchymal stem cells (MSCs), have emerged as promising alternatives due to their anti-inflammatory and regenerative properties. This study investigates the efficacy of stromal vascular fraction (SVF) derived from autologous adipose tissue when injected into the infrapatellar (Hoffa's) fat pad, an approach that leverages the rich vascular and stem cell environment of the fat pad to potentially modulate inflammation and promote tissue repair. Methods Patients receiving therapy with SVF were invited to participate in the study. Inclusion criteria encompassed male and female patients aged 18 years or older with a Kellgren-Lawrence score up to 4, while exclusion criteria included malignant tumors, sepsis, or skin lesions at the site of collection or injection. A total of 25 patients were included in the study cohort, with two patients receiving bilateral treatment, resulting in 27 knees analyzed.For the correlation analysis, an additional four patients who had only completed the six-month follow-up were included, one of whom underwent bilateral treatment. This extended the correlation analysis cohort to 29 patients and 32 knees. However, these four patients were excluded from the final study analysis as they had not completed the two-year follow-up. Consequently, the final analysis focused exclusively on the 25 patients (27 knees) who completed the full two-year follow-up. Results Significant improvements were observed in VAS pain scores and KOOS subscales for pain, activities of daily living (ADL), and quality of life (QOL) at 6 and 24 months (p < 0.05). The correlation between the number of injected cells and functional improvements was significant for ADL at 6 months (Spearman's rho = 0.31, p = 0.044). This time point was prioritized to evaluate early therapeutic responses, as it represents a critical window when cellular activity and therapeutic effects are believed to peak. Focusing on the six-month follow-up allowed for a detailed assessment of these early impacts while minimizing potential confounding factors observed in later stages. No major complications were reported. Conclusion SVF infiltration into the infrapatellar fat pad shows promising long-term benefits in pain relief and functional improvement for knee OA patients. Despite the lack of blinding and a control group, these findings suggest that SVF therapy could be a viable minimally invasive alternative to more invasive surgical interventions.
Collapse
Affiliation(s)
- Klaus Werner Labarre
- Department of Trauma Surgery and Sports Traumatology, Brothers' Hospital Julia Lanz Mannheim, Bassermannstraße 1, 68165 Mannheim, Germany
| | - Gerald Zimmermann
- Department of Trauma Surgery and Sports Traumatology, Brothers' Hospital Julia Lanz Mannheim, Bassermannstraße 1, 68165 Mannheim, Germany
| |
Collapse
|
5
|
Wang W, Chu Y, Lu Y, Xu J, Zhao W, Liang Z, Guo X, Xi L, Han T, Shen Y, Song W, Tang Y, Wen M, Qian Z, Wang L, Fan Z, Zhou G, Ren W. Skatole Alleviates Osteoarthritis by Reprogramming Macrophage Polarization and Protecting Chondrocytes. RESEARCH (WASHINGTON, D.C.) 2025; 8:0604. [PMID: 39902346 PMCID: PMC11788598 DOI: 10.34133/research.0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, yet effective disease-modifying OA drugs (DMOADs) remain elusive. Targeting macrophage polarization has emerged as a promising avenue for OA treatment. This study identified skatole through high-throughput screening as an efficient modulator of macrophage polarization. In vivo experiments demonstrated that skatole administration markedly reduced synovitis and cartilage damage in both destabilization of medial meniscus (DMM)-induced OA mice and monosodium iodoacetate (MIA)-induced OA rats. Mechanistically, skatole activated signal transducer and activator of transcription 6 (Stat6) signaling, promoting M2 macrophage polarization, while inhibiting nuclear factor-κB (NFκB) and mitogen-activated protein kinase (MAPK) signaling pathways to suppress M1 polarization. RNA-sequencing analysis, targeted metabolomics, and mitochondrial stress tests further revealed that skatole treatment shifted macrophages toward oxidative phosphorylation for energy production. Additionally, it up-regulated genes associated with glutathione metabolism and reactive oxygen species (ROS) pathways, reducing intracellular ROS production. The CUT&Tag assay results indicated that the downstream transcription factor p65 of NFκB can directly bind to gene loci related to inflammation, oxidative phosphorylation, and glutathione metabolism, thereby modulating gene expression. This regulatory process is inhibited by skatole. At the chondrocyte level, conditional medium from skatole-treated M1 macrophages balanced anabolism and catabolism in mouse chondrocytes and inhibited apoptosis. In IL1β-treated chondrocytes, skatole suppressed inflammation and catabolism without affecting apoptosis or anabolism. Overall, skatole maintains immune microenvironment homeostasis by modulating macrophage polarization in joints and preserves cartilage function by balancing chondrocyte anabolism and catabolism, effectively alleviating OA. These findings suggest skatole's potential as a DMOAD.
Collapse
Affiliation(s)
- Weiyun Wang
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
- The First Affiliated Hospital,
Xinxiang Medical University, Xinxiang 453199, China
| | - Yaru Chu
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Yunkun Lu
- Department of General Surgery, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Jie Xu
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Weixuan Zhao
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
- The First Affiliated Hospital,
Xinxiang Medical University, Xinxiang 453199, China
| | - Zhuo Liang
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Xueqiang Guo
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Lingling Xi
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Tao Han
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Yaping Shen
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjuan Song
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Yanhua Tang
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Mengnan Wen
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Zhuang Qian
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
| | - Guangdong Zhou
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration,
Xinxiang Medical University, Xinxiang 453003, China
- The First Affiliated Hospital,
Xinxiang Medical University, Xinxiang 453199, China
| |
Collapse
|
6
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2025; 33:196-206. [PMID: 39374825 PMCID: PMC11757073 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
de Groot R, Folgado PB, Yamamoto K, Martin DR, Koch CD, Debruin D, Blagg S, Minns AF, Bhutada S, Ahnström J, Larkin J, Aspberg A, Önnerfjord P, Apte SS, Santamaria S. Cleavage of Cartilage Oligomeric Matrix Protein (COMP) by ADAMTS4 generates a neoepitope associated with osteoarthritis and other forms of degenerative joint disease. Matrix Biol 2025; 135:106-124. [PMID: 39672391 DOI: 10.1016/j.matbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease, affecting millions of people worldwide and characterized by degradation of articular cartilage, subchondral bone remodeling and low-grade inflammation, leading to pain, stiffness and disability. Cartilage Oligomeric Matrix Protein (COMP) is a major structural component of cartilage and its degradation has been proposed as a marker of OA severity/progression. Several proteases cleave COMP in vitro, however, it is unclear which of these COMPase activities is prevalent in an osteoarthritic joint. Here, using purified recombinant proteins, we show that A Disintegrin And Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) is the most potent COMPase, followed by ADAMTS1. Using liquid chromatography-tandem mass spectrometry, we identified several novel cleavage sites in COMP resulting from ADAMTS4 and ADAMTS1 activity. Cleavage at S77-V78 disrupted the pentameric organization of COMP and generated a neopeptide previously identified in the synovial fluid of OA patients. Immunoblots with anti-QQS77 antibodies confirmed that ADAMTS4 efficiently cleaved this peptide bond. By analyzing five ADAMTS4 variants, we found that the C-terminal spacer domain is strictly necessary for COMPase activity and identified the specific residues involved in the interaction with COMP. An inhibitory anti-ADAMTS4 antibody significantly decreased generation of the COMP QQS77 neoepitope in human OA cartilage explants, implicating ADAMTS4 as a key protease in generating the QQS77 neopeptides in OA. Since another major ADAMTS4 substrate is aggrecan, the most abundant proteoglycan in cartilage, these findings highlight that, by cleaving both COMP and aggrecan, ADAMTS4 may play a crucial role in modulating the structural integrity of cartilage.
Collapse
Affiliation(s)
- Rens de Groot
- Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Patricia Badía Folgado
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christopher D Koch
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Danielle Debruin
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Sophie Blagg
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Alexander F Minns
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Jonathan Larkin
- SynOA Therapeutics, Philadelphia, PA, USA; Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom; Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
8
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2025; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
9
|
Chun JM, Park JH, Moon BC, Baek SJ. Transcriptomic insights into the anti-inflammatory mechanisms of Protaetia brevitarsis seulensis larvae in IL-1β-driven chondrosarcoma cells. Biomed Pharmacother 2025; 183:117866. [PMID: 39862704 DOI: 10.1016/j.biopha.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Osteoarthritis (OA) is a complex, degenerative, multi-factorial joint disease. Because of the difficulty in treating OA, developing new targeting strategies that can be used to understand its molecular mechanisms is critical. Protaetia brevitarsis seulensis larvae offer much therapeutic value; however, the presence of various active compounds and the multi-factorial risk factors for OA render the precise mechanisms of action unclear. A systematic transcriptome analysis was used to investigate the key mechanisms of action of P. brevitarsis seulensis larvae aqueous extract (PBSL) and its compounds on OA. Major mechanisms and transcription factors of PBSL were analyzed by profiling gene expression changes in interleukin (IL)-1β-induced human chondrosarcoma cell (SW1353) treated with PBSL. An in vitro assay was performed to validate the efficacy of the novel mechanism and targets of PBSL. PBSL exerted anti-inflammatory effects on SW1353 cells by regulating many molecular pathways. The IL-6/JAK/STAT3 pathway was significantly downregulated by PBSL, and STAT3 was identified as a major transcription factor regulating PBSL-induced target gene expression. Of the six PBSL compounds, the major compound was regulated by the IL-6/JAK/STAT3 pathway. This study provided potential novel mechanisms and transcription factors for PBSL and its active compounds against OA and indicated that inhibiting the IL-6/JAK/STAT3 pathway is a therapeutic target for treating OA.
