1
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
2
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
3
|
Wang M, Rajkumar S, Lai Y, Liu X, He J, Ishikawa T, Nallapothula D, Singh RR. Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis. Front Immunol 2023; 14:1204777. [PMID: 38022566 PMCID: PMC10644380 DOI: 10.3389/fimmu.2023.1204777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP(β-), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Peking University Shenzhen Hosiptal, Shenzhen, China
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Snehin Rajkumar
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
6
|
Bhargava R, Li H, Tsokos GC. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr Opin Rheumatol 2023; 35:107-116. [PMID: 35797522 DOI: 10.1097/bor.0000000000000887] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Lupus nephritis is associated with significant mortality and morbidity. We lack effective therapeutics and biomarkers mostly because of our limited understanding of its complex pathogenesis. We aim to present an overview of the recent advances in the field to gain a deeper understanding of the underlying cellular and molecular mechanisms involved in lupus nephritis pathogenesis. RECENT FINDINGS Recent studies have identified distinct roles for each resident kidney cell in the pathogenesis of lupus nephritis. Podocytes share many elements of innate and adaptive immune cells and they can present antigens and participate in the formation of crescents in coordination with parietal epithelial cells. Mesangial cells produce pro-inflammatory cytokines and secrete extracellular matrix contributing to glomerular fibrosis. Tubular epithelial cells modulate the milieu of the interstitium to promote T cell infiltration and formation of tertiary lymphoid organs. Modulation of specific genes in kidney resident cells can ward off the effectors of the autoimmune response including autoantibodies, cytokines and immune cells. SUMMARY The development of lupus nephritis is multifactorial involving genetic susceptibility, environmental triggers and systemic inflammation. However, the role of resident kidney cells in the development of lupus nephritis is becoming more defined and distinct. More recent studies point to the restoration of kidney resident cell function using cell targeted approaches to prevent and treat lupus nephritis.
Collapse
Affiliation(s)
- Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
7
|
Chen J, Cui L, Ouyang J, Wang J, Xu W. Clinicopathological significance of tubulointerstitial CD68 macrophages in proliferative lupus nephritis. Clin Rheumatol 2022; 41:2729-2736. [PMID: 35616755 DOI: 10.1007/s10067-022-06214-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Tubulointerstitial macrophage plays a pathogenic role in renal damage of lupus nephritis (LN). However, the clinical and pathological role of these CD68 macrophages has not been fully described. The aim of the present study is to decipher the correlation between clinicopathological features and tubulointerstitial CD68 macrophages in 76 proliferative LN patients and further evaluate the prognostic significance of tubulointerstitial CD68 macrophages. METHODS Tubulointerstitial CD68 macrophages were quantitated by standard histochemical staining. The correlation between the number of tubulointerstitial CD68 macrophages and clinicopathological features was analyzed by Spearman's correlation analysis. Factors potentially affecting renal prognosis were further evaluated by Cox regression analysis. RESULTS Among the 76 proliferative LN cases, the number of CD68 macrophage infiltrates was positively correlated with serum creatinine (SCr) level, the proportion of glomeruli sclerosis and focal segmental sclerosis, tubulointerstitial inflammation, and chronicity indices, while negatively correlated with the glomerular filtration rate. During a mean follow-up period of 45 months, 5 patients (6.6%) progressed to dialysis, and 3 patents (3.9%) had a twofold increase in SCr. Multivariate Cox regression analysis showed that the number of tubulointerstitial CD68 macrophages was an independent variable associated with poor renal outcomes (HR = 1.002, P = 0.012). The optimal cutoff value of tubulointerstitial CD68 macrophages was 340/mm2 in our study with 87.5% sensitivity and 61.8% specificity to predict end-stage renal disease within 4 years. CONCLUSION The number of tubulointerstitial CD68 macrophages was positively linked to poor prognosis of LN. Urgent immunosuppression should be considered in LN patients with abundant tubulointerstitial CD68 macrophages. Key Points • Tubulointerstitial CD68 macrophage infiltrates are positively correlated with clinicohistologic impairment in proliferative lupus nephritis. • The positive association between the number of tubulointerstitial CD68 macrophages and poor renal outcome of lupus nephritis patients were observed. • Urgent immunosuppression and monitor are required when abundant tubulointerstitial CD68 macrophage infiltrates are detected.
Collapse
Affiliation(s)
- Jiejian Chen
- Department of Nephrology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China
| | - Linlin Cui
- Kidney Institute of CPLA and Division of Nephrology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Jinge Ouyang
- Department of Cardiology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China
| | - Jian Wang
- Department of Nephrology, No.2 People's Hospital of Fuyang City, Fuyang, Anhui Province, China
| | - Weijia Xu
- Department of Nephrology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China.
| |
Collapse
|
8
|
Miwa T, Okano T. Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Front Neurol 2022; 13:861992. [PMID: 35463143 PMCID: PMC9019483 DOI: 10.3389/fneur.2022.861992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
Macrophages play important roles in tissue homeostasis and inflammation. Recent studies have revealed that macrophages are dispersed in the inner ear and may play essential roles in eliciting an immune response. Autoinflammatory diseases comprise a family of immune-mediated diseases, some of which involve sensorineural hearing loss, indicating that similar mechanisms may underlie the pathogenesis of immune-mediated hearing loss. Autoimmune inner ear disease (AIED) is an idiopathic disorder characterized by unexpected hearing loss. Tissue macrophages in the inner ear represent a potential target for modulation of the local immune response in patients with AIED/autoinflammatory diseases. In this review, we describe the relationship between cochlear macrophages and the pathophysiology of AIED/autoinflammatory disease.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- *Correspondence: Toru Miwa
| | - Takayuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Jamaly S, Rakaee M, Abdi R, Tsokos GC, Fenton KA. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun Rev 2021; 20:102980. [PMID: 34718163 DOI: 10.1016/j.autrev.2021.102980] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Kidney involvement confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). The pathogenesis of lupus nephritis (LN) involves diverse mechanisms instigated by elements of the autoimmune response which alter the biology of kidney resident cells. Processes in the glomeruli and in the interstitium may proceed independently albeit crosstalk between the two is inevitable. Podocytes, mesangial cells, tubular epithelial cells, kidney resident macrophages and stromal cells with input from cytokines and autoantibodies present in the circulation alter the expression of enzymes, produce cytokines and chemokines which lead to their injury and damage of the kidney. Several of these molecules can be targeted independently to prevent and reverse kidney failure. Tertiary lymphoid structures with true germinal centers are present in the kidneys of patients with lupus nephritis and have been increasingly recognized to associate with poorer renal outcomes. Stromal cells, tubular epithelial cells, high endothelial vessel and lymphatic venule cells produce chemokines which enable the formation of structures composed of a T-cell-rich zone with mature dendritic cells next to a B-cell follicle with the characteristics of a germinal center surrounded by plasma cells. Following an overview on the interaction of the immune cells with kidney resident cells, we discuss the cellular and molecular events which lead to the formation of tertiary lymphoid structures in the interstitium of the kidneys of mice and patients with lupus nephritis. In parallel, molecules and processes that can be targeted therapeutically are presented.
