1
|
Mazetyte-Godiene A, Vailionyte A, Jelinskas T, Denkovskij J, Usas A. Promotion of hMDSC differentiation by combined action of scaffold material and TGF-β superfamily growth factors. Regen Ther 2024; 27:307-318. [PMID: 38633416 PMCID: PMC11021853 DOI: 10.1016/j.reth.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and reduced oxygen conditions. Methods hMDSCs were set for differentiation towards chondrogenic lineage using BMP-7 and TGF-β3. Cells were seeded onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days under normal (21%) and severe hypoxic (1%) conditions. Chondrogenesis was evaluated by monitoring collagen type II and GAG deposition, and quantification of ACAN expression by RT-PCR. Results Sustained release of TGFβ3 from the hydrogels was observed, 8.7 ± 0.5% of the initially loaded amount diffused out after 24 h from both substrates. For the BMP-7 growth factor, 14.8 ± 0.3% and 18.2 ± 0.6% of the initially loaded amount diffused out after 24 h from CA and CLP-RGD, respectively. The key findings of this study are: i) the self-supporting hydrogels themselves can stimulate hMDSC chondrogenesis by inducing gene expression of cartilage-specific proteoglycan aggrecan and ECM production; ii) the effect of dual BMP-7 and TGF-β3 loading was more pronounced on CA hydrogel under normal oxygen conditions; iii) dual loading on PEG-CLP-RGD hydrogels did not have the synergistic effect, TGF-β3 was more effective under both oxygen conditions; iv) BMP-7 can improve chondrogenic effect of TGF-β3 on CA scaffolds, and hydrogels loaded with both growth factors can induce cartilage formation in hMDSC cultures. Conclusion Our results support the potential strategy of combining implantable hydrogels functionalized with differentiation factors toward improving cartilaginous repair.
Collapse
Affiliation(s)
- Airina Mazetyte-Godiene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- UAB Ferentis, Savanoriu ave. 235, Vilnius, Lithuania
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | - Tadas Jelinskas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Boretti G, Amirfallah A, Edmunds KJ, Hamzehpour H, Sigurjónsson ÓE. Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39381849 DOI: 10.1089/ten.teb.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Arsalan Amirfallah
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| | - Kyle J Edmunds
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Helena Hamzehpour
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| |
Collapse
|
3
|
Zheng B, Shi Y, Xiao L, Li B, Chen Z, Zhao J, Li S, Hou H, Li J, Cai X, Wang H, Wu P, Zheng X. Simultaneously Modulating HIF-1α and HIF-2α and Optimizing Macrophage Polarization through the Biomimetic Gene Vector toward the Treatment of Osteoarthritis. Biomater Res 2024; 28:0059. [PMID: 39076894 PMCID: PMC11283864 DOI: 10.34133/bmr.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
In osteoarthritis (OA), articular cartilage is continuously submerged in a hypoxic environment throughout life, and hypoxia-inducible factors (HIFs) play a crucial role in OA progression. Among the various HIF phenotypes, HIF-1α positively contributes to maintaining the stability of the articular cartilage matrix. In contrast, HIF-2α has a detrimental effect, leading to chondrocyte apoptosis and exacerbating inflammation. Notably, there is currently no simultaneous regulation of HIF-1α and HIF-2α for OA treatment. Thus, the biomimetic gene vector (MENP) was developed for co-delivery of siHIF-2α and Mg2+ to the inflamed regions in OA joints, comprising an inner core consisting of siHIF-2α and Mg2+ and an outer M2 macrophage membrane. In vitro and in vivo studies demonstrate that MENP effectively targets inflamed areas, efficiently silences HIF-2α, and facilitates HIF-1α-mediated cartilage restoration through Mg2+. Furthermore, it indirectly promotes the polarization of macrophages toward an anti-inflammatory M2 phenotype through its action on inflamed synoviocytes. Overall, MENP is an efficient biomimetic vehicle for alleviating inflammation and promoting cartilage repair, representing an appealing approach for OA treatment.
Collapse
Affiliation(s)
- Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Yiwan Shi
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Lei Xiao
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Bowei Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Zihang Chen
- Department of Psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau and National Glycoengineering Research Center, Macao, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau and National Glycoengineering Research Center, Macao, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Huige Hou
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Jieruo Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Xianlong Cai
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, 510630 Guangzhou, China
| |
Collapse
|
4
|
Jain L, Bolam SM, Monk P, Munro JT, Tamatea J, Dalbeth N, Poulsen RC. Elevated glucose promotes MMP13 and ADAMTS5 production by osteoarthritic chondrocytes under oxygenated but not hypoxic conditions. J Cell Physiol 2024; 239:e31271. [PMID: 38595042 DOI: 10.1002/jcp.31271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Type 2 diabetes is linked with increased incidence and severity of osteoarthritis. The purpose of this study was to determine the effect of extracellular glucose within the normal blood glucose and hyperglycemic range on catabolic enzyme production by chondrocytes isolated from osteoarthritic (OA) and macroscopically normal (MN) human cartilage under oxygenated (18.9% oxygen) and hypoxic (1% oxygen) conditions. OA and MN chondrocytes were maintained in 4, 6, 8, or 10 mM glucose for 24 h. Glucose consumption, GLUT1 glucose transporter levels, MMP13 and ADAMTS5 production, and levels of RUNX2, a transcriptional regulator of MMP13, ADAMTS5, and GLUT1, were assessed by enzyme-linked assays, RT-qPCR and/or western blot. Under oxygenated conditions, glucose consumption and GLUT1 protein levels were higher in OA but not MN chondrocytes in 10 mM glucose compared to 4 mM. Both RNA and protein levels of MMP13 and ADAMTS5 were also higher in OA but not MN chondrocytes in 10 mM compared to 4 mM glucose under oxygenated conditions. Expression of RUNX2 was overall lower in MN than OA chondrocytes and there was no consistent effect of extracellular glucose concentration on RUNX2 levels in MN chondrocytes. However, protein (but not RNA) levels of RUNX2 were elevated in OA chondrocytes maintained in 10 mM versus 4 mM glucose under oxygenated conditions. In contrast, neither RUNX2 levels or MMP13 or ADAMTS5 expression were increased in OA chondrocytes maintained in 10 mM compared to 4 mM glucose in hypoxia. Elevated extracellular glucose leads to increased glucose consumption and increased RUNX2 protein levels, promoting production of MMP13 and ADAMTS5 by OA chondrocytes in oxygenated but not hypoxic conditions. These findings suggest that hyperglycaemia may exacerbate chondrocyte-mediated cartilage catabolism in the oxygenated superficial zone of cartilage in vivo in patients with undertreated type 2 diabetes, contributing to increased OA severity.