Collapse
Affiliation(s)
- Jin Mi Chun
- Digital Health Research Division, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korean Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korean Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Su-Jin Baek
- Korean Medicine Data Division, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
10
|
Swearingen CJ, Tambiah JRS, Simsek I, Ghandehari H, Kennedy S, Yazici Y. Evaluation of Safety and Efficacy of a Single Lorecivivint Injection in Patients with Knee Osteoarthritis: A Multicenter, Observational Extension Trial. Rheumatol Ther 2025; 12:157-171. [PMID: 39755925 PMCID: PMC11751338 DOI: 10.1007/s40744-024-00731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Lorecivivint (LOR), a CDC-like kinase/dual-specificity tyrosine kinase (CLK/DYRK) inhibitor thought to modulate inflammatory and Wnt pathways, is being developed as a potential intra-articular knee osteoarthritis (OA) treatment. The objective of this trial was to evaluate long-term safety of LOR within an observational extension of two phase 2 trials. METHODS This 60-month, observational extension study (NCT02951026) of a 12-month phase 2a trial (NCT02536833) and 6-month phase 2b trial (NCT03122860) was administratively closed after 36 months as data inferences became limited. Participants received a single intra-articular LOR or placebo (PBO) injection at their parent-trial baseline. The primary outcome was the comparative incidence of serious adverse events (SAEs), with AEs and similar safety measures comprising secondary outcomes. A post hoc baseline-adjusted analysis of covariance (ANCOVA) compared changes from baseline in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Pain and Function subscores and medial joint space width (JSW) between LOR 0.07 mg and PBO groups in a subpopulation of participants with unilateral knee pain and widespread pain low enough to allow participants to differentiate their target knee pain. RESULTS The safety analysis set for the extension study included 495 LOR-treated and 208 control participants, with 409 (82.6%) and 175 (84.1%) remaining at study close, respectively. There were 68 SAEs reported in 38 (5.4%) patients; none were considered treatment-related by investigators. The incidence of AEs was similar between groups. In the post hoc subgroup efficacy analyses, LOR 0.07 mg demonstrated greater mean improvements from baseline compared with PBO in WOMAC pain and function scores out to 12 months post-injection. No between-group differences in medial JSW were observed out to 18 months. CONCLUSIONS LOR appeared generally safe and well tolerated. Efficacy analyses on the subset of completer patients demonstrated durable symptom improvements in WOMAC pain and function for at least 12 months compared to PBO after a single injection of LOR. CLINICAL TRIAL REGISTRATION NUMBER NCT02951026.
Collapse
Affiliation(s)
| | | | - Ismail Simsek
- Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA
| | - Heli Ghandehari
- Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA
| | - Sarah Kennedy
- Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA
| | - Yusuf Yazici
- Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA.
- NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Dai T, Liu M, Bao D, Manor B, Zhou J. Transcranial direct current stimulation alleviates the pain severity in people suffering from knee osteoarthritis: a systematic review and meta-analysis. Pain Rep 2025; 10:e1215. [PMID: 39664709 PMCID: PMC11630987 DOI: 10.1097/pr9.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 12/13/2024] Open
Abstract
Considerable research has shown the benefits of transcranial direct current stimulation (tDCS) for the alleviation of pain associated with knee osteoarthritis (KOA). Still, a large variance in study protocols and observations across publications exists. We here thus completed a systematic review and meta-analysis to comprehensively and quantitatively characterize the effects of tDCS on KOA-related pain. A search strategy based on the Population, Intervention, Comparison, Outcome, and Study design (PICOS) principle was used to obtain the publications in 7 databases. Studies exploring the effects of tDCS on KOA-related pain were screened, and eligible studies were included. Ten studies of 518 participants using Visual Analogue Scale or Numeric Rating Scale to assess pain were included in the systematic review, and 9 of them were included in meta-analysis. The quality of these studies was good. Compared to control, tDCS induced significant short-term improvements in KOA-related pain with medium heterogeneity (standardized mean difference [SMD] = -0.91, 95% confidence interval [-1.24, -0.58], P < 0.001, I2 = 61%). Subgroup analyses showed that both home-based (SMD = -1.32, 95% CI [-1.65, -0.99], P < 0.001, I 2 = 0%) and laboratory-based intervention (SMD = -0.66, 95% CI [-0.99, -0.33], P < 0.001, I 2 = 40%) with at least 5 sessions per week (SMD = -1.02, 95% CI [-1.41, -0.64], P < 0.001, I 2 = 65%) and/or with a total number of at least 10 sessions (SMD = -1.12, 95% CI [-1.51, -0.74], P < 0.001, I 2 = 59%) can induce maximum benefits for the alleviation of KOA-related pain. The results here showed that tDCS is of great promise to alleviate KOA-related pain. Still, future studies with more rigorous design are needed to confirm the observations from this work, which can ultimately help the determination of appropriate intervention protocol that can maximize such benefits.
Collapse
Affiliation(s)
- Tian Dai
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- National Sports Training Center, Beijing, China
| | - Meng Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
- School of Physical Education, University of Jinan, Shandong, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Medical examination center, Peking University, Third Hospital, Beijing, China
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Gagliardi R, Koch DW, Loeser R, Schnabel LV. Matrikine stimulation of equine synovial fibroblasts and chondrocytes results in an in vitro osteoarthritis phenotype. J Orthop Res 2025; 43:292-303. [PMID: 39486895 DOI: 10.1002/jor.26004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Osteoarthritis (OA) is a debilitating disease that impacts millions of individuals and has limited therapeutic options. A significant hindrance to therapeutic discovery is the lack of in vitro OA models that translate reliably to in vivo preclinical animal models. An alternative to traditional inflammatory cytokine models is the matrikine stimulation model, in which fragments of matrix proteins naturally found in OA tissues and synovial fluid, are used to stimulate cells of the joint. The objective of this study was to determine if matrikine stimulation of equine synovial fibroblasts and chondrocytes with fibronectin fragments (FN7-10) would result in an OA phenotype. We hypothesized that FN7-10 stimulation of equine articular cells would result in an OA phenotype with gene and protein expression changes similar to those previously described for human chondrocytes stimulated with FN7-10. Synovial fibroblasts and chondrocytes isolated from four horses were stimulated in monolayer culture for 6 or 18 h with 1 µM purified recombinant 42 kD FN7-10 in serum-free media. At the conclusion of stimulation, RNA was collected for targeted gene expression analysis and media for targeted protein production analysis. Consistent with our hypothesis, FN7-10 stimulation resulted in significant alterations to many important genes that are involved in OA pathogenesis including increased expression of IL-1β, IL-4, IL-6, CCL2/MCP-1, CCL5/RANTES, CXCL6/GCP-2, MMP-1, MMP-3, and MMP13. The results of this study suggest that the equine matrikine stimulation model of OA may prove useful for in vitro experiments leading up to preclinical trials.
Collapse
Affiliation(s)
- Rachel Gagliardi
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Richard Loeser
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
14
|
Xu Y, Ye Z, Wang Y, Ma Y, Chen X, Wang S, Zhang B, Xia C. Alleviating osteoarthritis-induced damage through extracellular vesicles derived from inflammatory chondrocytes. Int Immunopharmacol 2025; 146:113829. [PMID: 39675196 DOI: 10.1016/j.intimp.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
The role of extracellular vesicles (EVs) derived from inflammatory chondrocytes in EV-based therapy for osteoarthritis (OA) has received little attention. We examined the effects of EVs derived from both normal rat chondrocytes (nEVs) and IL-1β-treated rat chondrocytes (iEVs) on IL-1β-treated rat chondrocytes, macrophages, and osteoblasts, alongside mRNA-seq and miRNA-seq analyses of both them. Additionally, nEVs and iEVs were administered intra-articularly in the joints of rat models subjected to anterior cruciate ligament transection (ACLT), and the morphological alterations across the joints were assessed. These findings indicated that iEVs, compared with nEVs, significantly enhanced collagen II synthesis in IL-1β-treated chondrocytes, accompanied by marked increases in ER stress and autophagy. In comparison to nEVs, iEVs exhibited a greater effect on facilitating M2-type macrophage polarization while simultaneously diminishing M1-type polarization, a process likely mediated by the downregulation of chemotactic cytokines such as Cxcl10, Ccl5, Cxcl9, Cxcl1, and Cxcl11. iEVs exerted a more pronounced influence on the phenotypic characteristics of IL-1β-treated osteoblasts than nEVs. In the ACLT-rat model, iEVs, akin to nEVs, effectively mitigated articular cartilage degradation. However, there was no significant difference in OARSI Scores between the two groups, despite iEVs exerting a greater effect on increasing hyaline cartilage thickness and proteoglycan content. iEVs were superior to nEVs in attenuating synovium inflammation and promoting trabecula formation in the femur subchondral bone. Consequently, iEVs, akin to nEVs, significantly alleviated OA-induced damage. Moreover, iEVs outperformed nEVs in certain aspects, notably in augmenting hyaline cartilage, reducing synovium inflammation, and promoting trabecular formation in the subchondral bone during the early stage of OA.
Collapse
Affiliation(s)
- Yang Xu
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Zesen Ye
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Yue Wang
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Yongkang Ma
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Xiaolei Chen
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Shaojie Wang
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China.
| | - Bing Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chun Xia
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China.
| |
Collapse
|
15
|
Ding W, La R, Wang S, He Z, Jiang D, Zhang Z, Ni H, Xu W, Huang L, Wu Q. Associations between neutrophil percentage to albumin ratio and rheumatoid arthritis versus osteoarthritis: a comprehensive analysis utilizing the NHANES database. Front Immunol 2025; 16:1436311. [PMID: 39917306 PMCID: PMC11799277 DOI: 10.3389/fimmu.2025.1436311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The association between the neutrophil percentage to albumin ratio (NPAR) and the risk of osteoarthritis (OA) and rheumatoid arthritis (RA) remains unclear. This study aims to investigate the association between NPAR and the risk of OA and RA. Methods This cross-sectional study analyzed data from 92,062 American adults in the NHANES database between 1999 and 2016. Various statistical analyses were conducted to investigate the associations between NPAR and the risks of OA and RA, including multivariable logistic regression, subgroup analysis, smooth curve fitting, and threshold effect analysis. Results After screening, the final study population included 36,147 participants, with 3,881 individuals diagnosed with OA and 2,178 with RA. After adjusting for confounding factors, higher NPAR levels were associated with an increased risk of RA (OR=1.05; 95% CI: 1.03-1.07; P <0.0001), but not with OA (OR=1.01; 95% CI: 0.99-1.02; P =0.755). This association was remarkably consistent across subgroups by age, sex, body mass index (BMI), alcohol consumption, hypertension, diabetes, and smoking status. Further analyses using curve fitting and threshold effect models revealed a nonlinear association between NPAR and RA, with an inflection point identified at 15.56. Conclusion High levels of NPAR is positively associated with the prevalence of RA. This provides us with new insights for the management and treatment of RA patients.