Collapse
Affiliation(s)
- Simin Jamaly
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mehrdad Rakaee
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
10
|
Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, Eitner F, Becker MS. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep 2021; 11:13251. [PMID: 34168267 PMCID: PMC8225656 DOI: 10.1038/s41598-021-92784-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Mononuclear phagocytes (MNPs) participate in inflammation and repair after kidney injury, reflecting their complex nature. Dissection into refined functional subunits has been challenging and would benefit understanding of renal pathologies. Flow cytometric approaches are limited to classifications of either different MNP subsets or functional state. We sought to combine these two dimensions in one protocol that considers functional heterogeneity in each MNP subset. We identified five distinct renal MNP subsets based on a previously described strategy. In vitro polarization of bone marrow-derived macrophages (BMDM) into M1- and M2-like cells suggested functional distinction of CD86 + MHCII + CD206- and CD206 + cells. Combination of both distinction methods identified CD86 + MHCII + CD206- and CD206 + cells in all five MNP subsets, revealing their heterologous nature. Our approach revealed that MNP composition and their functional segmentation varied between different mouse models of kidney injury and, moreover, was dynamically regulated in a time-dependent manner. CD206 + cells from three analyzed MNP subsets had a higher ex vivo phagocytic capacity than CD86 + MHCII + CD206- counterparts, indicating functional uniqueness of each subset. In conclusion, our novel flow cytometric approach refines insights into renal MNP heterogeneity and therefore could benefit mechanistic understanding of renal pathology.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Ilona Hulsmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Svenja Schwafertz
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Jasmin Zgrajek
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Frank Eitner
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany.
| |
Collapse
|
11
|
Davidson A. Renal Mononuclear Phagocytes in Lupus Nephritis. ACR Open Rheumatol 2021; 3:442-450. [PMID: 34060247 PMCID: PMC8280821 DOI: 10.1002/acr2.11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
Renal mononuclear phagocytes are a highly pleiotropic group of immune cells of myeloid origin that play multiple protective and pathogenic roles in tissue homeostasis, inflammation, repair, and fibrosis. Infiltration of kidneys with these cells is a hallmark of lupus nephritis and is associated with more severe disease and with increased risk of progression to end‐stage renal disease. This review presents current knowledge of the diversity of these cells and their involvement in kidney inflammation and resolution and describes how they contribute to the chronic inflammation of lupus nephritis. A better understanding of the subset heterogeneity and diverse functions of mononuclear phagocytes in the lupus nephritis kidney should provide fertile ground for the development of new therapeutic approaches that promote the differentiation and survival of protective subsets while targeting pathogenic cell subsets that cause inflammation and fibrosis.
Collapse
Affiliation(s)
- Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, New York
| |
Collapse
|
12
|
Allam M, Fathy H, Allah DA, Salem MAE. Lupus nephritis: correlation of immunohistochemical expression of C4d, CD163-positive M2c-like macrophages and Foxp3-expressing regulatory T cells with disease activity and chronicity. Lupus 2021; 29:943-953. [PMID: 32580679 DOI: 10.1177/0961203320932663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND C4d, which is a serum complement cleavage product of the activated complement component C4, was found to be an accurate indicator of lupus activity compared to complement levels. Recently, macrophages have been considered to be pivotal members in the pathogenesis of lupus nephritis (LN). M2c-like macrophages have anti-inflammatory functions and promote fibrosis. Multiple studies have detected that LN is associated with an imbalance between the regulatory T cell (Treg) population and the inflammatory T helper subtypes. METHODS We evaluated and scored the immunohistochemical expression of C4d, CD163-positive M2C-macrophages and Foxp3-expressing Tregs in 53 renal biopsies of LN. Their expression was scored and correlated with clinical and histological disease activity and chronicity. RESULTS Class IV was the most prevalent class (50.9%), followed by class III (17%). PTC-C4d intensity score, CD163% of positive M2c macrophages and FOXP3% of positive Tregs were significantly correlated with chronicity index (rs = 0.292, p = 0.034; rs = 0.407, p = 0.003; and rs = 0.296, p = 0.031, respectively). Also, FOXP3% of positive Tregs was significantly correlated with LN class (rs = 0.31, p = 0.024). CONCLUSION C4d-PTC, CD163-positive M2c macrophages and FOXP3-positive Tregs are markers that significantly correlated with chronicity in LN. Further studies are needed to evaluate their prognostic value.
Collapse
Affiliation(s)
- Maram Allam
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Hanan Fathy
- Paediatrics, Faculty of Medicine, Alexandria University, Egypt
| | - Dina Abd Allah
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | | |
Collapse
|
13
|
Ji L, Fan X, Hou X, Fu D, Bao J, Zhuang A, Chen S, Fan Y, Li R. Jieduquyuziyin Prescription Suppresses Inflammatory Activity of MRL/lpr Mice and Their Bone Marrow-Derived Macrophages via Inhibiting Expression of IRAK1-NF-κB Signaling Pathway. Front Pharmacol 2020; 11:1049. [PMID: 32760274 PMCID: PMC7372094 DOI: 10.3389/fphar.2020.01049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Jieduquyuziyin prescription (JP) has been used to treat systemic lupus erythematosus (SLE). Although the effectiveness of JP in the treatment of SLE has been clinically proven, the underlying mechanisms have yet to be completely understood. We observed the therapeutic actions of JP in MRL/lpr mice and their bone marrow-derived macrophages (BMDMs) and the potential mechanism of their inhibition of inflammatory activity. To estimate the effect of JP on suppressing inflammatory activity, BMDMs of MRL/lpr and MRL/MP mice were treated with JP-treated serum, and MRL/lpr mice were treated by JP for 8 weeks. Among them, JP and its treated serum were subjected to quality control, and BMDMs were separated and identified. The results showed that in the JP group of BMDMs stimulated by Lipopolysaccharide (LPS) in MRL/lpr mice, the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) reduced, and the expressions of Interleukin-1 receptor-associated kinase 1 (IRAK1) and its downstream nuclear factor κB (NF-κB) pathway decreased. Meanwhile, the alleviation of renal pathological damage, the decrease of urinary protein and serum anti-dsDNA contents, the inhibition of TNF-α level, and then the suppression of the IRAK1-NF-κB inflammatory signaling in the spleen and kidney, confirmed that the therapeutic effect of JP. These results demonstrated that JP could inhibit the inflammatory activity of MRL/lpr mice and their BMDMs by suppressing the activation of IRAK1-NF-κB signaling and was supposed to be a good choice for the treatment of SLE.