Collapse
Affiliation(s)
- Lekha Jain
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Paul Monk
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jade Tamatea
- Te Kupenga Hauora Māori, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Juhász KZ, Hajdú T, Kovács P, Vágó J, Matta C, Takács R. Hypoxic Conditions Modulate Chondrogenesis through the Circadian Clock: The Role of Hypoxia-Inducible Factor-1α. Cells 2024; 13:512. [PMID: 38534356 DOI: 10.3390/cells13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor composed of an alpha and a beta subunit. HIF-1α is a master regulator of cellular response to hypoxia by activating the transcription of genes that facilitate metabolic adaptation to hypoxia. Since chondrocytes in mature articular cartilage reside in a hypoxic environment, HIF-1α plays an important role in chondrogenesis and in the physiological lifecycle of articular cartilage. Accumulating evidence suggests interactions between the HIF pathways and the circadian clock. The circadian clock is an emerging regulator in both developing and mature chondrocytes. However, how circadian rhythm is established during the early steps of cartilage formation and through what signaling pathways it promotes the healthy chondrocyte phenotype is still not entirely known. This narrative review aims to deliver a concise analysis of the existing understanding of the dynamic interplay between HIF-1α and the molecular clock in chondrocytes, in states of both health and disease, while also incorporating creative interpretations. We explore diverse hypotheses regarding the intricate interactions among these pathways and propose relevant therapeutic strategies for cartilage disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Krisztián Zoltán Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Ferreira SA, Tallia F, Heyraud A, Walker SA, Salzlechner C, Jones JR, Rankin SM. 3D printed hybrid scaffolds do not induce adverse inflammation in mice and direct human BM-MSC chondrogenesis in vitro. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100087. [PMID: 38312434 PMCID: PMC10835132 DOI: 10.1016/j.bbiosy.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials. First, we show that the chemical composition, microarchitecture and mechanical properties of these scaffolds were not affected by sterilisation with gamma irradiation. To evaluate the systemic and local immunogenic reactivity of the sterilised 3D printed hybrid scaffolds, they were implanted subcutaneously into Balb/c mice. The scaffolds did not trigger a systemic inflammatory response over one week of implantation. The interaction between the host immune system and the implanted scaffold elicited a local physiological reaction with infiltration of mononuclear cells without any signs of a chronic inflammatory response. Then, we investigated how these 3D printed hybrid scaffolds direct chondrogenesis in vitro. Human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs) seeded within the 3D printed hybrid scaffolds were cultured under normoxic or hypoxic conditions, with or without chondrogenic supplements. Chondrogenic differentiation assessed by both gene expression and protein production analyses showed that 3D printed hybrid scaffolds support hBM-MSC chondrogenesis. Articular cartilage-specific extracellular matrix deposition within these scaffolds was enhanced under hypoxic conditions (1.7 or 3.7 fold increase in the median of aggrecan production in basal or chondrogenic differentiation media). Our findings show that 3D printed SiO2/PTHF/PCL-diCOOH hybrid scaffolds have the potential to support the regeneration of cartilage tissue.
Collapse
Affiliation(s)
| | | | - Agathe Heyraud
- Department of Materials, Imperial College London, London, UK
| | - Simone A. Walker
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Julian R. Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M. Rankin
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
9
|
Wang K, Yin C, Ye X, Chen Q, Wu J, Chen Y, Li Y, Wang J, Duan C, Lu A, Guan D. A Metabolic Driven Bio-Responsive Hydrogel Loading Psoralen for Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207319. [PMID: 36869654 DOI: 10.1002/smll.202207319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Indexed: 05/25/2023]
Abstract
Overexpressed matrix metalloproteinases, hypoxia microenvironment, and metabolic abnormality are important pathological signs of rheumatoid arthritis (RA). Designing a delivery carrier according to the pathological characteristics of RA that can control drug release in response to disease severity may be a promising treatment strategy. Psoralen is the main active ingredient isolated from Psoralea corylifolia L. and possesses excellent anti-inflammatory activities as well as improving bone homeostasis. However, the specific underlying mechanisms, particularly the possible relationships between the anti-RA effects of psoralen and related metabolic network, remain largely unexplored. Furthermore, psoralen shows systemic side effects and has unsatisfactory solubility. Therefore, it is desirable to develop a novel delivery system to maximize psoralen's therapeutic effect. In this study, a self-assembled degradable hydrogel platform is developed that delivers psoralen and calcium peroxide to arthritic joints and controls the release of psoralen and oxygen according to inflammatory stimulation, to regulate homeostasis and the metabolic disorder of the anoxic arthritic microenvironment. Therefore, the hydrogel drug delivery system based on the responsiveness of the inflammatory microenvironment and regulation of metabolism provides a new therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Kexin Wang
- National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiangmin Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528225, P. R. China
| | - Chuanzhi Duan
- National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510000, P. R. China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
10
|
Jain L, Bolam SM, Monk AP, Munro JT, Chen E, Tamatea J, Dalbeth N, Poulsen RC. Differential Effects of Hypoxia versus Hyperoxia or Physoxia on Phenotype and Energy Metabolism in Human Chondrocytes from Osteoarthritic Compared to Macroscopically Normal Cartilage. Int J Mol Sci 2023; 24:ijms24087532. [PMID: 37108698 PMCID: PMC10142591 DOI: 10.3390/ijms24087532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Chondrocyte phenotype and energy metabolism are altered in osteoarthritis (OA). However, most studies characterising the change in human chondrocyte behaviour in OA have been conducted in supraphysiological oxygen concentrations. The purpose of this study was to compare phenotype and energy metabolism in chondrocytes from macroscopically normal (MN) and OA cartilage maintained in 18.9% (standard tissue culture), 6% (equivalent to superficial zone of cartilage in vivo) or 1% oxygen (equivalent to deep zone of cartilage in vivo). MMP13 production was higher in chondrocytes from OA compared to MN cartilage in hyperoxia and physoxia but not hypoxia. Hypoxia promoted SOX9, COL2A1 and ACAN protein expression in chondrocytes from MN but not OA cartilage. OA chondrocytes used higher levels of glycolysis regardless of oxygen availability. These results show that differences in phenotype and energy metabolism between chondrocytes from OA and MN cartilage differ depending on oxygen availability. OA chondrocytes show elevated synthesis of cartilage-catabolising enzymes and chondrocytes from MN cartilage show reduced cartilage anabolism in oxygenated conditions. This is relevant as a recent study has shown that oxygen levels are elevated in OA cartilage in vivo. Our findings may indicate that this elevated cartilage oxygenation may promote cartilage loss in OA.