Collapse
Affiliation(s)
- Wenquan Ding
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Rui La
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Shenghao Wang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Zhiyuan He
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Dinghua Jiang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Zhigang Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Hao Ni
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Wu Xu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Lixin Huang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Qian Wu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
- Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Sun YY, Wang ML, Zhao RH, Hao MY, Song S, Zhou Y, Zhang N. The Efficacy and Brain Network Mechanism of Acupuncture for Knee Osteoarthritis: A Study Protocol for Randomized Controlled Neuroimaging Trial. J Pain Res 2025; 18:391-404. [PMID: 39872091 PMCID: PMC11771175 DOI: 10.2147/jpr.s500024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Purpose Knee osteoarthritis (KOA) is a prevalent degenerative bone and joint disease observed in clinical practice. While acupuncture has demonstrated efficacy in treating KOA, the central mechanisms underlying its effects remain ambiguous. Recently, functional magnetic resonance imaging (fMRI) has been extensively applied in studying the brain mechanisms of acupuncture analgesia. Currently, network analysis based on brain connectomics is a focal point in acupuncture imaging research. Therefore, this study uses KOA as the research vehicle, focuses on the abnormal connectivity patterns of brain functional networks, and integrates clinical pain assessments to thoroughly investigate the central mechanisms of acupuncture therapeutic effects on KOA. Patients and Methods In this parallel, randomized, sham-controlled neuroimaging trial, 60 KOA patients will be randomly divided into the acupuncture group and sham acupuncture group in a 1:1 ratio, treated three times weekly for a total of 12 sessions. Patients will undergo clinical symptom assessments and cranial fMRI scans at baseline (-1-0 weeks), post-treatment (4 weeks), and at the follow-up (16 weeks). Forty healthy subjects will be recruited for observation, with a single MRI scan conducted only at baseline (-1-0 week). The primary efficacy indicator will be the change in NRS score after four weeks of treatment, with secondary outcomes including WOMAC, STAI, and safety assessments. fMRI observations will employ independent component analysis, brain network construction, and functional connectivity, complemented by Pearson correlation analysis to explore the relationship between brain responses and clinical improvements. Conclusion This study will initially uncover how acupuncture intervention for chronic KOA pain centrally regulates and exerts therapeutic effects through the modulation of abnormal brain network functional connectivity patterns, with a demonstrated long-term effect. Ethics and Dissemination This study has been approved by the ethics committee of Shandong University of Traditional Chinese Medicine Affiliated Hospital ((2024) Lunshen No. (028) - KY). Clinical Trial Registration This study has been approved by registered in the Chinese Clinical Trial Registry (ChiCTR2400083695).
Collapse
Affiliation(s)
- Yi-Yang Sun
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Ming-Lin Wang
- Traditional Chinese Medicine Comprehensive Treatment Center, Shengli Oilfield Central Hospital, Jinan, Shandong, People’s Republic of China
| | - Ruo-Han Zhao
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Ming-Yao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shuai Song
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yue Zhou
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Na Zhang
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
17
|
Yang M, Su Y, Xu K, Wen P, Xie J, Wan X, Jing W, Yang Z, Liu L, Xu P. Viral infections of the central nervous system increase the risk of knee osteoarthritis: a two-sample mendelian randomization study. Aging Clin Exp Res 2025; 37:30. [PMID: 39836329 PMCID: PMC11750930 DOI: 10.1007/s40520-025-02927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Osteoarthritis (OA) represents a condition under the influence of central nervous system (CNS) regulatory mechanisms. This investigation aims to examine the causal association between viral infections of the central nervous system (VICNS) and inflammatory diseases of the central nervous system (IDCNS) and knee osteoarthritis (KOA) at the genetic level. METHODS In this investigation, VICNS and IDCNS were considered as primary exposure variables, while KOA served as the primary outcome. Employing a two-sample mendelian randomization (MR) approach, we conducted an analysis utilizing summary data derived from genome-wide association studies (GWAS). The GWAS summary data pertaining to VICNS and IDCNS were procured from the Finnish consortium, whereas the IEU OpenGWAS database furnished the requisite data for KOA. To ensure the robustness of our genetic causal assessment, a comprehensive array of sensitivity analyses was undertaken, encompassing evaluations of heterogeneity, horizontal pleiotropy, outlier identification, leave-one-out analyses, and assessment of the normal distribution. RESULTS The results of the MR analyses revealed a suggestive positive genetic causal relationship between VICNS and KOA (P = 0.012, odds ratio [OR] with a 95% confidence interval [CI] of 1.033 [1.007-1.059]). Conversely, the MR analyses did not indicate any evidence of genetic causation between IDCNS and KOA (P = 0.575, OR 95% CI = 0.986 [0.940-1.035]). Importantly, the genetic causal assessment of the exposure and outcome variables did not demonstrate any indications of heterogeneity, horizontal pleiotropy, or outliers. Furthermore, this assessment remained robust against the influence of individual single nucleotide polymorphisms (SNPs) and exhibited adherence to a normal distribution. CONCLUSION The result of this study has elucidated a suggestive positive genetic causal link between the VICNS and KOA. However, no such genetic causal relationship was observed between the IDCNS and KOA. These findings substantiate the genetic underpinnings supporting the association between the CNS and OA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Wensen Jing
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
18
|
Shtroblia V, Petakh P, Kamyshna I, Halabitska I, Kamyshnyi O. Recent advances in the management of knee osteoarthritis: a narrative review. Front Med (Lausanne) 2025; 12:1523027. [PMID: 39906596 PMCID: PMC11790583 DOI: 10.3389/fmed.2025.1523027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Knee osteoarthritis (OA) is a common condition that causes pain and reduces the quality of life for many people. It also leads to high health and financial costs. Managing knee OA pain requires using different methods together for the best results. This review overviews current therapeutic options for knee OA pain, focusing on their efficacy, safety, and potential roles in clinical practice. Topical treatments, such as NSAIDs and capsaicin, offer significant pain relief with minimal systemic side effects and are suitable for initial therapy, together with nonpharmacologic interventions like exercise and, when relevant, weight loss. Oral analgesics, including acetaminophen and opioids, have limited efficacy and serious side effects, making them appropriate only for short-term or rescue therapy. Intra-articular injections, such as corticosteroids, hyaluronic acid, and platelet rich plasma, demonstrate varying levels of efficacy and safety. Nutritional supplements, including curcumin, Boswellia serrata, and glucosaminechondroitin combinations, offer modest benefits and are best used as adjuncts to standart treatment. Nonpharmacological treatments, such as transcutaneous electrical nerve stimulation (TENS), acupuncture, and local heat therapy, provide variable pain relief and should be customized based on individual patient responses. Targeted biologic agents, such as antibodies to TNF-α, IL-1, and NGF, hold promise for more precise pain relief; however, further research is required to establish their routine use. Treating knee OA pain should be personalized, combining several methods. Research must continue to improve treatments and make them safer.
Collapse
Affiliation(s)
- Viktor Shtroblia
- Department of General Surgery, Uzhhorod National University, Uzhhorod, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
19
|
Griffin TM, Komaravolu RK, Lopes EBP, Mehta-D'souza P, Conner T, Kovats T, Kovats S, Allen M, Harris P, Humphrey MB, Welhaven HD, Brahmachary P, June RK. Exercise induces dynamic changes in intra-articular metabolism and inflammation associated with remodeling of the infrapatellar fat pad in mice. Sci Rep 2025; 15:2428. [PMID: 39827311 PMCID: PMC11743197 DOI: 10.1038/s41598-025-86726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
We hypothesized that daily exercise promotes joint health by upregulating anti-inflammatory mediators via adaptive molecular and metabolic changes in the infrapatellar fat pad (IFP). We tested this hypothesis by conducting time-resolved analyses between 1 and 14 days of voluntary wheel running exercise in C57BL/6J mice. IFP structure and cellularity were evaluated by histomorphology, picrosirius red collagen staining, and flow cytometry analysis of stromal vascular fraction cells. Joint inflammation and metabolism were evaluated by multiplex gene expression analysis of synovium-IFP tissue and synovial fluid metabolomics, respectively. Exercise transiently increased cytokine and chemokine gene expression in synovium-IFP tissue, resolving within the first 5 days of exercise. The acute inflammatory response was associated with decreased adipocyte size and elevated CD45+Gr1+ myeloid cells, increased collagen content, and oxidized phospholipids. Exercise acutely altered synovial fluid metabolites, characterized by increased amino acids, peptides, bile acids, sphingolipids, dicarboxylic acids, and straight medium chain fatty acids and decreased hydroxy fatty acids and diacylglycerols. Between 5 and 14 days of exercise, inflammation, collagen, and adipocyte size returned to pre-exercise levels, and CD206+ immuno-regulatory macrophages increased. Thus, although the onset of new daily exercise transiently induced synovium-IFP inflammation and altered tissue structure, sustained daily exercise promoted IFP homeostasis.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
- Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Tessa Kovats
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Peyton Harris
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Mary Beth Humphrey
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- Department of Medicine, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
20
|
Rong G, Zhang Z, Zhan W, Chen M, Ruan J, Shen C. VEGFA, MYC, and JUN are abnormally elevated in the synovial tissue of patients with advanced osteoarthritis. Sci Rep 2025; 15:2066. [PMID: 39814733 PMCID: PMC11736073 DOI: 10.1038/s41598-024-80551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Osteoarthritis (OA), affecting > 500 million people worldwide, profoundly affects the quality of life and ability to work. The mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in OA. To address the lack of studies focused on synovial cells in OA, we evaluated the expression patterns and roles of the MAPK signaling pathway components in OA synovial tissues using bioinformatics. The JUN, MYC, and VEGFA expression levels were significantly higher in the synovial tissues of patients with OA than in control tissues. These loci were closely related to abnormal proliferation, inflammation, and angiogenesis in the synovial tissues of patients with OA. We speculate that Myc and VEGFA activate the p38-MAPK signaling pathway to further activate Jun, thereby promoting abnormal inflammation, proliferation, and angiogenesis in OA synovial tissue. The high MYC, JUN, and VEGFA expression was positively correlated with the patients' K-L score, pain time, and synovial score. Furthermore, the high p38-MAPK and P-p38-MAPK expression confirmed that the abnormal expression and activation of the MAPK signaling pathway occurred in the synovial tissue of patients with OA. Our findings may provide a new direction for the clinical diagnosis and treatment of OA and insights into its pathogenesis.