Collapse
Affiliation(s)
- Lina Ji
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuemin Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Sixiang Chen
- The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020; 21:605-614. [PMID: 32367037 PMCID: PMC8135909 DOI: 10.1038/s41590-020-0677-6] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune system contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigenetic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique 'interactome', which will dictate specific treatment.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
15
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
16
|
Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol 2020; 16:255-267. [PMID: 32203285 DOI: 10.1038/s41584-020-0401-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) is a common manifestation of systemic lupus erythematosus that can lead to irreversible renal impairment. Although the prognosis of LN has improved substantially over the past 50 years, outcomes have plateaued in the USA in the past 20 years as immunosuppressive therapies have failed to reverse disease in more than half of treated patients. This failure might reflect disease complexity and heterogeneity, as well as social and economic barriers to health-care access that can delay intervention until after damage has already occurred. LN progression is still poorly understood and involves multiple cell types and both immune and non-immune mechanisms. Single-cell analysis of intrinsic renal cells and infiltrating cells from patients with LN is a new approach that will help to define the pathways of renal injury at a cellular level. Although many new immune-modulating therapies are being tested in the clinic, the development of therapies to improve regeneration of the injured kidney and to prevent fibrosis requires a better understanding of the mechanisms of LN progression. This mechanistic understanding, together with the development of clinical measures to evaluate risk and detect early disease and better access to expert health-care providers, should improve outcomes for patients with LN.
Collapse
|
17
|
Wu CY, Hua KF, Chu CL, Yang SR, Arbiser JL, Yang SS, Lin YC, Liu FC, Yang SM, Ka SM, Chen A. Tris DBA Ameliorates Accelerated and Severe Lupus Nephritis in Mice by Activating Regulatory T Cells and Autophagy and Inhibiting the NLRP3 Inflammasome. THE JOURNAL OF IMMUNOLOGY 2020; 204:1448-1461. [PMID: 32060137 DOI: 10.4049/jimmunol.1801610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
Tris (dibenzylideneacetone) dipalladium (Tris DBA), a small-molecule palladium complex, has been shown to inhibit cell growth and proliferation in pancreatic cancer, lymphocytic leukemia, and multiple myeloma. In the current study, we examined the therapeutic effects of Tris DBA on glomerular cell proliferation, renal inflammation, and immune cells. Treatment of accelerated and severe lupus nephritis (ASLN) mice with Tris DBA resulted in improved renal function, albuminuria, and pathology, including measurements of glomerular cell proliferation, cellular crescents, neutrophils, fibrinoid necrosis, and tubulointerstitial inflammation in the kidneys as well as scoring for glomerulonephritis activity. The treated ASLN mice also showed significantly decreased glomerular IgG, IgM, and C3 deposits. Furthermore, the compound was able to 1) inhibit bone marrow-derived dendritic cell-mediated T cell functions and reduce serum anti-dsDNA autoantibody levels; 2) differentially regulate autophagy and both the priming and activation signals of the NLRP3 inflammasome; and 3) suppress the phosphorylation of JNK, ERK, and p38 MAPK signaling pathways. Tris DBA improved ASLN in mice through immunoregulation by blunting the MAPK (ERK, JNK)-mediated priming signal of the NLRP3 inflammasome and by regulating the autophagy/NLRP3 inflammasome axis. These results suggest that the pure compound may be a drug candidate for treating the accelerated and deteriorated type of lupus nephritis.
Collapse
Affiliation(s)
- Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan 260
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan 106;
| | - Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114
| | - Jack L Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322.,Winship Cancer Institute, Emory School of Medicine, Atlanta, GA 30322.,Atlanta Veterans Administration Medical Center, Decatur, GA 30033
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan 114;
| | - Yu-Chuan Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan 114
| | - Shun-Min Yang
- Institute of Physics, Academia Sinica, Taipei, Taiwan 114
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan 114; and
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114; .,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan 114
| |
Collapse
|
18
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Cunningham MA, Richard ML, Wirth JR, Scott JL, Eudaly J, Ruiz P, Gilkeson GS. Novel mechanism for estrogen receptor alpha modulation of murine lupus. J Autoimmun 2018; 97:59-69. [PMID: 30416032 DOI: 10.1016/j.jaut.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Female sex is a risk factor for lupus. Sex hormones, sex chromosomes and hormone receptors are implicated in the pathogenic pathways in lupus. Estrogen receptor alpha (ERα) knockout (KO) mice are used for defining hormone receptor effects in lupus. Prior studies of ERα KO in lupus have conflicting results, likely due to sex hormone levels, different lupus strains and different ERα KO constructs. Our objective was to compare a complete KO of ERα vs. the original functional KO of ERα (expressing a short ERα) on disease expression and immune phenotype, while controlling sex hormone levels. We studied female lupus prone NZM2410 WT and ERα mutant mice. All mice (n = 44) were ovariectomized (OVX) for hormonal control. Groups of each genotype were estrogen (E2)-repleted after OVX. We found that OVXed NZM mice expressing the truncated ERα (ERα short) had significantly reduced nephritis and prolonged survival compared to both wildtype and the complete ERαKO (ERα null) mice, but surprisingly only if E2-repleted. ERα null mice were not protected regardless of E2 status. We observed significant differences in splenic B cells and dendritic cells and a decrease in cDC2 (CD11b+CD8-) dendritic cells, without a concomitant decrease in cDC1 (CD11b-CD8a+) cells comparing ERα short to ERα null or WT mice. Our data support a protective role for the ERα short protein. ERα short is similar to an endogenously expressed ERα variant (ERα46). Modulating its expression/activity represents a potential approach for treating female-predominant autoimmune diseases.