Collapse
Affiliation(s)
- Lekha Jain
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - A Paul Monk
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
| | - Even Chen
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Jade Tamatea
- Te Kupenga Hauora Māori, University of Auckland, Auckland 1010, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
11
|
Quintiens J, De Roover A, Cornelis FMF, Escribano-Núñez A, Sermon A, Pazmino S, Monteagudo S, Lories RJ. Hypoxia and Wnt signaling inversely regulate expression of chondroprotective molecule ANP32A in articular cartilage. Osteoarthritis Cartilage 2023; 31:507-518. [PMID: 36370958 DOI: 10.1016/j.joca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage. METHODS A bioinformatics pipeline was applied to identify regulators of ANP32A. Pathways of interest were targeted to study their impact on ANP32A in in vitro cultures of the human chondrocyte C28/I2 cell-line and primary human articular chondrocytes (hACs) from up to five different donors, using Wnt-activator CHIR99021, hypoxia-mimetic IOX2 and a hypoxia chamber. ANP32A was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, the effect of hypoxia was examined by immunohistochemistry in mice injected intra-articularly with IOX2 after destabilization of the medial meniscus. Effects of Wnt hyper-activation were investigated using Frzb-knockout mice and wild-type mice treated intra-articularly with CHIR99021. Wnt inhibition effects were assessed upon intra-articular injection of XAV939. RESULTS The hypoxia and Wnt signaling pathways were identified as networks controlling ANP32A expression. In vitro and in vivo experiments demonstrated increases in ANP32A upon hypoxic conditions (1.3-fold in hypoxia in C28/I2 cells with 95% confidence interval (CI) [1.11-1.54] and 1.90-fold in hACs [95% CI: 1.56-2] and 1.67-fold in ANP32A protein levels after DMM surgery with IOX2 injections [95% CI: 1.33-2.08]). Wnt hyper-activation decreased ANP32A in chondrocytes in vitro (1.23-fold decrease [95% CI: 1.02-1.49]) and in mice (1.45-fold decrease after CHIR99021 injection [95% CI: 1.22-1.72] and 1.41-fold decrease in Frzb-knockout mice [95% CI: 1.00-1.96]). Hypoxia and Wnt modulated ataxia-telangiectasia mutated serine/threonine kinase (ATM), an ANP32A target gene, in hACs (1.89-fold increase [95% CI: 1.38-2.60] and 1.41-fold decrease [95% CI: 1.02-1.96]). CONCLUSIONS Maintaining hypoxia and limiting Wnt activation sustain ANP32A and protect against osteoarthritis.
Collapse
Affiliation(s)
- J Quintiens
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - A De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - F M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Sermon
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Trauma Research and Innovation Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Pazmino
- Clinical Research Unit, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Kleuskens MWA, Crispim JF, van Doeselaar M, van Donkelaar CC, Janssen RPA, Ito K. Neo-cartilage formation using human nondegenerate versus osteoarthritic chondrocyte-derived cartilage organoids in a viscoelastic hydrogel. J Orthop Res 2023. [PMID: 36866819 DOI: 10.1002/jor.25540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Current regenerative cartilage therapies are associated with several drawbacks such as dedifferentiation of chondrocytes during expansion and the formation of fibrocartilage. Optimized chondrocyte expansion and tissue formation could lead to better clinical results of these therapies. In this study, a novel chondrocyte suspension expansion protocol that includes the addition of porcine notochordal cell-derived matrix was used to self-assemble human chondrocytes from osteoarthritic (OA) and nondegenerate (ND) origin into cartilage organoids containing collagen type II and proteoglycans. Proliferation rate and viability were similar for OA and ND chondrocytes and organoids formed had a similar histologic appearance and gene expression profile. Organoids were then encapsulated in viscoelastic alginate hydrogels to form larger tissues. Chondrocytes on the outer bounds of the organoids produced a proteoglycan-rich matrix to bridge the space between organoids. In hydrogels containing ND organoids some collagen type I was observed between the organoids. Surrounding the bulk of organoids in the center of the gels, in both OA and ND gels a continuous tissue containing cells, proteoglycans and collagen type II had been produced. No difference was observed in sulphated glycosaminoglycan and hydroxyproline content between gels containing organoids from OA or ND origin after 28 days. It was concluded that OA chondrocytes, which can be harvested from leftover surgery tissue, perform similar to ND chondrocytes in terms of human cartilage organoid formation and matrix production in alginate gels. This opens possibilities for their potential to serve as a platform for cartilage regeneration but also as an in vitro model to study pathways, pathology, or drug development.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
14
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
15
|
Ranmuthu CKI, Ranmuthu CDS, Wijewardena CK, Seah MKT, Khan WS. Evaluating the Effect of Hypoxia on Human Adult Mesenchymal Stromal Cell Chondrogenesis In Vitro : A Systematic Review. Int J Mol Sci 2022; 23:ijms232315210. [PMID: 36499531 PMCID: PMC9741425 DOI: 10.3390/ijms232315210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human adult mesenchymal stromal cells (MSCs) from a variety of sources may be used to repair defects in articular cartilage by inducing them into chondrogenic differentiation. The conditions in which optimal chondrogenic differentiation takes place are an area of interest in the field of tissue engineering. Chondrocytes exist in vivo in a normally hypoxic environment and thus it has been suggested that exposing MSCs to hypoxia may also contribute to a beneficial effect on their differentiation. There are two main stages in which MSCs can be exposed to hypoxia, the expansion phase when cells are cultured, and the differentiation phase when cells are induced with a chondrogenic medium. This systematic review sought to explore the effect of hypoxia at these two stages on human adult MSC chondrogenesis in vitro. A literature search was performed on PubMed, EMBASE, Medline via Ovid, and Cochrane, and 24 studies were ultimately included. The majority of these studies showed that hypoxia during the expansion phase or the differentiation phase enhances at least some markers of chondrogenic differentiation in adult MSCs. These results were not always demonstrated at the protein level and there were also conflicting reports. Studies evaluating continuous exposure to hypoxia during the expansion and differentiation phases also had mixed results. These inconsistent results can be explained by the heterogeneity of studies, including factors such as different sources of MSCs used, donor variability, level of hypoxia used in each study, time exposed to hypoxia, and differences in culture methodology.
Collapse
|
16
|
Johnston SN, Madhu V, Shapiro IM, Risbud MV. Conditional Deletion of HIF-2α in Mouse Nucleus Pulposus Reduces Fibrosis and Provides Mild and Transient Protection From Age-Dependent Structural Changes in Intervertebral Disc. J Bone Miner Res 2022; 37:2512-2530. [PMID: 36117450 PMCID: PMC9772060 DOI: 10.1002/jbmr.4707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
Hypoxia-inducible factors (HIFs) are critical to the development and homeostasis of hypoxic tissues. Although HIF-2α, one of the main HIF-α isoforms, is expressed in nucleus pulposus (NP) cells, its functions remain unknown. We deleted HIF-2α in the NP tissue using a notochord-specific FoxA2Cre allele to study HIF-2α function in the adult intervertebral disc. Unlike observations in HIF-1αcKO mice, fate mapping studies using Rosa26-mTmG reporter showed that HIF-2α loss in NP did not negatively impact cell survival or affect compartment development. Rather, loss of HIF-2α resulted in slightly better attributes of NP morphology in 14-month-old HIF-2αcKO mice as evident from lower scores of degeneration. These 14-month-old HIF-2αcKO mice also exhibited significant reduction in NP tissue fibrosis and lower collagen turnover in the annulus fibrosis (AF) compartment. Imaging-Fourier transform-infrared (FTIR) analyses showed decreased collagen and protein content in the NP and maintained chondroitin sulfate levels in 14-month-old HIF-2αcKO . Mechanistically, global transcriptomic analysis showed enrichment of differentially expressed genes with Gene Ontology (GO) terms related to metabolic processes and cell development, molecular functions concerned with histone and protein binding, and associated pathways, including oxidative stress. Noteworthy, these morphological differences were not apparent in 24-month-old HIF-2αcKO , indicating that aging is the dominant factor in governing disc health. Together these data suggest that loss of HIF-2α in the NP compartment is not detrimental to the intervertebral disc development but rather mitigates NP tissue fibrosis and offers mild but transient protection from age-dependent early degenerative changes. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shira N. Johnston
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
17
|
Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 2022; 30:1547-1560. [PMID: 36150678 DOI: 10.1016/j.joca.2022.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical.