Collapse
Affiliation(s)
- Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, 214041, Jiangsu, China
| | - Wenjing Zhan
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Minnan Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan Area, Hefei City, 230022, China.
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
21
|
Ruths L, Hengge J, Teixeira GQ, Haffner-Luntzer M, Ignatius A, Riegger J. Terminal complement complex deposition on chondrocytes promotes premature senescence in age- and trauma-related osteoarthritis. Front Immunol 2025; 15:1470907. [PMID: 39877352 PMCID: PMC11772281 DOI: 10.3389/fimmu.2024.1470907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA). Therefore, we investigated whether TCC deposition contributes to stress-induced premature senescence (SIPS) during aging in vivo and after ex vivo cartilage injury. Methods Femoral condyles of male 13-week-old and 72-week-old CD59-ko (higher TCC deposition), C6-deficient (insufficient TCC formation), and C57BL/6 (WT) mice were collected to assess age-related OA. Furthermore, macroscopically intact human and porcine cartilage explants were traumatized and cultured with/without 30% human serum (HS) to activate the complement system. Explants were additionally treated with clusterin (CLU, TCC inhibitor), N-acetylcysteine (NAC, antioxidant), Sarilumab (IL-6 receptor inhibitor), STAT3-IN-1 (STAT3 inhibitor), or IL-1 receptor antagonist (IL-1RA) in order to investigate the consequences of TCC deposition. Gene and protein expression of senescence-associated markers such as CDKN1A and CDKN2A was determined. Results In the murine aging model, CD59-ko mice developed after 72 weeks more severe OA compared to C6-deficient and WT mice. mRNA analysis revealed that the expression of Cdkn1a, Cdkn2a, Tp53, Il1b, and Il6 was significantly increased in the cartilage of CD59-ko mice. In human cartilage, trauma and subsequent stimulation with HS increased mRNA levels of CDKN1A, CDKN2A, and IL6, while inhibition of TCC formation by CLU reduced the expression. Antioxidative therapy with NAC had no anti-senescent effect. In porcine tissue, HS exposure and trauma had additive effects on the number of CDKN2A-positive cells, while Sarilumab, STAT-IN-1, and IL-1RA reduced CDKN2A expression by trend. Conclusion Our results demonstrate that complement activation and consequent TCC deposition is associated with chondrosenescence in age-related and trauma-induced OA. We provided evidence that the SIPS-like phenotype is more likely induced by TCC-mediated cytokine release rather than oxidative stress. Overall, targeting TCC formation could be a future approach to attenuate OA progression.
Collapse
Affiliation(s)
- Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany
| | - Jana Hengge
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
22
|
Aurelian SM, Oancea C, Aurelian J, Mihalache R, Vlădulescu-Trandafir AI, Capisizu A, Chirca N, Zamfirescu A. Supplementary Treatment for Alleviating Pain and Enhancing Functional Ability in Geriatric Patients with Osteoarthritis. Healthcare (Basel) 2025; 13:127. [PMID: 39857154 PMCID: PMC11765481 DOI: 10.3390/healthcare13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background and Objectives: A degenerative joint disease that primarily affects elderly individuals, osteoarthritis (OA) causes pain, decreased mobility, and a lower quality of life. Procaine is regarded as a "veteran" medicine due to its extensive clinical use, although it remains a molecule of interest, as researchers are uncovering new biological and pharmacological effects through innovative experimental methods. This study evaluates the efficacy of the "procaine complex", developed in our country, in alleviating pain and improving functionality in elderly individuals with osteoarthritis of the knee and hip. Materials and Methods: We conducted an assessment of a longitudinal short-term study involving 177 patients aged 65 and older, who were randomly divided into two groups. One group received physical therapy and "procaine complex" periarticular injections (n = 101), while the other group received just physical therapy (n = 76). We assessed pain using a visual analog scale (VAS), in addition to functional evaluations using the Lequesne Index, Activities of Daily Living (ADL), and Instrumental ADL (IADL) scores. We evaluated these through a CGA (complex geriatric assessment), the walk test, "Up and Go" test, Mini Mental State (MMSE) and Geriatric Depression Scale (GDS) for cognitive status. We analyzed all the data from this study using PSPP v3 software. Results: The procaine complex treatment group exhibited a significant reduction in pain (p < 0.001) and improvement in daily activities (p < 0.001) relative to the control group. However, there was no notable difference in walking test scores (p = 0.171). No substantial detrimental effects were identified. The procaine complex did not surpass physical therapy in reducing depressive disorders, but both groups showed some enhancement in this regard. Conclusions: This study demonstrates an innovative approach to pain management by integrating periarticular "procaine complex" injections with physical therapy. This provides elderly individuals experiencing osteoarthritis pain and functional limitations with a secure and efficacious alternative to surgery, or may diminish years of disability.
Collapse
Affiliation(s)
- Sorina Maria Aurelian
- Clinic of Geriatrics, Hospital of Chronic Diseases “Sf. Luca”, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 041915 Bucharest, Romania;
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Justin Aurelian
- Department of Nursing, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Urology, “Prof Dr Th Burghele” Clinical Hospital, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050653 Bucharest, Romania;
| | - Ruxandra Mihalache
- Department of Geriatrics, Qualifying Elder Care an Oncopalliative Care, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.M.); (A.Z.)
| | - Andreea Iulia Vlădulescu-Trandafir
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Alexandru Capisizu
- Department Physiology II Neurosciences, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Narcis Chirca
- Department of Urology, “Prof Dr Th Burghele” Clinical Hospital, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050653 Bucharest, Romania;
| | - Andreea Zamfirescu
- Department of Geriatrics, Qualifying Elder Care an Oncopalliative Care, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.M.); (A.Z.)
| |
Collapse
|
23
|
Zhou X, Jiang P, Tan H, Wang Y, Bai L. KLF9-GRK5-HDAC6 axis aggravates osteoarthritis pathogenesis by promoting chondrocyte extracellular matrix degradation and apoptosis. Commun Biol 2025; 8:23. [PMID: 39779910 PMCID: PMC11711658 DOI: 10.1038/s42003-025-07460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood. Herein, this study aimed to access the potential role and molecular mechanism by which KLF9 regulates OA development. KLF9 was upregulated in cartilage tissues of OA patients and medial meniscotibial ligament (MMTL)-induced OA rats, as well as in IL-1β-treated chondrocytes. Furthermore, knockdown of KLF9 inhibited OA-related cartilage injury, as evidenced by inhibiting chondrocyte extracellular matrix (ECM) degradation, increasing chondrocyte viability, and decreasing apoptosis. Conversely, overexpression of KLF9 had the opposite effect. The downstream mechanism of KLF9 was confirmed. KLF9 mediated the transcription of G protein-coupled receptor kinase 5 (GRK5) by directly targeting the GRK5 promoter. GRK5 knockdown eliminated the effects of KLF9 overexpression on chondrocyte dysfunction. It was also found that GRK5 combined with histone deacetylase 6 (HDAC6) and promoted HDAC6 phosphorylation. The use of the HDAC6 inhibitor TubastatinA also abolished the effects of GRK5 overexpression on chondrocyte ECM degradation and apoptosis. These results demonstrate that the KLF9-GRK5-HDAC6 axis plays a crucial role in promoting the progression of OA.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Jiang
- Department of Orthopedics, Liaoyang City Central Hospital, Liaoyang, China
| | - Huangqi Tan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanfang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Kramer NE, Byun S, Coryell P, D'Costa S, Thulson E, Kim H, Parkus SM, Bond ML, Klein ER, Shine J, Chubinskaya S, Love MI, Mohlke KL, Diekman BO, Loeser RF, Phanstiel DH. Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk. CELL GENOMICS 2025; 5:100738. [PMID: 39788104 PMCID: PMC11770232 DOI: 10.1016/j.xgen.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions. We identified thousands of differentially expressed genes, including those associated with differences in sex and age. RNA sequencing in chondrocytes from 101 donors across two conditions uncovered 3,782 unique eGenes, including 420 that exhibited strong and significant condition-specific effects. Colocalization with OA GWAS signals revealed 13 putative OA risk genes, 6 of which have not been previously identified. Chromatin accessibility and 3D chromatin structure provided insights into the mechanisms and conditional specificity of these variants. Our findings shed light on OA pathogenesis and highlight potential targets for therapeutic development.
Collapse
Affiliation(s)
- Nicole E Kramer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Seyoun Byun
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philip Coryell
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susan D'Costa
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - HyunAh Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sylvie M Parkus
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marielle L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emma R Klein
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jacqueline Shine
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susanna Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michael I Love
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Walters M, Skovgaard K, Heegaard PMH, Fang Y, Kharaz YA, Bundgaard L, Skovgaard LT, Jensen HE, Andersen PH, Peffers MJ, Jacobsen S. Identification and characterisation of temporal abundance of microRNAs in synovial fluid from an experimental equine model of osteoarthritis. Equine Vet J 2025. [PMID: 39775906 DOI: 10.1111/evj.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis. OBJECTIVES To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis. We hypothesised that the abundance of miRNA would change during disease progression. STUDY DESIGN In vivo experiments. METHODS RNA extracted from synovial fluid obtained sequentially (Day 0, 28 and 70) from nine horses with experimentally induced osteoarthritis was subjected to small RNA sequencing using the Illumina Hiseq 4000 sequencing platform. Differentially abundant miRNAs underwent further validation and mapping of temporal abundance (Day 0, 14, 17, 21, 28, 35, 42, 49, 56, 63 and 70 days after osteoarthritis induction) by microfluidic reverse transcription quantitative real-time PCR. Bioinformatic analyses were performed to predict potential biological associations and target genes of the differentially abundant microRNAs. RESULTS Small RNA sequencing revealed 61 differentially abundant microRNAs at an early osteoarthritis stage (Day 28), and subsequent reverse transcription quantitative real-time PCR analysis validated 20 of these. Significant biological functions of the differentially abundant microRNAs were apoptosis, necrosis, cell proliferation and cell invasion. Following validation, four microRNAs (miRNA-199b-3p, miRNA-139-5p, miRNA-1839 and miRNA-151-5p) were detected in more than 50% of the synovial fluid samples and had higher abundance in osteoarthritic than in control joints. MAIN LIMITATIONS Limited sample size. CONCLUSION This is the first study to determine longitudinal changes in synovial fluid microRNA abundance in an equine model of osteoarthritis. Larger studies are needed in naturally occurring osteoarthritis to interrogate putative changes identified by this study.