Collapse
Affiliation(s)
- Melissa A Cunningham
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA.
| | - Mara Lennard Richard
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jena R Wirth
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jennifer L Scott
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jackie Eudaly
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Phil Ruiz
- University of Miami, School of Medicine, Department of Pathology, 1611 N.W. 12th Ave., Holtz Center, East Tower, Room 2101, Miami, FL, 33136, USA
| | - Gary S Gilkeson
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Affairs Hospital, Charleston, SC, 29425, USA
| |
Collapse
|
21
|
mTOR inhibitor INK128 attenuates systemic lupus erythematosus by regulating inflammation-induced CD11b +Gr1 + cells. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1-13. [PMID: 30292636 DOI: 10.1016/j.bbadis.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by systemic chronic inflammation that can affect multiple major organ systems. Although the etiology of SLE is known to involve a variety of factors such as the environment, random factors and genetic susceptibility, the exact role of CD11b+Gr1+ myeloid cells in lupus progression is not fully understood. Myeloid-derived CD11b+Gr1+ cells are thought to be a heterogeneous group of immature myeloid cells with immune function. Some studies have reported that CD11b+Gr1+ cells and the activation of mTOR pathway are involved in the pathogenesis of systemic lupus erythematosus (SLE). However, it is still not clarified about the mechanism of influence of lupus microenvironment and mTOR signaling on CD11b+Gr1+ cells. In the present study, we found that the percentage of CD11b+Gr1+ cells increased prior to the abnormal changes of Th17, Treg, T and B cells during lupus development. TLR7 and IFN-α signaling synergized to promote CD11b+Gr1+ cell accumulation in an mTOR-dependent manner. Moreover, compared to a traditional mTOR inhibitor, INK128 inhibited more effectively the disease activity via regulating CD11b+Gr1+ cell expansion and functions. Furthermore, TLR7/IFN-α-modified CD11b+Gr1+ cells promoted unbalance of Th17/Tregs and were inclined to differentiate into macrophages via the mTOR pathway. In conclusion, CD11b+Gr1+ cells increased in the early stages of the lupus progression and mTOR pathway was critical for CD11b+Gr1+ cells in lupus development, suggesting the changes of inflammation-induced CD11b+Gr1+ cells initate lupus development. We also provide evidence for the first time that INK128, a second generation mTOR inhibitor, has a good therapeutic action on lupus development by regulating CD11b+Gr1+ cells.
Collapse
|
22
|
Wolf SJ, Theros J, Reed TJ, Liu J, Grigorova IL, Martínez-Colón G, Jacob CO, Hodgin JB, Kahlenberg JM. TLR7-Mediated Lupus Nephritis Is Independent of Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 201:393-405. [PMID: 29884703 DOI: 10.4049/jimmunol.1701588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by increased type I IFNs, autoantibodies, and inflammatory-mediated multiorgan damage. TLR7 activation is an important contributor to systemic lupus erythematosus pathogenesis, but the mechanisms by which type I IFNs participate in TLR7-driven pathologic conditions remain uncertain. In this study, we examined the requirement for type I IFNs in TLR7-stimulated lupus nephritis. Lupus-prone NZM2328, INZM (which lack a functional type I IFN receptor), and NZM2328 IL-1β-/- mice were treated at 10 wk of age on the right ear with R848 (TLR7 agonist) or control (DMSO). Autoantibody production and proteinuria were assessed throughout treatment. Multiorgan inflammation was assessed at the time of decline in health. Renal infiltrates and mRNA expression were also examined after 14 d of treatment. Both NZM2328 and INZM mice exhibited a decline in survival after 3-4 wk of R848 but not vehicle treatment. Development of splenomegaly and liver inflammation were dependent on type I IFN. Interestingly, autoantibody production, early renal infiltration of dendritic cells, upregulation of IL-1β, and lupus nephritis occurred independent of type I IFN signaling. Development of TLR7-driven lupus nephritis was not abolished by the deletion of IL-1β. Thus, although IFN-α is sufficient to induce nephritis acceleration, our data emphasize a critical role for IFN-independent signaling in TLR7-mediated lupus nephritis. Further, despite upregulation of IL-1β after TLR7 stimulation, deletion of IL-1β is not sufficient to reduce lupus nephritis development in this model.
Collapse
Affiliation(s)
- Sonya J Wolf
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Immunology Program, University of Michigan, Ann Arbor, MI 48109
| | - Jonathan Theros
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Tammi J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jianhua Liu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Irina L Grigorova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | | | - Chaim O Jacob
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033; and
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
23
|
Flores-Mendoza G, Sansón SP, Rodríguez-Castro S, Crispín JC, Rosetti F. Mechanisms of Tissue Injury in Lupus Nephritis. Trends Mol Med 2018. [PMID: 29526595 DOI: 10.1016/j.molmed.2018.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disease heterogeneity remains a major challenge for the understanding of systemic lupus erythematosus (SLE). Recent work has revealed the important role of nonimmune factors in the development of end-organ damage involvement, shifting the current paradigm that views SLE as a disease inflicted by a disturbed immune system on passive target organs. Here, we discuss the pathogenesis of lupus nephritis in a comprehensive manner, by incorporating the role that target organs play by withstanding and modulating the local inflammatory response. Moreover, we consider the effects that genetic variants exert on immune and nonimmune cells in order to shape the phenotype of the disease in each affected individual.
Collapse
Affiliation(s)
- Giovanna Flores-Mendoza
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Doctorado en Ciencias Biológicas, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Stephanie P Sansón
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Santiago Rodríguez-Castro
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - José C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
24
|
Shu B, Fang Y, He W, Yang J, Dai C. Identification of macrophage-related candidate genes in lupus nephritis using bioinformatics analysis. Cell Signal 2018; 46:43-51. [PMID: 29458096 DOI: 10.1016/j.cellsig.2018.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Lupus nephritis (LN) is a chronic autoimmune disorder. Here we try to identify the candidate genes in macrophages related to LN. We performed a systematic search in the Gene Expression Omnibus (GEO) database for microarray in human mononuclear cells and mouse macrophages of LN. The results of clustering and venn analysis of different GEO datasets showed that 8 genes were up-regulated and 2 genes down-regulated in samples from both human and mouse LN. The data from gene network and GO analysis revealed that CD38 and CCL2 were localized in the core of the network. Immunofluorescence staining showed that CD38 expression was markedly increased in macrophages from kidneys with LN. Our study identifies the gene expression profile for macrophages and demonstrated the induction of CCL2 and CD38 in macrophages from patients with LN. However, regarding the limited patient number included in this study, the results are preliminary and more studies are still needed to further decipher the macrophage-related candidate genes for the pathogenesis of LN.