Collapse
Affiliation(s)
- A Zelinka
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - A J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - R A Kandel
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - C De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
18
|
A Novel Hypoxia Related Marker in Blood Link to Aid Diagnosis and Therapy in Osteoarthritis. Genes (Basel) 2022; 13:genes13091501. [PMID: 36140669 PMCID: PMC9498462 DOI: 10.3390/genes13091501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative arthritis. Its treatment options are very limited. At present, hypoxia is a prominent factor in OA. This study aimed to re-explore the mechanism between hypoxia and OA, which provides new insights into the diagnosis and therapy of OA. We acquired the OA-related expression profiles of GSE48556, GSE55235, and GSE55457 for our analysis. Using gene set variation analysis (GSVA), we found significant differences in hypoxia. These differences result from multiple pathways, such as the p53 signaling pathway, cell senescence, the NF-kappa B signaling pathway, Ubiquitin-mediated proteolysis, and apoptosis. Meanwhile, the single-sample gene set enrichment analysis (ssGSEA) showed that hypoxia was significantly associated with the level of immune cell infiltration in the immune microenvironment. Thus, we believe that hypoxia is useful for the diagnosis and treatment of OA. We successfully constructed a novel hypoxia-related index (HRI) based on seven hypoxia-related genes (ADM, CDKN3, ENO1, NDRG1, PGAM1, SLC2A1, VEGFA) by least absolute shrinkage and binary logistic regression of the generalized linear regression. HRI showed potential for improving OA diagnosis through receiver operation characteristic (ROC) analysis (AUC training cohort = 0.919, AUC testing cohort = 0.985). Moreover, we found that celastrol, droxinostat, torin-2, and narciclasine may be potential therapeutic compounds for OA based on the Connectivity Map (CMap). In conclusion, hypoxia is involved in the development and progression of OA. HRI can improve diagnosis and show great potential in clinical application. Celastrol, droxinostat, torin-2, and narciclasine may be potential compounds for the treatment of OA patients.
Collapse
|
19
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
20
|
Mohd Yunus MH, Lee Y, Nordin A, Chua KH, Bt Hj Idrus R. Remodeling Osteoarthritic Articular Cartilage under Hypoxic Conditions. Int J Mol Sci 2022; 23:ijms23105356. [PMID: 35628163 PMCID: PMC9141680 DOI: 10.3390/ijms23105356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is one of the leading joint diseases induced by abnormalities or inflammation in the synovial membrane and articular cartilage, causing severe pain and disability. Along with the cartilage malfunction, imbalanced oxygen uptake occurs, changing chondrocytes into type I collagen- and type X collagen-producing dedifferentiated cells, contributing to OA progression. However, mounting evidence suggests treating OA by inducing a hypoxic environment in the articular cartilage, targeting the inhibition of several OA-related pathways to bring chondrocytes into a normal state. This review discusses the implications of OA-diseased articular cartilage on chondrocyte phenotypes and turnover and debates the hypoxic mechanism of action. Furthermore, this review highlights the new understanding of OA, provided by tissue engineering and a regenerative medicine experimental design, modeling the disease into diverse 2D and 3D structures and investigating hypoxia and hypoxia-inducing biomolecules and potential cell therapies. This review also reports the mechanism of hypoxic regulation and highlights the importance of activating and stabilizing the hypoxia-inducible factor and related molecules to protect chondrocytes from mitochondrial dysfunction and apoptosis occurring under the influence of OA.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
- Correspondence: ; Tel.: +603-9145-8624
| | - Yemin Lee
- MedCentral Consulting, Jalan 27/117A, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (A.N.)
| | - Abid Nordin
- MedCentral Consulting, Jalan 27/117A, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (A.N.)
| | - Kien Hui Chua
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
| |
Collapse
|
21
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
22
|
Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol 2022; 9:770655. [PMID: 34976967 PMCID: PMC8719005 DOI: 10.3389/fbioe.2021.770655] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is an avascular tissue, with limited ability to repair and self-renew. Defects in articular cartilage can induce debilitating degenerative joint diseases such as osteoarthritis. Currently, clinical treatments have limited ability to repair, for they often result in the formation of mechanically inferior cartilage. In this review, we discuss the factors that affect cartilage homeostasis and function, and describe the emerging regenerative approaches that are informing the future treatment options.
Collapse
Affiliation(s)
- Yanxi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Karan M Shah
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, Sermon A, Cailotto F, Lories RJ, Monteagudo S. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. JCI Insight 2021; 6:150451. [PMID: 34727094 PMCID: PMC8783684 DOI: 10.1172/jci.insight.150451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, and it is a leading source of pain and disability. To date, this disease lacks curative treatment, as underlying molecular mechanisms remain largely unknown. The histone methyltransferase DOT1L protects against osteoarthritis, and DOT1L-mediated H3K79 methylation is reduced in human and mouse osteoarthritic joints. Thus, restoring DOT1L function seems to be critical to preserve joint health. However, DOT1L-regulating molecules and networks remain elusive, in the joint and beyond. Here, we identified transcription factors and networks that regulate DOT1L gene expression using a potentially novel bioinformatics pipeline. Thereby, we unraveled a possibly undiscovered link between the hypoxia pathway and DOT1L. We provide evidence that hypoxia enhanced DOT1L expression and H3K79 methylation via hypoxia-inducible factor-1 α (HIF1A). Importantly, we demonstrate that DOT1L contributed to the protective effects of hypoxia in articular cartilage and osteoarthritis. Intra-articular treatment with a selective hypoxia mimetic in mice after surgical induction of osteoarthritis restored DOT1L function and stalled disease progression. Collectively, our data unravel a molecular mechanism that protects against osteoarthritis with hypoxia inducing DOT1L transcription in cartilage. Local treatment with a selective hypoxia mimetic in the joint restores DOT1L function and could be an attractive therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ana Escribano Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique Mf Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederic Cailotto
- UMR 7365 CNRS - University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine, Campus Biologie-Santé, Vandoeuvre-Les-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Stone AV, Loeser RF, Callahan MF, McNulty MA, Long DL, Yammani RR, Bean S, Vanderman K, Chubinskaya S, Ferguson CM. Role of the Hypoxia-Inducible Factor Pathway in Normal and Osteoarthritic Meniscus and in Mice after Destabilization of the Medial Meniscus. Cartilage 2021; 13:1442S-1455S. [PMID: 32940061 PMCID: PMC8804812 DOI: 10.1177/1947603520958143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.