Collapse
Affiliation(s)
- Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yalda A Kharaz
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lene T Skovgaard
- Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pia H Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
26
|
Belba A, Vanneste T, Kallewaard JW, van Kuijk SM, Gelissen M, Emans P, Bellemans J, Smeets K, Van Boxem K, Sommer M, Kimman M, Van Zundert J. Cooled versus conventional radiofrequency treatment of the genicular nerves for chronic knee pain: 12-month and cost-effectiveness results from the multicenter COCOGEN trial. Reg Anesth Pain Med 2025; 50:36-45. [PMID: 38388017 DOI: 10.1136/rapm-2023-105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Radiofrequency (RF) treatment of the genicular nerves reduces chronic knee pain in patients with osteoarthritis (OA) or persistent postsurgical pain (PPSP) after total knee arthroplasty (TKA). The objective of this study is to compare long-term outcomes of cooled and conventional RF and perform an economic evaluation. METHODS The COCOGEN trial is a double-blinded, non-inferiority, pilot, randomized controlled trial that compared the effects up to 12 months of cooled and conventional RF in patients with chronic knee pain suffering from OA or PPSP after TKA following a 1:1 randomization rate. Outcomes were knee pain, functionality, quality of life, emotional health, medication use, and adverse events. A trial-based economic evaluation was performed with a 12-month societal perspective. Here, the primary outcome was the incremental costs per quality-adjusted life year (QALY). RESULTS 41 of the 49 included patients completed the 12-month follow-up. One patient in the PPSP cooled RF group had substantial missing data at 12-month follow-up. The proportion of patients with ≥50% pain reduction at 12 months was 22.2% (4/18) in patients treated with conventional RF versus 22.7% (5/22) in patients treated with cooled RF (p>0.05). There was a statistically significant difference in the mean absolute numerical rating scale at 12 months after cooled RF and conventional RF in patients with PPSP (p=0.02). Differences between other outcomes were not statistically significant. The health economic analysis indicated that cooled RF resulted in lower costs and improved QALYs compared with conventional RF in PPSP but not in OA. There were no serious adverse events. CONCLUSIONS Both RF treatments demonstrated in approximately 22% of patients a ≥50% pain reduction at 12 months. In patients with PPSP, contrary to OA, cooled RF seems to be more effective than conventional RF. Additionally, cooled RF has in patients with PPSP, as opposed to OA, greater effectiveness at lower costs compared with conventional RF. TRIAL REGISTRATION NUMBER NCT03865849.
Collapse
Affiliation(s)
- Amy Belba
- Anesthesiology, Intensive Care Medicine, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Thibaut Vanneste
- Anesthesiology, Intensive Care Medicine, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
- Anesthesiology and Pain Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Jan Willem Kallewaard
- Anesthesiology, Rijnstate Hospital, Arnhem, The Netherlands
- Anesthesiology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Sander Mj van Kuijk
- Clinical Epidemiology & Medical Technology Assessment, Maastricht UMC+, Maastricht, The Netherlands
| | - Marloes Gelissen
- Anesthesiology and Pain Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Peter Emans
- Orthopaedic Surgery, Joint Preserving Clinic, CAPHRI School for Public Health and Primary Care, Maastricht UMC+, Maastricht, The Netherlands
| | - Johan Bellemans
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- GRIT Belgian Sports Clinic and ArthroClinic, Leuven, Belgium
| | - Kristof Smeets
- Department of Rehabilitation Sciences and Physiotherapy, BIOMED REVAL Rehabilitation Research Institute, Hasselt University, Hasselt, Belgium
- Department of Orthopaedic Surgery, AZ Vesalius, Tongeren, Belgium
| | - Koen Van Boxem
- Anesthesiology, Intensive Care Medicine, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Micha Sommer
- Anesthesiology and Pain Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Merel Kimman
- Clinical Epidemiology & Medical Technology Assessment, Maastricht UMC+, Maastricht, The Netherlands
| | - Jan Van Zundert
- Anesthesiology, Intensive Care Medicine, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
- Anesthesiology and Pain Medicine, Maastricht UMC+, Maastricht, The Netherlands
| |
Collapse
|
27
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
28
|
Keiser M, Preiss S, Ferguson SJ, Stadelmann VA. High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis. Bone 2025; 193:117388. [PMID: 39761845 DOI: 10.1016/j.bone.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size. Wear groove depth was estimated as the thickness from its deepest point to a surface interpolated from the defect edges. Two 5 × 5 mm specimens were sampled from three regions (defect, edge, and cartilage-covered areas) and two from the contralateral condyle, then scanned at higher resolution. Bone density profiles were analyzed as a function of distance from the joint space to identify cortical and trabecular regions of interest and and compute their respective bone density and microstructure. Cortical bone beneath defects was four times thicker under wear grooves than beneath cartilage. Bone density profiles significantly differed between the three specimen types at depths up to 5 mm. Below defects, cortical porosity was 85 % higher, and trabecular density 14 % higher, than in cartilage-covered specimens. Some trabecular spaces were filled with woven bone-like tissue, forming a new cortical layer. These changes were confined to the defect region and ceased abruptly at the defect edge. No correlation was found between bone microstructural indices and the estimated groove depth. Our findings suggest an ongoing migration of the cortical layer during formation of the groove from its original position into the underlying trabecular bone, a process we termed "trabecular corticalization." Under deeper wear grooves, the new cortical layer exhibited large pores connecting bone marrow to the joint space, suggesting physiological limits to corticalization. These results highlight specific bone adaptations beneath cartilage defects in severe OA and provide insights into the progression of subchondral bone changes under bone-on-bone contact areas.
Collapse
Affiliation(s)
- Meret Keiser
- Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland
| | - Stefan Preiss
- Department of Hip and Knee Surgery, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Vincent A Stadelmann
- Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland.
| |
Collapse
|
29
|
Bensa A, Previtali D, Sangiorgio A, Boffa A, Salerno M, Filardo G. PRP Injections for the Treatment of Knee Osteoarthritis: The Improvement Is Clinically Significant and Influenced by Platelet Concentration: A Meta-analysis of Randomized Controlled Trials. Am J Sports Med 2025:3635465241246524. [PMID: 39751394 DOI: 10.1177/03635465241246524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Platelet-rich plasma (PRP) has emerged as a promising therapeutic intervention for knee osteoarthritis (OA), attracting substantial clinical and research attention. However, the clinical relevance of the treatment benefit remains controversial. PURPOSE To evaluate the effectiveness of PRP compared with placebo in patients with knee OA in terms of minimal clinically important difference (MCID) and to investigate the possible influence of platelet concentration on the clinical outcome. STUDY DESIGN Meta-analysis. Level of evidence 1. METHODS The search was conducted on 5 databases (PubMed, Cochrane Library, Scopus, Embase, Web of Science) using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Inclusion criteria were randomized controlled trials comparing PRP and placebo injections to treat knee OA, written in the English language, with no time limitation. The effects were quantified at 1-, 3-, 6-, and 12-month follow-up points. Visual analog scale (VAS) for pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were used, with subanalyses based on platelet concentration performed using a 1,000,000 ± 20% platelets/µL cutoff. The MCID values (VAS, 1.37; WOMAC, 6.4) were used to interpret clinical improvement. The articles' quality was assessed using the Revised Tool for Risk of Bias in Randomized Trials and the Grading of Recommendations Assessment, Development and Evaluation guidelines. RESULTS Among the 5499 articles retrieved, 18 randomized controlled trials (1995 patients) were included. PRP presented statistically superior improvements in VAS and WOMAC scores compared with placebo at all follow-up points, exceeding the MCID at 3- and 6-month follow-up points for VAS and at all follow-up points for WOMAC. The subanalysis based on platelet concentration showed that high-platelet PRP provided clinically significant pain relief with the improvement exceeding the MCID compared with placebo at 3-, 6-, and 12-month follow-up points. In contrast, low-platelet PRP failed to offer a clinically perceivable benefit in terms of VAS score. WOMAC results showed that both products provided a clinically significant improvement at 3 and 6 months of follow-up. This benefit was maintained up to the 12-month follow-up in the high-platelet group but not in the low-platelet group, where the improvement compared with placebo did not reach statistical significance. CONCLUSION This meta-analysis showed that PRP offered clinically relevant functional improvement at 1-, 3-, 6-, and 12-month follow-up points and pain relief at 3- and 6-month follow-up points compared with placebo for the treatment of knee OA. Platelet concentration was found to influence treatment efficacy, with high-platelet PRP providing superior pain relief and more durable functional improvement compared with low-platelet PRP.