Collapse
Affiliation(s)
- Bingyan Shu
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yi Fang
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The purpose of the study was to review the characteristics of renal macrophages and dendritic cells during homeostasis and disease, with a particular focus on lupus nephritis. RECENT FINDINGS Resident renal macrophages derive from embryonic sources and are long-lived and self-renewing; they are also replaced from the bone marrow with age. The unique characteristics of macrophages in each tissue are imposed by the microenvironment and reinforced by epigenetic modifications. In acute renal injury, inflammatory macrophages are rapidly recruited and then replaced by those with a wound healing/resolution phenotype. In lupus nephritis, dendritic cells infiltrate the kidneys and function to present antigen and organize tertiary lymphoid structures that amplify inflammation. In addition, both infiltrating and resident macrophages contribute to ongoing injury. These cells have a mixed inflammatory and alternatively activated phenotype that may reflect failed resolution, potentially leading to tissue fibrosis and irreversible damage. A further understanding of the renal inflammatory cells that mediate tissue injury and fibrosis should lead to new therapies to help preserve renal function in patients with lupus nephritis.
Collapse
Affiliation(s)
- Naomi I Maria
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA.
| |
Collapse
|
26
|
Liao X, Ren J, Reihl A, Pirapakaran T, Sreekumar B, Cecere TE, Reilly CM, Luo XM. Renal-infiltrating CD11c + cells are pathogenic in murine lupus nephritis through promoting CD4 + T cell responses. Clin Exp Immunol 2017; 190:187-200. [PMID: 28722110 DOI: 10.1111/cei.13017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 01/31/2023] Open
Abstract
Lupus nephritis (LN) is a major manifestation of systemic lupus erythematosus (SLE), causing morbidity and mortality in 40-60% of SLE patients. The pathogenic mechanisms of LN are not completely understood. Recent studies have demonstrated the presence of various immune cell populations in lupus nephritic kidneys of both SLE patients and lupus-prone mice. These cells may play important pathogenic or regulatory roles in situ to promote or sustain LN. Here, using lupus-prone mouse models, we showed the pathogenic role of a kidney-infiltrating CD11c+ myeloid cell population in LN. These CD11c+ cells accumulated in the kidneys of lupus-prone mice as LN progressed. Surface markers of this population suggest their dendritic cell identity and differentiation from lymphocyte antigen 6 complex (Ly6C)low mature monocytes. The cytokine/chemokine profile of these renal-infiltrating CD11c+ cells suggests their roles in promoting LN, which was confirmed further in a loss-of-function in-vivo study by using an antibody-drug conjugate (ADC) strategy targeting CX3 CR1, a chemokine receptor expressed highly on these CD11c+ cells. However, CX3 CR1 was dispensable for the homing of CD11c+ cells into lupus nephritic kidneys. Finally, we found that these CD11c+ cells co-localized with infiltrating T cells in the kidney. Using an ex- vivo co-culture system, we showed that renal-infiltrating CD11c+ cells promoted the survival, proliferation and interferon-γ production of renal-infiltrating CD4+ T cells, suggesting a T cell-dependent mechanism by which these CD11c+ cells promote LN. Together, our results identify a pathogenic kidney-infiltrating CD11c+ cell population promoting LN progression, which could be a new therapeutic target for the treatment of LN.
Collapse
Affiliation(s)
- X Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - A Reihl
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - T Pirapakaran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - B Sreekumar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - T E Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - X M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
27
|
Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2017; 53:181-197. [DOI: 10.1007/s12016-017-8605-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
29
|
Ding Y, Liao W, He X, Xiang W, Lu Q. CSTMP Exerts Anti-Inflammatory Effects on LPS-Induced Human Renal Proximal Tubular Epithelial Cells by Inhibiting TLR4-Mediated NF-κB Pathways. Inflammation 2017; 39:849-59. [PMID: 26956469 DOI: 10.1007/s10753-016-0315-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
(E)-2-(2-chlorostyryl)-3,5,6-trimethylpyrazine (CSTMP), a novel stilbene derivative, have been shown to have cytoprotective effects against H2O2-induced oxidative stress in human endothelial cells. However, little is known about its anti-inflammatory effects in lupus nephritis (LN). In the present study, we investigated the anti-inflammatory effects of CSTMP on lipopolysaccharide (LPS)-induced human renal proximal tubular epithelial cells (hRPTECs) and elucidated its molecular mechanisms. CSTMP significantly attenuated the cytotoxicity and suppressed the release of proinflammatory mediators, including iNOS, COX-2, TNF-α, IL-6, IL-8, CCL-2, ICAM-1, IL-1β, and MCP-1 in LPS-induced hRPTECs. In addition, CSTMP decreased the expression of TLR4 and its adapter molecules (MyD88, phosphorylation of TAK1, TRAF6, and IRAK1) and abolished its interactions with these adapter molecules in LPS-induced hRPTECs, resulting in an inhibition of the TLR4/MyD88/TAK1/ TRAF6/IRAK1 complex. Moreover, CSTMP also attenuated phosphorylation of IκB and IKK-α/β, and P50-NF-κB and P65-NF-κB translocation to nucleus in LPS-induced hRPTECs. These findings provided new insights to understand the mode of action of CSTMP in treatment of inflammatory diseases, such as LN.
Collapse
Affiliation(s)
- Yan Ding
- Department of Dermatology, Hainan General Hospital, Haikou, 570102, China.,Department of Dermatology, Maternal and Child Health care Hospital of Hainan Province, Haikou, 570206, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Haikou, 570102, China
| | - Xiaojie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health care Hospital of Hainan Province, 15 Long Kun-Nan Road, Haikou, 570206, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| |
Collapse
|
30
|
Oaks Z, Winans T, Huang N, Banki K, Perl A. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr Rheumatol Rep 2016; 18:73. [PMID: 27812954 PMCID: PMC5314949 DOI: 10.1007/s11926-016-0622-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator in cell growth, activation, proliferation, and survival. Activation of the mTOR pathway underlies the pathogenesis of systemic lupus erythematosus (SLE). While mTOR activation and its therapeutic reversal were originally discovered in T cells, recent investigations have also uncovered roles in other cell subsets including B cells, macrophages, and "non-immune" organs such as the liver and the kidney. Activation of mTOR complex 1 (mTORC1) precedes the onset of SLE and associated co-morbidities, such as anti-phospholipid syndrome (APS), and may act as an early marker of disease pathogenesis. Six case reports have now been published that document the development of SLE in patients with genetic activation of mTORC1. Targeting mTORC1 over-activation with N-acetylcysteine, rapamycin, and rapalogs provides an opportunity to supplant current therapies with severe side effect profiles such as prednisone or cyclophosphamide. In the present review, we will discuss the recent explosion of findings in support for a central role for mTOR activation in SLE.