Collapse
Affiliation(s)
- Austin V Stone
- Division of Sports Medicine, Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael F Callahan
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L Long
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raghunatha R Yammani
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara Bean
- University of Kentucky School of Medicine, Lexington, KY, USA
| | - Kadie Vanderman
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Cristin M Ferguson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
25
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
26
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
27
|
Yao H, Xu J, Wang J, Zhang Y, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, Hu P, Ruan Y, Xue Q, Ho K, Qin L. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater 2021; 6:1341-1352. [PMID: 33210027 PMCID: PMC7658330 DOI: 10.1016/j.bioactmat.2020.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION We previously demonstrated that magnesium ions (Mg2+) was a novel therapeutic alternative for osteoarthritis (OA) through promoting the hypoxia inducible factor-1α (HIF-1α)-mediated cartilage matrix synthesis. However, oxidative stress can inhibit the expression of HIF-1α, amplify the inflammation that potentially impairs the therapeutic efficacy of Mg2+ in OA. Vitamin (VC), a potent antioxidant, may enhance the efficacy of Mg2+ in OA treatment. This study aims to investigate the efficacy of combination of Mg2+ and VC on alleviating joint destruction and pain in OA. MATERIAL AND METHODS Anterior cruciate ligament transection with partial medial meniscectomy induced mice OA model were randomly received intra-articular injection of either saline, MgCl2 (0.5 mol/L), VC (3 mg/ml) or MgCl2 (0.5 mol/L) plus VC (3 mg/ml) at week 2 post-operation, twice weekly, for 2 weeks. Joint pain and pathological changes were assessed by gait analysis, histology, western blotting and micro-CT. RESULTS Mg2+ and VC showed additive effects to significantly alleviate the joint destruction and pain. The efficacy of this combined therapy could sustain for 3 months after the last injection. We demonstrated that VC enhanced the promotive effect of Mg2+ on HIF-1α expression in cartilage. Additionally, combination of Mg2+ and VC markedly promoted the M2 polarization of macrophages in synovium. Furthermore, combination of Mg2+ and VC inhibited osteophyte formation and expressions of pain-related neuropeptides. CONCLUSIONS Intra-articular administration of Mg2+ and VC additively alleviates joint destruction and pain in OA. Our current formulation may be a cost-effective alternative treatment for OA.
Collapse
Affiliation(s)
- Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Yifeng Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Yechun Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, No. 5th Clinical Medical Collage, Health Science Center, Peking University, Beijing, PR China
| | - Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
McDonnell AC, Eiken O, Mekjavic IB, Žlak N, Drobnič M. The influence of a sustained 10-day hypoxic bed rest on cartilage biomarkers and subchondral bone in females: The FemHab study. Physiol Rep 2021; 8:e14413. [PMID: 32333524 PMCID: PMC7182690 DOI: 10.14814/phy2.14413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
This study assessed the influence of a 10‐day hypoxic bed rest on cartilage biomarkers and subchondral bone density across the patellofemoral joint (PFJ). Within clinical settings hypoxic tissue may arise in several types of disorders. Furthermore, a hypoxic environment is being considered for space flight habitats in the near future. Female participants (N = 12) participated in this study comprising three 10‐day interventions: hypoxic ambulation (HAMB), normoxic bed rest (NBR), and hypoxic bed rest (HBR). Venous samples were collected prior to (day −2: Pre) and during the intervention (days 2 and 5), immediately before reambulation (D11) and 24 hr post intervention (R1). Blood samples were analyzed for: aggrecan, hyaluronan, Type IIA procollagen amino terminal propeptide (PIIANP), and cartilage oligomeric matrix protein (COMP). Total bone mineral density (BMD) in eight regions (2 mm × 10 mm) across the PFJ was determined. The three interventions (HAMB, HBR, and NBR) did not induce any significant changes in the cartilage biomarkers of hyaluronan or PIIANP. Aggrecan increased during the HAMB trial to 2.02 fold the Pre value. COMP decreased significantly in both NBR & HBR compared to HAMB on D5. There were significant differences in BMD measured across the PFJ from cortical patellar bone (735 to 800 mg/cm3) to femur trabecular (195 to 226 mg/cm3). However, there were no significant changes in BMD from Pre to Post bed rest. These results indicate that there were no significant detectable effects of inactivity/unloading on subchondral bone density. The biomarker of cartilage, COMP, decreased on D5, whereas the addition of hypoxia to bed rest had no effect, it appears that hypoxia in combination with ambulation counteracted this decrease.
Collapse
Affiliation(s)
- Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Solna, Sweden
| | - Igor B Mekjavic
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Solna, Sweden.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nik Žlak
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matej Drobnič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Fu L, Zhang L, Zhang X, Chen L, Cai Q, Yang X. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Biomed Mater 2021; 16:022006. [PMID: 33440367 DOI: 10.1088/1748-605x/abdb73] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The repair and treatment of articular cartilage injury is a huge challenge of orthopedics. Currently, most of the clinical methods applied in treating cartilage injuries are mainly to relieve pains rather than to cure them, while the strategy of tissue engineering is highly expected to achieve the successful repair of osteochondral defects. Clear understandings of the physiological structures and mechanical properties of cartilage, bone and osteochondral tissues have been established, but the understanding of their physiological heterogeneity still needs further investigation. Apart from the gradients in the micromorphology and composition of cartilage-to-bone extracellular matrixes, an oxygen gradient also exists in natural osteochondral tissue. The response of hypoxia-inducible factor (HIF)-mediated cells to oxygen would affect the differentiation of stem cells and the maturation of osteochondral tissue. This article reviews the roles of oxygen level and HIF signaling pathway in the development of articular cartilage tissue, and their prospective applications in bone and cartilage tissue engineering. The strategies for regulating HIF signaling pathway and how these strategies finding their potential applications in the regeneration of integrated osteochondral tissue are also discussed.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
32
|
Molecular and Cellular Effects of Chemical Chaperone-TUDCA on ER-Stressed NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic Conditions. Molecules 2021; 26:molecules26040878. [PMID: 33562298 PMCID: PMC7915106 DOI: 10.3390/molecules26040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1β (IL-1β) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1β, as shown by down regulation of Il-1β, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1β- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy.
Collapse
|
33
|
Szojka AR, Marqueti RDC, Li DX, Molter CW, Liang Y, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. J Tissue Eng 2021; 12:2041731421990842. [PMID: 33613959 PMCID: PMC7874349 DOI: 10.1177/2041731421990842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-β3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.