Collapse
Affiliation(s)
- Alessandro Bensa
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland
| | - Davide Previtali
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
| | - Alessandro Sangiorgio
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
| | - Angelo Boffa
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
30
|
Maurer S, Kirsch V, Ruths L, Brenner RE, Riegger J. Senolytic therapy combining Dasatinib and Quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators. Aging Cell 2025; 24:e14361. [PMID: 39402753 DOI: 10.1111/acel.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1-2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
- Svenja Maurer
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Valeria Kirsch
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| |
Collapse
|
31
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
33
|
Vanneste T, Belba A, Oei GTML, Emans P, Fonkoue L, Kallewaard JW, Kapural L, Peng P, Sommer M, Vanneste B, Cohen SP, Van Zundert J. 9. Chronic knee pain. Pain Pract 2025; 25:e13408. [PMID: 39219017 PMCID: PMC11680467 DOI: 10.1111/papr.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Chronic knee pain is defined as pain that persists or recurs over 3 months. The most common is degenerative osteoarthritis (OA). This review represents a comprehensive description of the pathology, diagnosis, and treatment of OA of the knee. METHODS The literature on the diagnosis and treatment of chronic knee pain was retrieved and summarized. A modified Delphi approach was used to formulate recommendations on interventional treatments. RESULTS Patients with knee OA commonly present with insidious, chronic knee pain that gradually worsens. Pain caused by knee OA is predominantly nociceptive pain, with occasional nociplastic and infrequent neuropathic characteristics occurring in a diseased knee. A standard musculoskeletal and neurological examination is required for the diagnosis of knee OA. Although typical clinical OA findings are sufficient for diagnosis, medical imaging may be performed to improve specificity. The differential diagnosis should exclude other causes of knee pain including bone and joint disorders such as rheumatoid arthritis, spondylo- and other arthropathies, and infections. When conservative treatment fails, intra-articular injections of corticosteroids and radiofrequency (conventional and cooled) of the genicular nerves have been shown to be effective. Hyaluronic acid infiltrations are conditionally recommended. Platelet-rich plasma infiltrations, chemical ablation of genicular nerves, and neurostimulation have, at the moment, not enough evidence and can be considered in a study setting. The decision to perform joint-preserving and joint-replacement options should be made multidisciplinary. CONCLUSIONS When conservative measures fail to provide satisfactory pain relief, a multidisciplinary approach is recommended including psychological therapy, integrative treatments, and procedural options such as intra-articular injections, radiofrequency ablation, and surgery.
Collapse
Affiliation(s)
- Thibaut Vanneste
- Department of Anesthesiology, Intensive Care MedicineEmergency Medicine and Multidisciplinary Pain CenterGenkBelgium
- Department of Anesthesiology and Pain MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- MHeNs, Mental Health and Neuroscience Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Amy Belba
- Department of Anesthesiology, Intensive Care MedicineEmergency Medicine and Multidisciplinary Pain CenterGenkBelgium
- Department of Anesthesiology and Pain MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- Faculty of Medicine and Life SciencesHasselt UniversityHasseltBelgium
| | - Gezina T. M. L. Oei
- Department of Anesthesiology and Pain MedicineDijklander ZiekenhuisHoornThe Netherlands
- Department of AnesthesiologyAmsterdam UMC Locatie AMCAmsterdamThe Netherlands
| | - Pieter Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary CareMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Loic Fonkoue
- Department of Morphology, Experimental and Clinical Research InstituteUniversité Catholique de LouvainBrusselsBelgium
- Neuro‐Musculo‐Skeletal Department, Experimental and Clinical Research InstituteUniversite Catholique de LouvainBrusselsBelgium
| | - Jan Willem Kallewaard
- Department of AnesthesiologyAmsterdam UMC Locatie AMCAmsterdamThe Netherlands
- Department of AnesthesiologyRijnstate HospitalArnhemThe Netherlands
| | | | - Philip Peng
- Department of Anesthesia and Pain Medicine, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Michael Sommer
- Department of Anesthesiology and Pain MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- MHeNs, Mental Health and Neuroscience Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Bert Vanneste
- Department of Anesthesia and Pain MedicineAZ GroeningeKortrijkBelgium
| | - Steven P. Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation, Psychiatry and Neurological SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Anesthesiology and Physical Medicine & Rehabilitation, Walter Reed National Military Medical CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Jan Van Zundert
- Department of Anesthesiology, Intensive Care MedicineEmergency Medicine and Multidisciplinary Pain CenterGenkBelgium
- Department of Anesthesiology and Pain MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- MHeNs, Mental Health and Neuroscience Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
34
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
35
|
Menarim BC, Mok CH, Scoggin KE, Gornik A, Adam EN, Loux SC, MacLeod JN. Fetal Cartilage Progenitor Cells in the Repair of Osteochondral Defects. JB JS Open Access 2025; 10:e24.00043. [PMID: 39817152 PMCID: PMC11732651 DOI: 10.2106/jbjs.oa.24.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Background Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro. This study analyzed the potential of equine IZN and adjacent anlagen (ANL) cells to regenerate osteochondral defects. Methods Osteochondral defects were created in the knee of immunosuppressed rats and were grafted with cell pellets from either equine fetal IZN, equine fetal ANL, adult fibroblasts, or adult chondrocytes, or they were left untreated. Osteochondral repair was assessed after 2, 6, and 16 weeks. Results Untreated lesions unexpectedly failed to represent critical-sized defects and at 2 weeks exhibited new subchondral bone covered by a fibrocartilage layer that thinned over time. Fibroblast-treated defects filled with soft fibrous tissue. Chondrocyte-treated repair tissue exhibited strong proteoglycan and COL2 staining but poor integration to the adjacent bone. Defects treated with IZN, ANL, or chondrocyte pellets developed hyaline cartilage with increasing safranin-O and collagen II staining over time. IZN and ANL repair tissues exhibited some evidence of zonal architecture such as native cartilage and the best bone integration; nonetheless, they developed exuberant growth, often causing patellar instability and osteoarthritis. Conclusions IZN or ANL cells exhibited some potential to recapitulate developmental features during cartilage repair. However, identifying regulatory determinants of IZN and ANL-derived overgrowths is necessary. Clinical Relevance Studies grafting IZN or ANL tissues in larger animal models with regular immune functions may provide additional insights into improving osteochondral regeneration.
Collapse
Affiliation(s)
- Bruno C. Menarim
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| | - Chan Hee Mok
- Department of Orthopedic Surgery, School of Medicine, University of California San Francisco, San Francisco, California
| | - Kirsten E. Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| | - Alexis Gornik
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee
| | - Emma N. Adam
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| | - Shavahn C. Loux
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| | - James N. MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
36
|
Jenei-Lanzl Z, Zaucke F. Osteoarthritis year in review 2024: Biology. Osteoarthritis Cartilage 2025; 33:58-66. [PMID: 39461410 DOI: 10.1016/j.joca.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Osteoarthritis (OA) research is a fast-growing and extremely wide field, in which a substantial increase in knowledge has been achieved over the last year. It covers many different topics, however, a PubMed search using the terms 'osteoarthritis' and 'biology' resulted in only a limited number of studies that were published between April 2023 and April 2024. In order to identify OA-relevant studies that focus on mechanistic studies of biological processes at the tissue, cellular, and molecular level, the following keywords were included as search terms: tissue interactions, single cell sequencing, transcriptomics, extracellular matrix, signaling, ion channels, and pain. The final selection of publications presented in this 'year in review' was influenced by the personal preferences of the authors, and eventually three larger key themes emerged: 1) Joint tissue interactions covering meniscus, subchondral bone, fat tissue, synovium, and synovial fluid. 2) Degeneration of the cartilage extracellular matrix and generation of bioactive fragments. 3) Receptors, ion channels, signaling pathways, and cellular metabolism. Many of the studies summarized here identified novel potential targets for OA treatment, and promising results were already obtained addressing these targets in different animal models. It will be exciting to see which findings can be translated into future clinical studies and eventually lead to novel treatment approaches for human OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
38
|
Fang M, Lei J, Hu W, Yang J, Lei T, Lei Y, Hua L. HDL-C is inversely associated with the incidence of osteoarthritis among the USA: evidence from the NHANES program of 1999-2020. Sci Rep 2024; 14:31228. [PMID: 39732738 DOI: 10.1038/s41598-024-82491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Osteoarthritis (OA) has been the most common arthritis affecting public health all over the world. Previous experimental research reported that increased low-density lipoprotein cholesterol, along with decreased high-density lipoprotein cholesterol may be associated with increased ectopic bone formation and possible knee OA, while clinical evidence is absent. This study aimed to investigate the association between blood high-density lipoprotein cholesterol (HDL-C) and OA. In this cross-sectional study, all the data were acquired from the National Health and Nutrition Examination Survey (NHANES) program from 1999 to 2020. The blood lipid metabolites of each participant were acquired from the laboratory data, using the standard approach. The diagnosis of OA was established through a questionnaire interview. The multivariate logistic regression analysis, subgroup analysis, and smooth curve fitting analysis were applied to investigate the association between the blood lipid metabolites and OA after adjusting with covariates including gender, age, race, BMI, marital status, physical activity, smoking, hypertension, and diabetes. The interaction analysis and Subgroup analysis were also performed. A total of 28,933 participants, including 3710 people with self-reported OA and 25,223 people without arthritis, were finally eligible for inclusion in this study. The multiple logistic regression indicated that in the 3rd and 4th quartiles, the HDL-C level showed a positive association with the risk of OA (Q3: OR = 1.1342, 95% CI 1.0071, 1.2773, p < 0.05; Q4: OR = 1.2354, 95% CI 1.0937, 1.3956, p < 0.001). The smooth curve fitting showed a trend that the OA odds ratio increased with the increase of HDL-C. Subgroup analysis continued to show that increased HDL led to increased OA risk at certain quartiles in different subgroups. This study shows a positive correlation between blood HDL-C levels and osteoarthritis (OA) risk, suggesting HDL-C may be a risk factor. Further research is needed, especially on lipid-lowering drugs like statins, which can affect HDL-C and influence this association.
Collapse
Affiliation(s)
- Man Fang
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, School of Clinical Medicine, Hunan Normal University, Changsha, 410008, China
| | - Jing Lei
- College of Computer, Chengdu University, Chengdu, 610106, China
| | - Wei Hu
- College of Foreign Languages, Hunan International Economics University, Changsha, China
| | - Junxiao Yang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yitian Lei
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, School of Clinical Medicine, Hunan Normal University, Changsha, 410008, China.
| | - Long Hua
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Orthopedic, The First Affiliated Hospital, Key Laboratory of High Incidence Disease Research in Xinjiang, Ministry of Education, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
39
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
40
|
Pruvost L, Gerlei M, Paris C, Velot É, Kahn CJF, Bianchi A, Linder M. Chondroitin Sulfate Nanovectorized by LC-PUFAs Nanocarriers Extracted from Salmon ( Salmo salar) by Green Process with Decreased Inflammatory Marker Expression in Interleukin-1β-Stimulated Primary Human Chondrocytes In Vitro Culture. Mar Drugs 2024; 22:571. [PMID: 39728145 DOI: 10.3390/md22120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes. The polar lipids, naturally rich in long-chain fatty acids (docosahexaenoic acid DHA C22:6 n-3 and eicosapentaenoic acid EPA C20:5 n-3), and the CS, primarily located in the nasal cartilage, were separated and concentrated before being characterized using various techniques to determine functional and lipid composition. These compounds were then used to formulate liposomes of 63 to 95 nm in size composed of 19.38% of DHA and 7.44% of EPA and encapsulating CS extract with a Δdi-4S/Δdi-6S ratio of 0.53 at 2 weight masses (10-30 kDa and >30 kDa) or CS standard all at two different concentrations. Liposomes were tested on human chondrocytes in inflamed conditions. Thus, compatibility tests, the expression of various inflammation markers at transcriptional and molecular levels, nitrites, and the amount of collagenase produced were analyzed. The results showed that CS, in synergy with the liposomes, played a positive role in combating chondrocyte inflammation even at a low concentration.