Collapse
Affiliation(s)
- Zachary Oaks
- Department of Medicine, College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Nick Huang
- Department of Medicine, College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Microbiology, and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
31
|
Tsai F, Perlman H, Cuda CM. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis. Clin Immunol 2016; 185:74-85. [PMID: 27780774 DOI: 10.1016/j.clim.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission.
Collapse
Affiliation(s)
- FuNien Tsai
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Abstract
Finding better treatments for lupus nephritis requires an understanding of the pathogenesis of the causative systemic disease, how this leads to kidney disease, and how lupus nephritis progresses to end-stage kidney disease. Here, we provide a brief conceptual overview on the related pathomechanisms. As a main focus we discuss in detail the roles of neutrophils, dendritic cells, Toll-like receptors, and interferon-α in the pathogenesis of lupus nephritis by separately reviewing their roles in extrarenal systemic autoimmunity and in intrarenal inflammation and immunopathology.
Collapse
|
33
|
Berthier CC, Kretzler M, Davidson A. A systems approach to renal inflammation in SLE. Clin Immunol 2016; 185:109-118. [PMID: 27534926 DOI: 10.1016/j.clim.2016.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Lupus disease and its complications including lupus nephritis (LN) are very disabling and significantly impact the quality of life and longevity of patients. Broadly immunosuppressive treatments do not always provide the expected clinical benefits and have significant side effects that contribute to patient morbidity. In the era of systems biology, new strategies are being deployed integrating diverse sources of information (molecular and clinical) so as to identify individual disease specificities and select less aggressive treatments. In this review, we summarize integrative approaches linking molecular disease profiles (mainly tissue transcriptomics) and clinical phenotypes. The main goals are to better understand the pathogenesis of lupus nephritis, to identify the risk factors for renal flare and to find the predictors of both short and long-term clinical outcome. Identification of common key drivers and additional patient-specific key drivers can open the door to improved and individualized therapy to prevent and treat LN.
Collapse
Affiliation(s)
- Celine C Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anne Davidson
- Feinstein Institute, Center for Autoimmunity and Musculoskeletal Diseases, Manhasset, NY, USA 11030.
| |
Collapse
|
34
|
Olmes G, Büttner-Herold M, Ferrazzi F, Distel L, Amann K, Daniel C. CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. Arthritis Res Ther 2016; 18:90. [PMID: 27091114 PMCID: PMC4835936 DOI: 10.1186/s13075-016-0989-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/05/2016] [Indexed: 02/04/2023] Open
Abstract
Background The role of macrophages in the pathogenesis of lupus nephritis, in particular their differentiation to a certain subtype (e.g., M1- or M2-like) modulating the inflammatory reaction, is unknown. Here we investigated whether the differentiation in M1- or M2-like macrophages depends on the stage of lupus nephritis and whether this correlates with clinical parameters. Method Using immunohistochemical analysis we analyzed renal biopsies from 68 patients with lupus nephritis (ISN/RPS classes II–V) for infiltration with M1-like (iNOS+/CD68+), M2a-like (CD206+/CD68+), M2c-like macrophages (CD163+/CD68+), and FoxP3+ regulatory T-cells. In addition, clinical parameters at the time of renal biopsy, i.e., blood pressure, proteinuria and serum urea were correlated with the macrophage infiltration using the Spearman test. Results The mean number of CD68+ macrophages was related to the diagnosed ISN/RPS class, showing the highest macrophage infiltration in biopsies with diffuse class IV and the lowest number in ISN/RPS class V. In all ISN/RPS classes we detected more M2c-like CD163+/CD68+ than M2a-like CD206+/CD68+ cells, while M1-macrophages played only a minor role. Cluster analysis using macrophage subtype numbers in different renal compartments revealed three main clusters showing cluster 1 dominated by class V. Clusters 2 and 3 were dominated by lupus class IV indicating that this class can be further differentiated by its macrophage population. The number of tubulointerstitial FoxP3+ cells correlated with all investigated macrophage subtypes showing the strongest association to numbers of M2a-like macrophages. Kidney function, as assessed by serum creatinine and serum urea, correlated positively with the number of total CD68+, M2a-like and M2c-like macrophages in the tubulointerstitium. In addition, total CD68+ and M2c-like macrophage numbers highly correlated with Austin activity score. Interestingly, in hypertensive lupus patients only the number of M2a-like macrophages was significantly increased compared to biopsies from normotensive lupus patients. Conclusion M2-like macrophages are the dominant subpopulation in human lupus nephritis and particularly, M2a subpopulations were associated with disease progression, but their role in disease progression remains unclear.
Collapse
Affiliation(s)
- Gregor Olmes
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, 91054, Erlangen, Germany.
| |
Collapse
|
35
|
Cao Q, Harris DCH, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda) 2016; 30:183-94. [PMID: 25933819 DOI: 10.1152/physiol.00046.2014] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Macrophages are found in normal kidney and in increased numbers in diseased kidney, where they act as key players in renal injury, inflammation, and fibrosis. Macrophages are highly heterogeneous cells and exhibit distinct phenotypic and functional characteristics in response to various stimuli in the local microenvironment in different types of kidney disease. In kidney tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce pro-inflammatory macrophages, which contribute to further tissue injury, inflammation, and subsequent fibrosis. Apoptotic cells and anti-inflammatory factors in post-inflammatory tissues induced anti-inflammatory macrophages, which can mediate kidney repair and regeneration. This review summarizes the role of macrophages with different phenotypes in kidney injury, inflammation, and fibrosis in various acute and chronic kidney diseases. Understanding alterations of kidney microenvironment and the factors that control the phenotype and functions of macrophages may offer an avenue for the development of new cellular and cytokine/growth factor-based therapies as alternative treatment options for patients with kidney disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells. J Immunol Res 2016; 2016:6269157. [PMID: 27034965 PMCID: PMC4789470 DOI: 10.1155/2016/6269157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations.