Collapse
Affiliation(s)
- Alexander Ra Szojka
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Rita de Cássia Marqueti
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - David Xinzheyang Li
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Clayton W Molter
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
34
|
Futrega K, Music E, Robey PG, Gronthos S, Crawford R, Saifzadeh S, Klein TJ, Doran MR. Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of chondrogenically induced micro-pellets for cartilage tissue repair in vivo. Stem Cell Res Ther 2021; 12:26. [PMID: 33413652 PMCID: PMC7791713 DOI: 10.1186/s13287-020-02045-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract Bone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. Objective The objective of this study was to characterise ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep. Design oBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation capacity. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Results Expanded oBMSC were positive for CD44 and CD146 and negative for CD45. The common adipogenic induction ingredient, 3-Isobutyl-1-methylxanthine (IBMX), was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX from the medium. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not. Conclusion The sensitivity of oBMSC, compared to human BMSC, to IBMX in standard adipogenic assays highlights species-associated differences. Micro-pellets manufactured from oACh were more effective than micro-pellets manufactured from oBMSC in the repair of osteochondral defects in sheep. While oBMSC can be driven to form cartilage-like tissue in vitro, the effective use of these cells in cartilage repair will depend on the successful mitigation of hypertrophy and tissue integration. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02045-3.
Collapse
Affiliation(s)
- K Futrega
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA.,Translational Research Institute (TRI), Brisbane, Queensland, Australia
| | - E Music
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - P G Robey
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - S Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Crawford
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - S Saifzadeh
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - T J Klein
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M R Doran
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA. .,Translational Research Institute (TRI), Brisbane, Queensland, Australia. .,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,Mater Research Institute - University of Queensland (UQ), Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
A matter of time: Circadian clocks in osteoarthritis and the potential of chronotherapy. Exp Gerontol 2020; 143:111163. [PMID: 33227402 DOI: 10.1016/j.exger.2020.111163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a common and debilitating joint disease which develops and progresses with age. Despite extensive research into the disease, potent disease-modifying drugs remain elusive. Changes to the character and function of chondrocytes of the articular cartilage underly the pathogenesis of OA. A recently emerging facet of chondrocyte biology that has been implicated in OA pathogenesis is the role of circadian rhythms, and the cellular clock which governs rhythmic gene transcription. Here, we review the role of the chondrocyte's cellular clock in governing normal homeostasis, and explore the wide range of consequences that contribute to OA development when the clock is dysregulated by aging and other factors. Finally, we explore how harnessing this understanding of clock mechanics in aging and OA can be translated into novel treatment strategies, or 'chronotherapies', for patients.
Collapse
|
36
|
Zhou Y, Ming J, Deng M, Li Y, Li B, Li J, Ma Y, Chen Z, Wang G, Liu S. Chemically modified curcumin (CMC2.24) alleviates osteoarthritis progression by restoring cartilage homeostasis and inhibiting chondrocyte apoptosis via the NF-κB/HIF-2α axis. J Mol Med (Berl) 2020; 98:1479-1491. [PMID: 32860098 PMCID: PMC10375240 DOI: 10.1007/s00109-020-01972-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The disorders of cartilage homeostasis and chondrocyte apoptosis are major events in the pathogenesis of osteoarthritis (OA). Herein, we aim to assess the chondroprotective effect and underlying mechanisms of a novel chemically modified curcumin, CMC2.24, in modulating extracellular matrix (ECM) homeostasis and inhibiting chondrocyte apoptosis. Rats underwent the anterior cruciate ligament transection, and medial menisci resection was treated by intra-articular injection with CMC2.24. In an in vitro study, rat chondrocytes were pretreated with CMC2.24 before stimulation with sodium nitroprusside (SNP). Results from in vivo studies demonstrated that the intra-articular administration of CMC2.24 ameliorated osteoarthritic cartilage destruction by promoting collagen 2a1 production and inhibited cartilage degradation and apoptosis by suppressing hypoxia-inducible factor-2a (Hif-2α), matrix metalloproteinase-3, runt-related transcription factor 2, cleaved caspase-3, and vascular endothelial growth factor and the phosphorylation of IκBα and NF-κB p65. The in vitro results revealed that CMC2.24 exhibited a strong inhibitory effect on SNP-induced chondrocyte catabolism and apoptosis. The SNP-enhanced expression of Hif-2α, a catabolic and apoptotic factor, decreased in a dose-dependent manner after CMC2.24 treatment. CMC2.24 pretreatment effectively inhibited SNP-induced IκBα and NF-κB p65 phosphorylation in rat chondrocytes, whereas pretreatment with the NF-κB antagonist BMS-345541 significantly enhanced the effects of CMC2.24. Overall, these results demonstrated that CMC2.24 attenuates OA progression by modulating ECM homeostasis and chondrocyte apoptosis by suppressing the NF-κB/Hif-2α axis, thus providing a new perspective for therapeutic strategies in OA. KEY MESSAGES: • Intra-articular injection of CMC2.24 ameliorated osteoarthritic cartilage destruction. • CMC2.24 promoted cell viability and decreased SNP-induced apoptotic gene expression. • SNP-induced activation of Hif-2α is inhibited by CMC2.24. • CMC2.24 inhibits NF-κB/Hif-2α axis activation to modulate ECM homeostasis and inhibit chondrocyte apoptosis.
Collapse
|
37
|
Semba JA, Mieloch AA, Rybka JD. Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Mechanical loading induces HIF-1α expression in chondrocytes via YAP. Biotechnol Lett 2020; 42:1645-1654. [DOI: 10.1007/s10529-020-02910-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
|
39
|
Taheem DK, Jell G, Gentleman E. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:105-115. [PMID: 31774026 PMCID: PMC7166133 DOI: 10.1089/ten.teb.2019.0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Damage to osteochondral (OC) tissues can lead to pain, loss of motility, and progress to osteoarthritis. Tissue engineering approaches offer the possibility of replacing damaged tissues and restoring joint function; however, replicating the spatial and functional heterogeneity of native OC tissue remains a pressing challenge. Chondrocytes in healthy cartilage exist in relatively low-oxygen conditions, while osteoblasts in the underlying bone experience higher oxygen pressures. Such oxygen gradients also exist in the limb bud, where they influence OC tissue development. The cellular response to these spatial variations in oxygen pressure, which is mediated by the hypoxia inducible factor (HIF) pathway, plays a central role in regulating osteo- and chondrogenesis by directing progenitor cell differentiation and promoting and maintaining appropriate extracellular matrix production. Understanding the role of the HIF pathway in OC tissue development may enable new approaches to engineer OC tissue. In this review, we discuss strategies to spatially and temporarily regulate the HIF pathway in progenitor cells to create functional OC tissue for regenerative therapies. Impact statement Strategies to engineer osteochondral (OC) tissue are limited by the complex and varying microenvironmental conditions in native bone and cartilage. Indeed, native cartilage experiences low-oxygen conditions, while the underlying bone is relatively normoxic. The cellular response to these low-oxygen conditions, which is mediated through the hypoxia inducible factor (HIF) pathway, is known to promote and maintain the chondrocyte phenotype. By using tissue engineering scaffolds to spatially and temporally harness the HIF pathway, it may be possible to improve OC tissue engineering strategies for the regeneration of damaged cartilage and its underlying subchondral bone.