Collapse
Affiliation(s)
- Louis Pruvost
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | | | - Cédric Paris
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Émilie Velot
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | | | - Arnaud Bianchi
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
41
|
Tang A, Shu Q, Jia S, Lai Z, Tian J. Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders. Int J Nanomedicine 2024; 19:13547-13562. [PMID: 39720215 PMCID: PMC11668248 DOI: 10.2147/ijn.s486622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources. The paracrine effect of ADSCs plays a crucial role in intercellular communication by releasing mass mediators, including cytokines and growth factors, particularly the exosomes they secrete. Not only do these exosomes possess low immunogenicity, low toxicity, and an enhanced ability to penetrate a bio-barrier, but they also inherit their parent cells' characteristics and carry various bioactive molecules to release to targeted cells, modulating their biological process. Meanwhile, these characteristics also make exosomes a natural nanocarrier capable of targeted drug delivery to specific sites, enhancing the bioavailability of drugs within the body and achieving precision therapy with fewer toxic side effects. Furthermore, the integration of exosomes with tissue engineering and chemical modification strategies can also significantly enhance their efficacy in facilitating tissue repair. However, the current research on ADSC-Exos for improving MSDs remains at an early stage and needs further exploration. Therefore, this review summarized the ADSC-Exo as a nanodrug carrier characteristics and mechanism in the treatment of fracture, osteoporosis, osteoarthritis, intervertebral disc degeneration, and tendon injury, which push forward the research progress of ADSC-Exo therapy for MSDs.
Collapse
Affiliation(s)
- Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Shaohui Jia
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
42
|
Su YC, Shen YP, Chang CY, Pan KT, Huang SM, Chen LC. The Effect of Intravascular Laser Irradiation of Blood on Serum Biomarkers and Clinical Outcome in Knee Osteoarthritis Patients: A Double-Blind Randomized Control Trial. Int J Mol Sci 2024; 25:13608. [PMID: 39769371 PMCID: PMC11677140 DOI: 10.3390/ijms252413608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Knee osteoarthritis (OA) is a prevalent degenerative joint disease globally, causing pain, stiffness, and disability. Intravascular laser irradiation of blood (ILIB) has been used for chronic pain and musculoskeletal disease. However, evidence on the clinical benefits and serum biomarkers post-ILIB therapy in knee OA is insufficient. We designed a double-blind randomized controlled trial to evaluate the clinical and biological outcomes of ILIB therapy for knee OA. Seventeen patients with knee OA were randomly assigned to the ILIB and control groups. The outcomes included the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Scale, visual analog scale, and biomarker analysis of interleukin (IL)-6, IL-13, IL-1β, epidermal growth factor, macrophage inflammatory protein-1β, and eotaxin. The measurements were performed at baseline and three days, one month, and three months post-intervention. The ILIB group showed a significant improvement in the WOMAC-pain score at one month of follow-up than the control group. IL-1β levels reduced significantly on day three, one month, and three months, and IL-13 levels reduced on day three and three months during follow-up in the ILIB group. ILIB therapy reduced knee OA pain for one month and significantly reduced serum IL-1β and IL-13 levels, suggesting potential for pain management.
Collapse
Affiliation(s)
- Yu-Chi Su
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.S.); (Y.-P.S.); (C.-Y.C.)
| | - Yu-Ping Shen
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.S.); (Y.-P.S.); (C.-Y.C.)
| | - Chih-Ya Chang
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.S.); (Y.-P.S.); (C.-Y.C.)
| | - Ke-Ting Pan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Centre, Taipei 114, Taiwan;
| | - Shih-Ming Huang
- Biochemistry Department, National Defense Medical Center, Taipei 114, Taiwan;
| | - Liang-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.S.); (Y.-P.S.); (C.-Y.C.)
| |
Collapse
|
43
|
Lynskey SJ, Gill SD, McGee SL, Ziemann M, Page RS. 'QuickDASH' to find unique genes and biological processes associated with shoulder osteoarthritis: a prospective case-control study. BMC Res Notes 2024; 17:361. [PMID: 39702481 DOI: 10.1186/s13104-024-07035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease impacting the synovial joint complex, yet transcriptional changes specific to shoulder OA remain underexplored. This study aims to profile transcriptomic changes in periarticular tissues from patients undergoing shoulder replacement for OA. By correlating these profiles with QuickDASH scores-a validated measure of worsening shoulder function-this research seeks to understand the gene expression changes associated with clinical decline. Capsular tissue biopsies from shoulder OA patients were compared with those from a control group undergoing shoulder stabilization for recurrent instability. This investigation forms part of a larger transcriptomic analysis of painful shoulder conditions which will address the current gap in knowledge regarding the molecular and genetic underpinnings of shoulder OA, rotator cuff tears and cuff-tear arthropathy. RESULTS The analysis revealed that genes most strongly associated with increasing QuickDASH scores across tissues were linked to inflammation and stress response. Key pathways involved interleukins, chemokines, complement components, nuclear response factors, and immediate early response genes, reflecting a balance between pro- and anti-inflammatory signalling. Additionally, this study identified unique gene expression patterns in shoulder OA not previously observed in hip and knee OA, along with novel genes implicated in shoulder OA, highlighting areas for future targeted investigation. Trial registration This investigation has been registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), registered on the 26th of March 2018, registration number: 12618000431224, accessible from: https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374665&isReview=true.
Collapse
Affiliation(s)
- Samuel J Lynskey
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, Australia.
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, Australia.
| | - Stephen D Gill
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St John of God Hospital, Deakin University, Geelong, Australia
- Geelong University Hospital, Geelong, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Sean L McGee
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, Australia
| | - Mark Ziemann
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, Australia
| | - Richard S Page
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St John of God Hospital, Deakin University, Geelong, Australia
- Geelong University Hospital, Geelong, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
44
|
Guo TZ, Shi X, Li X, Li WW, Wei T, Sahbaie P, McAllister TN, Angst MS, Clark JD, Kingery WS. Autoantibodies cause nociceptive sensitization in a mouse model of degenerative osteoarthritis. Pain 2024:00006396-990000000-00794. [PMID: 39835597 DOI: 10.1097/j.pain.0000000000003500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/24/2024] [Indexed: 01/22/2025]
Abstract
ABSTRACT Previous preclinical and translational studies suggest that tissue trauma related to bony fracture and intervertebral disk disruption initiates the formation of pronociceptive antibodies that support chronic musculoskeletal pain conditions. This study tested this hypothesis in the monosodium iodoacetate (MIA) mouse model of osteoarthritis (OA) and extended the findings using OA patient samples. Monosodium iodoacetate was injected unilaterally into the knees of male and female wild-type (WT) and muMT mice (lacking B cells) to induce articular cartilage damage. Repeated nociceptive behavioral testing was performed, and serum was collected for antibody isolation and passive transfer experiments. Serum antibodies collected from patients with OA were tested in MIA-treated muMT mice. Biochemical analyses were performed on knee joint tissues. Monosodium iodoacetate-treated WT mice developed chronic ipsilateral hindlimb allodynia, hyperalgesia, and unweighting, but these pain behaviors were absent in MIA-treated muMT mice, indicating that cartilage injury-induced pain is B-cell dependent. IgM accumulation was observed in the knee tissues of MIA-treated mice, and intra-articular injection of IgM from MIA-treated mice into MIA-treated muMT mice caused nociceptive sensitization. Similarly, intra-articular injection of IgM from patients with OA was pronociceptive in muMT MIA mice and control subject IgM had no effect. Monosodium iodoacetate-injected joints demonstrate elevated levels of complement component 5a (C5a) and C5a receptor blockade using intra-articular PMX-53-reduced sensitization. These data suggest that MIA-treated mice and patients with OA generate pronociceptive antibodies, and further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xuanying Li
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen-Wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Tiffany N McAllister
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
45
|
Kunze KN, Uzzo RN, Thomas ZD, Hicks J, Rodeo SA, Williams RJ. Return to Sport in Professional Athletes After Cartilage Restoration Surgery of the Knee: A Systematic Review and Meta-Analysis Demonstrates Gender Inequality and the Need for Improved Reporting. Cartilage 2024:19476035241292793. [PMID: 39688238 DOI: 10.1177/19476035241292793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE To synthesize the literature concerning return to sport (RTS) and related outcomes after cartilage restoration surgery of the knee in professional athletes. DESIGN Cochrane, PubMed, and OVID/Medline databases were queried for data pertaining to RTS after knee cartilage surgery in professional athletes. Demographic information, cartilage lesion characteristics, and RTS-specific information were extracted. Freeman-Tukey Double-Arscine Transformations with Dersimonian-Laerd random-effects estimators were constructed to quantitatively describe the cumulative incidence of RTS, while heterogeneous data described narratively. RESULTS Eleven studies (476 athletes; mean age 27.5 ± 2.1 years; 96.6% male) were included. Nine (81.8%) studies investigated a form of microfracture as treatment, with 6 (54.5%) performing isolated microfracture. The remaining studies investigated osteochondral allograft transplantation and mosaicplasty. More than half (n = 6; 54.5%) did not report cartilage lesion location or size. The pooled RTS rate was 84.3% (95% CI: 75.4%-91.8%) at a mean 39.9 (range, 12-104) weeks postoperatively. In 6 studies reporting competition level, a trend toward returning to a lower than pre-injury level was observed. The definition of RTS was only provided in 6 (54.5%) studies, while the criteria for RTS was only reported in 2 (18.2%) studies, suggesting limited transparency. One study reported an objective imaging assessment of reparative tissue, while none reported formal RTS testing protocols or minimum RTS timeline. CONCLUSION Although the majority of professional athletes are reported to achieve a successful RTS after cartilage restoration surgery of the knee, the literature predominantly reflects microfracture treatment. Current limitations in this literature include a substantial lack of female representation and infrequent reporting of cartilage lesion characteristics, rehabilitation and RTS criteria, and objective imaging assessments of reparative tissue.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
- Institute for Cartilage Repair, Hospital for Special Surgery, New York, NY, USA
| | - Robert N Uzzo
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Justin Hicks
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
- Institute for Cartilage Repair, Hospital for Special Surgery, New York, NY, USA
| | - Scott A Rodeo
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
- Institute for Cartilage Repair, Hospital for Special Surgery, New York, NY, USA
| | - Riley J Williams
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
- Institute for Cartilage Repair, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
46
|
Frączek W, Kotela A, Kotela I, Grodzik M. Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6162. [PMID: 39769763 PMCID: PMC11677186 DOI: 10.3390/ma17246162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Nanotechnology, delving into the realm of nanometric structures, stands as a transformative force in orthopedics, reshaping diagnostics, and numerous regenerative interventions. Commencing with diagnostics, this scientific discipline empowers accurate analyses of various diseases and implant stability, heralding an era of unparalleled precision. Acting as carriers for medications, nanomaterials introduce novel therapeutic possibilities, propelling the field towards more targeted and effective treatments. In arthroplasty, nanostructural modifications to implant surfaces not only enhance mechanical properties but also promote superior osteointegration and durability. Simultaneously, nanotechnology propels tissue regeneration, with nanostructured dressings emerging as pivotal elements in accelerating wound healing. As we navigate the frontiers of nanotechnology, ongoing research illuminates promising avenues for further advancements, assuring a future where orthopedic practices are not only personalized but also highly efficient, promising a captivating journey through groundbreaking innovations and tailored patient care.