Collapse
|
37
|
Thanei S, Trendelenburg M. Anti-C1q Autoantibodies from Systemic Lupus Erythematosus Patients Induce a Proinflammatory Phenotype in Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:2063-74. [PMID: 26829984 DOI: 10.4049/jimmunol.1501659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
Abstract
Anti-C1q autoantibodies (anti-C1q) are frequently found in patients with systemic lupus erythematosus (SLE) and correlate with the occurrence of proliferative lupus nephritis. A previous study of anti-C1q in experimental lupus nephritis demonstrated an important role for FcγRs in the pathogenesis of lupus nephritis, suggesting a direct effect on phagocytes. Therefore, we developed an in vitro model to study the effect of SLE patient-derived anti-C1q bound to immobilized C1q (imC1q) on human monocyte-derived macrophages (HMDMs) obtained from healthy donors and SLE patients. HMDMs were investigated by analyzing the cell morphology, LPS-induced cytokine profile, surface marker expression, and phagocytosis rate of apoptotic Jurkat cells. Morphologically, bound anti-C1q induced cell aggregations of HMDMs compared with imC1q or IgG alone. In addition, anti-C1q reversed the effect of imC1q alone, shifting the LPS-induced cytokine release toward a proinflammatory response. FcγR-blocking experiments revealed that the secretion of proinflammatory cytokines was mediated via FcγRII. The anti-C1q-induced inflammatory cytokine profile was accompanied by a downregulation of CD163 and an upregulation of LPS-induced CD80, CD274, and MHC class II. Finally, HMDMs primed on bound anti-C1q versus imC1q alone displayed a significantly lower phagocytosis rate of early and late apoptotic cells accompanied by a reduced Mer tyrosine kinase expression. Interestingly, anti-C1q-dependent secretion of proinflammatory cytokines was similar in SLE patient-derived cells, with the exception that IL-10 was slightly increased. In conclusion, anti-C1q induced a proinflammatory phenotype in HMDMs reversing the effects of imC1q alone. This effect might exacerbate underlying pathogenic mechanisms in lupus nephritis.
Collapse
Affiliation(s)
- Sophia Thanei
- Laboratory of Clinical Immunology, University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, University Hospital Basel, CH-4031 Basel, Switzerland; and Division of Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
38
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
39
|
Chong BF, Tseng LC, Hosler GA, Teske NM, Zhang S, Karp DR, Olsen NJ, Mohan C. A subset of CD163+ macrophages displays mixed polarizations in discoid lupus skin. Arthritis Res Ther 2015; 17:324. [PMID: 26568320 PMCID: PMC4644297 DOI: 10.1186/s13075-015-0839-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction Lesional skin of patients with discoid lupus erythematosus (DLE) contains macrophages, whose polarization has yet to be investigated. To test our hypothesis that M1 macrophages would be increased in DLE skin, we examined transcriptome alterations in immune cell gene expression and macrophage features in DLE and normal skin by using gene expression and histochemical approaches. Methods Gene expression of RNA from DLE lesional and normal control skin was compared by microarrays and quantitative real-time polymerase chain reaction (RT-PCR). Both skin groups were analyzed for CD163 expression by immunohistochemistry. Double immunofluorescence studies were performed to characterize protein expression of CD163+ macrophages. Results DLE skin had twice as many upregulated genes than downregulated genes compared with normal skin. Gene set enrichment analysis comparing differentially expressed genes in DLE and normal skin with previously published gene sets associated with M1 and M2 macrophages showed strong overlap between upregulated genes in DLE skin and M1 macrophages. Quantitative RT-PCR showed that several M1 macrophage-associated genes—e.g., chemokine (C-X-C motif) ligand 10 (CXCL10), chemokine (C-C motif) ligand 5 (CCL5), and signal transducer and activator of transcription 1 (STAT1)—had amplified mRNA levels in DLE skin. CD163+ macrophages were increased near the epidermal-dermal junction and perivascular areas in DLE skin compared with normal skin. However, double immunofluorescence studies of CD163+ macrophages revealed minor co-expression of M1 (CXCL10, tumor necrosis factor-alpha, and CD127) and M2 (CD209 and transforming growth factor-beta) macrophage-related proteins in DLE skin. Conclusion Whereas a subset of CD163+ macrophages displays mixed polarizations in DLE skin, other immune cells such as T cells can contribute to the expression of these macrophage-related genes. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin F Chong
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Lin-Chiang Tseng
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Gregory A Hosler
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA. .,ProPath, 1355 River Bend Drive, Dallas, 75247, TX, USA.
| | - Noelle M Teske
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, 75390, TX, USA.
| | - David R Karp
- Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, 75390-8884, TX, USA.
| | - Nancy J Olsen
- Department of Internal Medicine, Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Mail Code H038, Hershey, 17033-0850, PA, USA.
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 500 University Drive, P.O. Box 850 3065 Cullen Street, Houston, 77204, TX, USA.
| |
Collapse
|
40
|
Celhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang SH, Lee HY, Yasuga H, Jones LA, Casco J, Lee B, Thamboo TP, Zhou XJ, Poidinger M, Connolly JE, Wakeland EK, Fairhurst AM. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U S A 2015; 112:E6195-204. [PMID: 26512111 PMCID: PMC4653170 DOI: 10.1073/pnas.1507052112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glomerulonephritis is a common and debilitating feature of systemic lupus erythematosus (SLE). The precise immune mechanisms that drive the progression from benign autoimmunity to glomerulonephritis are largely unknown. Previous investigations have shown that a moderate increase of the innate Toll-like receptor 7 (TLR7) is sufficient for the development of nephritis. In these systems normalization of B-cell TLR7 expression or temporal depletion of plasmacytoid dendritic cells (pDCs) slow progression; however, the critical cell that is responsible for driving full immunopathology remains unidentified. In this investigation we have shown that conventional DC expression of TLR7 is essential for severe autoimmunity in the Sle1Tg7 model of SLE. We show that a novel expanding CD11b(+) conventional DC subpopulation dominates the infiltrating renal inflammatory milieu, localizing to the glomeruli. Moreover, exposure of human myeloid DCs to IFN-α or Flu increases TLR7 expression, suggesting they may have a role in self-RNA recognition pathways in clinical disease. To our knowledge, this study is the first to highlight the importance of conventional DC-TLR7 expression for kidney pathogenesis in a murine model of SLE.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Richard Hopkins
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | | | | | - Sun-Hee Hwang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Hui-Yin Lee
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Hiroko Yasuga
- Singapore Immunology Network, A*STAR, 138648 Singapore; School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Leigh A Jones
- Singapore Immunology Network, A*STAR, 138648 Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Jose Casco
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Thomas P Thamboo
- Department of Pathology, National University Hospital, 119074 Singapore
| | - Xin J Zhou
- Department of Pathology, Baylor University Medical Center, Dallas, TX 75246
| | | | - John E Connolly
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX76798
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, A*STAR, 138648 Singapore; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093; School of Biological Sciences, Nanyang Technological University, 637551 Singapore;
| |
Collapse
|
41
|
|
42
|
Clark KL, Reed TJ, Wolf SJ, Lowe L, Hodgin JB, Kahlenberg JM. Epidermal injury promotes nephritis flare in lupus-prone mice. J Autoimmun 2015; 65:38-48. [PMID: 26305061 DOI: 10.1016/j.jaut.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus is clinically characterized by episodes of flare and remission. In patients, cutaneous exposure to ultraviolet light has been proposed as a flare trigger. However, induction of flare secondary to cutaneous exposure has been difficult to emulate in many murine lupus models. Here, we describe a system in which epidermal injury is able to trigger the development of a lupus nephritis flare in New Zealand Mixed (NZM) 2328 mice. 20-week old NZM2328 female mice underwent removal of the stratum corneum via duct tape, which resulted in rapid onset of proteinuria and death when compared to sham-stripped littermate control NZM2328 mice. This was coupled with a drop in serum C3 concentrations and dsDNA antibody levels and enhanced immune complex deposition in the glomeruli. Recruitment of CD11b(+)CD11c(+)F4/80(high) macrophages and CD11b(+)CD11c(+)F4/80(low) dendritic cells was noted prior to the onset of proteinuria in injured mice. Transcriptional changes within the kidney suggest a burst of type I IFN-mediated and inflammatory signaling which is followed by upregulation of CXCL13 following epidermal injury. Thus, we propose that tape stripping of lupus-prone NZM2328 mice is a novel model of lupus flare induction that will allow for the study of the role of cutaneous inflammation in lupus development and how crosstalk between dermal and systemic immune systems can lead to lupus flare.