Collapse
Affiliation(s)
- Dheraj K. Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gavin Jell
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Hypoxia-inducible factor-1 alpha maintains mouse articular cartilage through suppression of NF-κB signaling. Sci Rep 2020; 10:5425. [PMID: 32214220 PMCID: PMC7096515 DOI: 10.1038/s41598-020-62463-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
HIF-1α, an essential transcription factor under hypoxic condition, is indispensable for chondrocytes during skeletal development but its expression and roles in articular chondrocytes are yet to be revealed. We examined HIF-1α protein expression and the hypoxic condition during mouse osteoarthritis (OA) development using state of the art hypoxic probes and found that its expression decreased as OA progressed, coinciding with the change in hypoxic conditions in articular cartilage. Gain- and loss-of-function of HIF-1α in cell culture experiments showed that HIF-1α suppressed catabolic genes such as Mmp13 and Hif2a. We confirmed these anticatabolic effects by measuring glycosaminoglycan release from wild type and conditional knock-out mice femoral heads cultured ex vivo. We went on to surgically induce OA in mice with chondrocyte-specific deletion of Hif1a and found that the development of OA was exacerbated. Increased expression of catabolic factors and activation of NF-κB signalling was clearly evident in the knock-out mice. By microarray analysis, C1qtnf3 was identified as a downstream molecule of HIF-1α, and experiments showed it exerted anti-catabolic effects through suppression of NF-κB. We conclude that HIF-1α has an anti-catabolic function in the maintenance of articular cartilage through suppression of NF-κB signalling.
Collapse
|
41
|
Ziliotto M, Rodrigues RM, Chies JAB. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med Hypotheses 2020; 140:109664. [PMID: 32155542 DOI: 10.1016/j.mehy.2020.109664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
One of the most striking characteristics of human beings is the incredible capacity to adapt to different environments. This capacity allowed humans to spread all over our planet, occupying habitats as diverse as deserts, tropical forests or tundra regions. Interactions with the environment, climate, food and water availability shaped our evolution and define our survival. Essential to human life, oxygen availability also controls human dispersion and adaptation. For example, low oxygen availability can lead to physiological adaptations in populations living in highlands. Moreover, the consequences of differential oxygen availability (or even exposure to hypoxia) are evident in process as fine-tuned controlled as gene regulation. Physiological responses to fluctuations in oxygen availability are crucial already from the early days of life, since the human fetal environment is characterized by hypoxia. Hypoxia-Inducible Factors (HIFs) act as major regulators of pathways involved in glycolysis, erythropoiesis, angiogenesis, cell proliferation and stem cells function. Here we explore the physiological consequences of hypoxia in the human organism. In this sense, and considering the existence of HIF sequences in promoter regions of genes important to immune regulation, we hypothesize that exposure to induced hypoxia through the use of hypobaric chambers can be used as a complementary therapy to control chronic inflammation in several diseases characterized by systemic inflammatory conditions. Among these inflammatory conditions we highlight autoimmune diseases and chronic inflammation in HIV infected individuals under antiretroviral treatment. Several experiments, including arthritis animal models, the evaluation of athletes that already use hypobaric chambers to induce erythropoiesis, and the potential consequences of hypoxia as an immunotolerogenic inducer in the HIV infection context are approached and discussed here.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raul Marques Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
43
|
Yao H, Xu JK, Zheng NY, Wang JL, Mok SW, Lee YW, Shi L, Wang JY, Yue J, Yung SH, Hu PJ, Ruan YC, Zhang YF, Ho KW, Qin L. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthritis Cartilage 2019; 27:1811-1821. [PMID: 31536815 DOI: 10.1016/j.joca.2019.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the effects of Mg2+ on the expression of osteoarthritic markers in human cartilage and synovium tissue explants. To investigate the therapeutic effect of intra-articular injection of Mg2+ in an established rat OA (Osteoarthritis) model of anterior cruciate ligament transection with partial medial meniscectomy (ACLT + PMM). DESIGN Human cartilage and synovium explants were collected from total knee replacement surgeries and incubated with MgCl2 (20 mmol/L) in vitro. A rat OA model was established by ACLT + PMM surgery in 450-500 g male Sprague Dawley (SD) rats. To select the optimal dose, intra-articular injections of MgCl2 (0.05, 0.5, 5 mol/L) were performed at 4 weeks after the surgery every 3 days for 2 weeks. The effect of optimized MgCl2 was further determined by histology, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS The expressions of osteoarthritic markers in human cartilage and synovium explants were inhibited by Mg2+in vitro. Immunohistochemical analysis further suggested the inhibitory effects of Mg2+ on the expression of MMP-13 and IL-6 in the human tissue explants. Cartilage degeneration and synovitis in ACLT + PMM rats were significantly improved by intra-articular injections of Mg2+ (0.5 mol/L). Immunohistochemical analysis also showed the regulatory effects of Mg2+ on osteoarthritic markers in both cartilage and synovium in rats, consistent with in vitro results. CONCLUSION Intra-articular injections of Mg2+ at 0.5 mol/L attenuate the progression of OA in the ACLT + PMM rat model. Such effect was at least in part explained by the promotion of cartilage matrix synthesis and the suppression of synovial inflammation.
Collapse
Affiliation(s)
- H Yao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J K Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - N Y Zheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J L Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - S W Mok
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Y W Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - L Shi
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J Y Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J Yue
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - S H Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - P J Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, PR China.
| | - Y C Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, PR China.
| | - Y F Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China.
| | - K W Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - L Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
44
|
Terabe K, Ohashi Y, Tsuchiya S, Ishizuka S, Knudson CB, Knudson W. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J Biol Chem 2019; 294:17799-17817. [PMID: 31619518 DOI: 10.1074/jbc.ra119.009556] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Hyaluronan is a critical component of articular cartilage and partially helps retain aggrecan within the extracellular matrix of this tissue. During osteoarthritis, hyaluronan and aggrecan loss are an early sign of tissue damage. However, our recent attempts to mimic hyaluronan loss with the hyaluronan inhibitor 4-methylumbelliferone (4MU) did not exacerbate arthritis-like features of in vitro models of arthritis, but surprisingly, caused the reverse (i.e. provided potent chondroprotection). Moreover, the protective effects of 4MU did not depend on its role as a hyaluronan inhibitor. To understand the molecular mechanism in 4MU-mediated chondroprotection, we considered recent studies suggesting that shifts in intracellular UDP-hexose pools promote changes in metabolism. To determine whether such metabolic shifts are associated with the mechanism of 4MU-mediated pro-catabolic inhibition, using molecular and metabolomics approaches, we examined whether bovine and human chondrocytes exhibit changes in the contribution of glycolysis and mitochondrial respiration to ATP production rates as well as in other factors that respond to or might drive these changes. Overexpression of either HA synthase-2 or 4MU effectively reduced dependence on glycolysis in chondrocytes, especially enhancing glycolysis use by interleukin-1β (IL1β)-activated chondrocytes. The reduction in glycolysis secondarily enhanced mitochondrial respiration in chondrocytes, which, in turn, rescued phospho-AMP-activated protein kinase (AMPK) levels in the activated chondrocytes. Other glycolysis inhibitors, unrelated to hyaluronan biosynthesis, namely 2-deoxyglucose and dichloroacetate, caused metabolic changes in chondrocytes equivalent to those elicited by 4MU and similarly protected both chondrocytes and cartilage explants. These results suggest that fluxes in UDP-hexoses alter metabolic energy pathways in cartilage.