Collapse
Affiliation(s)
- Wiktoria Frączek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Andrzej Kotela
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland
| | - Ireneusz Kotela
- National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
47
|
Ferrao Blanco MN, Lesage R, Kops N, Fahy N, Bekedam FT, Chavli A, Bastiaansen-Jenniskens YM, Geris L, Chambers MG, Pitsillides AA, Narcisi R, van Osch GJ. A multi-model approach identifies ALW-II-41-27 as a promising therapy for osteoarthritis-associated inflammation and endochondral ossification. Heliyon 2024; 10:e40871. [PMID: 39717596 PMCID: PMC11664402 DOI: 10.1016/j.heliyon.2024.e40871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, in silico analyses, in vitro experiments and in vivo models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis. A computational model of cellular signaling networks in chondrocytes predicted that in silico activation of EPHA2 in healthy chondrocytes increases inflammatory mediators and induces hypertrophic differentiation, a hallmark of endochondral ossification. We then evaluated the effect of EPHA2 inhibition using the tyrosine kinase inhibitor ALW-II-41-27 in cultured human chondrocytes from individuals with osteoarthritis, demonstrating significant reductions in both inflammation and hypertrophy. Additionally, systemic subcutaneous administration of ALW-II-41-27 in a mouse osteoarthritic model attenuated joint degeneration by reducing local inflammation and pathological endochondral ossification. Collectively, this study demonstrates a novel drug discovery pipeline that integrates computational, experimental, and animal models, paving the way for the development of disease-modifying treatments for osteoarthritis.
Collapse
Affiliation(s)
- Mauricio N. Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
| | - Nicole Kops
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Niamh Fahy
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Applied Science, Technological University of the Shannon: Midlands Midwest, Limerick, Ireland
| | - Fjodor T. Bekedam
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Athina Chavli
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
- GIGA In Silico Medicine, University of Liège, Belgium
| | - Mark G. Chambers
- Lilly Research Laboratories, Eli Lilly Pharmaceuticals, Indianapolis, USA
| | | | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, University of Technology Delft, Delft, the Netherlands
| |
Collapse
|
48
|
Liu Z, Sun Y, Pan J, Guo K, Tang Z, Wang X. Single-cell profiling uncovers synovial fibroblast subpopulations associated with chondrocyte injury in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1479909. [PMID: 39720254 PMCID: PMC11666364 DOI: 10.3389/fendo.2024.1479909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Background Chondrocytes and synovial cells participate in the pathogenesis of osteoarthritis (OA). Nonetheless, the interactions and correlations between OA synovial cells and chondrocytes remain unclear. This study aims to elucidate the interactions and correlations between OA synovial cells and chondrocytes, so as to deepen understanding of OA pathogenesis. Methods Single-cell sequencing analysis was employed to analyze clusters of synovial and chondrocyte cells within the OA dataset. Through cell interaction analysis, the potential interactions between these two cell types were further explored. Differential gene expression analysis was used to examine the differences among synovial-related cell clusters. Results The study identified specific characteristics of synovial fibroblasts through single-cell sequencing analysis. Subsequent cell interaction analysis revealed interactions and correlations between synovial fibroblast clusters and cell clusters in both damaged and non-damaged cartilages. CILP+ fibroblasts showed significant interactions with non-damaged chondrocytes, while POSTN+ fibroblasts exhibited significant interactions with damaged chondrocytes. Furthermore, differential gene expression analysis revealed that genes such as PRELP, CLU, COMP, TNFRSF12A, INHBA, CILP, and SERPINE2, were significantly upregulated in CILP+ fibroblasts. These genes are involved in promoting cell proliferation, inhibiting inflammatory pathways, and stabilizing cell structure, thereby exerting reparative and protective effects on chondrocytes. In contrast, COL6A3, COL6A1, COL1A2, COL1A1, COL3A1, TGF-β1, MMP2, AEBP1, SPARC, FNDC1, and POSTN were upregulated in POSTN+ fibroblasts. These genes may contribute to chondrocyte damage and further degeneration by promoting chondrocyte catabolism, driving inflammation, activating inflammatory pathways, and facilitating chondrocyte apoptosis and destruction. Conclusion Our study elucidated the interactions and correlations between OA synovial cells and chondrocytes. CILP+ synovial fibroblasts may exert reparative and protective effects on chondrocytes of patients with OA by promoting cell proliferation, inhibiting inflammation, and stabilizing cellular structures, thereby potentially mitigating the progression of cartilage lesions in affected patients. In contrast, POSTN+ synovial fibroblasts may exacerbate chondrocyte deterioration in patients with OA by enhancing degradation, inflammation, and apoptosis, thereby exacerbating cartilage lesions. Investigating the underlying molecular mechanisms between OA synovial cells and chondrocytes refines the understanding of OA pathogenesis and provides valuable insights for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Zezhong Liu
- Spinal Surgery, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Bonesetting Center, Xiangtan Chinese Medicine Hospital, Xiangtan, Hunan, China
| | - Yongqi Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaoyi Pan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kechun Guo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhi Tang
- Bonesetting Center, Xiangtan Chinese Medicine Hospital, Xiangtan, Hunan, China
| | - Xiaofeng Wang
- Spinal Surgery, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Zhang CM, Kang YX, Zheng SY, Liu Y, Liu MR, Wu GG, Guo L, Li PC, Zhao RP, Duan QQ, Wang SW, Wei XC. A pH-responsive novel delivery system utilizing carbon quantum dots loaded with PT2385 for targeted inhibition of HIF-2α in the treatment of osteoarthritis. Int J Pharm 2024; 666:124752. [PMID: 39321898 DOI: 10.1016/j.ijpharm.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive joint disorder marked by the degradation of cartilage. Elevated concentrations of hypoxia-inducible factor-2α (HIF-2α) are intricately linked to the pathological development of OA. PT2385 has demonstrated effective inhibition of HIF-2α, thereby potentially impeding the initial advancement of OA. Nevertheless, challenges persist, including limited penetration into the deeper layers of cartilage, issues related to charge rejection, and a heightened rate of clearance from the joint. These constraints necessitate further consideration and exploration. METHODS It has been demonstrated that PT2385 exhibits efficient inhibition of HIF-2α expression, thereby contributing to the delay in the progression of osteoarthritis. The pH-responsive attributes of carbon quantum dots, specifically those employing m-phenylenediamine (m-CQDs) coated with bovine serum albumin (BSA), have been systematically evaluated. In both in vitro settings involving cartilage explants and in vivo experiments, the efficacy of BSA-m-CQDs-PT2385 (BCP) has been confirmed in facilitating the transport of PT2385 to the middle and deep layers of cartilage. Furthermore, the BCP system demonstrates controlled drug release contingent upon alterations in environmental pH. RESULTS While the use of PT2385 alone provides protective effects on chondrocytes within an inflamed environment, there exists an opportunity for further enhancement in its efficacy when administered via intra-articular injection. The BCP formulation, characterized by appropriate particle size and charge, facilitates seamless penetration into cartilage tissue. Additionally, BCP demonstrates the capability to release drugs in response to changes in environmental pH. In vitro experiments reveal that BCP effectively inhibits Hif-2α expression and catabolic factors in chondrocytes. Notably, cartilage explants and in vivo experiments indicate that BCP surpasses PT2385 alone in inhibiting the expression of HIF-2α and matrix metalloproteinase 13, particularly in the middle and deep layers. CONCLUSIONS The BCP drug delivery system exhibits selective release of PT2385 in response to pH changes occurring during the progression of osteoarthritis (OA), thereby inhibiting HIF-2α expression deep within the cartilage. The use of BCP significantly augments the capacity of PT2385 to retard both cartilage degeneration and the progression of osteoarthritis. Consequently, BCP as an innovative approach utilizing m-CQDs to deliver PT2385 into articular cartilage, shows potential for treating osteoarthritis.This strategy opens new avenues for osteoarthritis treatment.
Collapse
Affiliation(s)
- Cheng-Ming Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yu-Xin Kang
- State Key Laboratory of Advanced Stainless Steels, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, PR China
| | - Si-Yu Zheng
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yang Liu
- Department of Laboratory Medicine, Handan Second Hospital, Hebei University of Engineering, Handan 056000, PR China
| | - Meng-Rou Liu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Gai-Ge Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Peng-Cui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Rui-Peng Zhao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Qian-Qian Duan
- College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shao-Wei Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China.
| | - Xiao-Chun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
50
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|