Collapse
Affiliation(s)
- Kenya Terabe
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
45
|
Browe DC, Coleman CM, Barry FP, Elliman SJ. Hypoxia Activates the PTHrP -MEF2C Pathway to Attenuate Hypertrophy in Mesenchymal Stem Cell Derived Cartilage. Sci Rep 2019; 9:13274. [PMID: 31527619 PMCID: PMC6746812 DOI: 10.1038/s41598-019-49499-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Articular cartilage lacks an intrinsic repair capacity and due to the ability of mesenchymal stem cells (MSCs) to differentiate into chondrocytes, MSCs have been touted as a cellular source to regenerate damaged cartilage. However, a number of prevailing concerns for such a treatment remain. Generally, administration of MSCs into a cartilage defect results in poor regeneration of the damaged cartilage with the repaired cartilage consisting primarily of fibro-cartilage rather than hyaline cartilage. Methods that improve the chondrogenic potential of transplanted MSCs in vivo may be advantageous. In addition, the proclivity of MSC-derived cartilage to undergo hypertrophic differentiation or form bone in vivo also remains a clinical concern. If MSC-derived cartilage was to undergo hypertrophic differentiation in vivo, this would be deleterious in a clinical setting. This study focuses on establishing a mechanism of action by which hypoxia or low oxygen tension can be used to both enhance chondrogenesis and attenuate hypertrophic differentiation of both MSC and ATDC5 derived chondrocytes. Having elucidated a novel mechanism of action, the subsequent goals of this study were to develop an in vitro culture regime to mimic the beneficial effects of physiological low oxygen tension in a normoxic environment.
Collapse
Affiliation(s)
- David C Browe
- Regenerative Medicine Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Frank P Barry
- Regenerative Medicine Institute, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Stephen J Elliman
- Orbsen Therapeutics Ltd, National University of Ireland Galway, Distillery Road, Galway, Ireland
| |
Collapse
|
46
|
Pattappa G, Schewior R, Hofmeister I, Seja J, Zellner J, Johnstone B, Docheva D, Angele P. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Cells 2019; 8:cells8080936. [PMID: 31434236 PMCID: PMC6721827 DOI: 10.3390/cells8080936] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition that involves the production of inflammatory cytokines (e.g., interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)) that stimulate degradative enzymes, matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS) resulting in articular cartilage breakdown. The presence of interleukin-1β (IL-1β) is one reason for poor clinical outcomes in current cell-based tissue engineering strategies for treating focal early osteoarthritic defects. Mesenchymal stem cells (MSCs) are a potential cell source for articular cartilage regeneration, although IL-1β has been shown to inhibit in vitro chondrogenesis. In vivo, articular chondrocytes reside under a low oxygen environment between 2–5% oxygen (physioxia) and have been shown to enhance in vitro MSC chondrogenic matrix content with reduced hypertrophic marker expression under these conditions. The present investigation sought to understand the effect of physioxia on IL-1β inhibited MSC chondrogenesis. MSCs expanded under physioxic (2% oxygen) and hyperoxic (20%) conditions, then chondrogenically differentiated as pellets in the presence of TGF-β1 and either 0.1 or 0.5 ng/mL IL-1β. Results showed that there were donor variations in response to physioxic culture based on intrinsic GAG content under hyperoxia. In physioxia responsive donors, MSC chondrogenesis significantly increased GAG and collagen II content, whilst hypertrophic markers were reduced compared with hyperoxia. In the presence of IL-1β, these donors showed a significant increase in cartilage matrix gene expression and GAG content relative to hyperoxic conditions. In contrast, a set of MSC donors were unresponsive to physioxia and showed no significant increase in matrix production independent of IL-1β presence. Thus, physioxia has a beneficial effect on MSC cartilage matrix production in responsive donors with or without IL-1β application. The mechanisms controlling the MSC chondrogenic response in both physioxia responsive and unresponsive donors are to be elucidated in future investigations.
Collapse
Affiliation(s)
- Girish Pattappa
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Ruth Schewior
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Isabelle Hofmeister
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Jennifer Seja
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Johannes Zellner
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, OP31, Portland, OR 97239, USA
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Ma Z, Jin X, Qian Z, Li F, Xu M, Zhang Y, Kang X, Li H, Gao X, Zhao L, Zhang Z, Zhang Y, Wu S, Sun H. Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway. Cell Cycle 2019; 18:1473-1489. [PMID: 31107137 PMCID: PMC6592248 DOI: 10.1080/15384101.2019.1620572] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 04/07/2019] [Indexed: 01/09/2023] Open
Abstract
Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.
Collapse
Affiliation(s)
- Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xinxin Jin
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Zhuang Qian
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Fang Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Mao Xu
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Ying Zhang
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xiaomin Kang
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Liting Zhao
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yan Zhang
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shufang Wu
- Center for Translational Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
48
|
Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater 2019; 89:73-83. [PMID: 30844569 PMCID: PMC6481516 DOI: 10.1016/j.actbio.2019.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-β1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-β may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-β3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.
Collapse
Affiliation(s)
- Daniel A Foyt
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dheraj K Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
49
|
Pattappa G, Johnstone B, Zellner J, Docheva D, Angele P. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Int J Mol Sci 2019; 20:E484. [PMID: 30678074 PMCID: PMC6387316 DOI: 10.3390/ijms20030484] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage covers the surface of synovial joints and enables joint movement. However, it is susceptible to progressive degeneration with age that can be accelerated by either previous joint injury or meniscectomy. This degenerative disease is known as osteoarthritis (OA) and it greatly affects the adult population. Cell-based tissue engineering provides a possible solution for treating OA at its earliest stages, particularly focal cartilage lesions. A candidate cell type for treating these focal defects are Mesenchymal Stem Cells (MSCs). However, present methods for differentiating these cells towards the chondrogenic lineage lead to hypertrophic chondrocytes and bone formation in vivo. Environmental stimuli that can stabilise the articular chondrocyte phenotype without compromising tissue formation have been extensively investigated. One factor that has generated intensive investigation in MSC chondrogenesis is low oxygen tension or physioxia (2⁻5% oxygen). In vivo articular cartilage resides at oxygen tensions between 1⁻4%, and in vitro results suggest that these conditions are beneficial for MSC expansion and chondrogenesis, particularly in suppressing the cartilage hypertrophy. This review will summarise the current literature regarding the effects of physioxia on MSC chondrogenesis with an emphasis on the pathways that control tissue formation and cartilage hypertrophy.
Collapse
Affiliation(s)
- Girish Pattappa
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Johannes Zellner
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany.
| |
Collapse
|
50
|
Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN. Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:107-117. [DOI: 10.1016/j.bbagrm.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|