Collapse
Affiliation(s)
- Kaitlyn L Clark
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- University of Michigan Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Lori Lowe
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) Treatment Ameliorates Mice Lupus Nephritis Accompanied by Inhibiting Activation of NF-κB Pathway. PLoS One 2015. [PMID: 26208003 PMCID: PMC4514757 DOI: 10.1371/journal.pone.0133724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation plays a vital role in the pathogenesis in lupus nephritis (LN), which is largely attributable to the activation of nuclear factor kappa B (NF-κB) signal pathway. NF-κB up-regulates pro-inflammatory mediators, such as TNF-α, cyclo-oxygenase-2 (COX-2) and ICAM-1, and promotes macrophage infiltration into renal tissue, further inducing the progression of LN. Over the past 30 years, research has demonstrated that Tripterygium wilfordii Hook F (TWHF) possesses potent anti-inflammatory and immunosuppressive activities, and that demethylzeylasteral (T-96), an extract of TWHF, may be one of the responsible compounds. Here, we investigate the pharmacodynamic role and therapeutic mechanism by which T-96 suppresses inflammation and reduces renal pathology in the lupus-prone MRL/lpr mice. Methods Forty-eight MRL/lpr mice were equally randomly divided into 6 groups (1.2, 0.6 or 0.3 mg/10g T-96, 0.022 pills/10g kang lang chuang san (one of Traditional Chinese herb as positive control), 0.125 mg/10g prednisone and 0.1 ml/10g normal saline as the LN disease control group). Also, eight WT C57BL/6 mice were used as normal control. After treatment by gavage with 0.10 ml/10g/day volumes for 8 weeks, all mice were sacrificed and renal tissues were collected. The amount of 24 h proteinuria and the levels of anti-dsDNA antibody in serum were assessed respectively at weeks 0, 4 and 8. Inflammation, cytokines and NF-κB levels were assessed by histological examinations, immunohistochemical analyses and Western blot analyses. Results In comparison with untreated MRL/lpr mice, mice treated with 1.2 and 0.6 mg/10g of T-96 showed a significant improvement in 24 h proteinuria and the levels of anti-dsDNA antibody in serum. In addition, T-96 reduced the secretion of pro-inflammatory mediators such as TNF-α, COX-2 and ICAM-1, and the infiltration of macrophages in renal tissue. Moreover, T-96 significantly suppressed phosphorylations of cytoplasmic IKK and nuclear p65. Conclusion This study suggests that T-96 exhibits reno-protective effects in LN accompanied by inhibiting the activation of NF-κB, reducing the downstream pro-inflammatory mediators and thus restricting macrophage infiltration. Because of these potent properties, T-96 should be considered as a promising therapeutic drug for LN.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chunxin Yang
- Department of Pharmaceutical Chemistry, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wanzhang Qin
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
44
|
Deng W, Chen W, Zhang Z, Huang S, Kong W, Sun Y, Tang X, Yao G, Feng X, Chen W, Sun L. Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clin Immunol 2015. [PMID: 26209923 DOI: 10.1016/j.clim.2015.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (UCMSCs) show therapeutic effects on systemic lupus erythematosus (SLE). Deficiency in functional polarization and phagocytosis in macrophages has been suggested in the pathogenesis of SLE. We found that macrophages from B6.MRL-Fas(lpr) mice exhibited lower level of CD206, the marker for alternatively activated macrophage (AAM, also called M2). In addition, the phagocytic activity of B6.MRL-Fas(lpr) macrophages was also decreased. UCMSC transplantation improved the proportion of CD206(+) macrophages and their phagocytic activity in B6.MRL-Fas(lpr) mice. Importantly, macrophages from SLE patients also showed lower expression of CD206 and reduced phagocytic activity, which were corrected by being co-cultured with UCMSCs in vitro and in SLE patients receiving UCMSC transplantation. Mechanistically, we demonstrated that IL-6 was required for the up-regulation of CD206 expression and phagocytic activity of UCMSC-treated SLE macrophages. Our results indicate that UCMSCs alleviate SLE through promoting CD206 expression and phagocytic activity of macrophages in an IL-6 dependent manner.
Collapse
Affiliation(s)
- Wei Deng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Saisai Huang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Wei Kong
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Yue Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - WanJun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-2190, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
45
|
Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun 2014; 57:42-52. [PMID: 25554644 DOI: 10.1016/j.jaut.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
Kidney involvement affects 40-60% of patients with lupus, and is responsible for significant morbidity and mortality. Using depletion approaches, several studies have suggested that macrophages may play a key role in the pathogenesis of lupus nephritis. However, "off target" effects of macrophage depletion, such as altered hematopoiesis or enhanced autoantibody production, impeded the determination of a conclusive relationship. In this study, we investigated the role of macrophages in mice receiving rabbit anti-glomerular antibodies, or nephrotoxic serum (NTS), an experimental model which closely mimics the immune complex mediated disease seen in murine and human lupus nephritis. GW2580, a selective inhibitor of the colony stimulating factor-1 (CSF-1) receptor kinase, was used for macrophage depletion. We found that GW2580-treated, NTS challenged mice did not develop the increased levels of proteinuria, serum creatinine, and BUN seen in control-treated, NTS challenged mice. NTS challenged mice exhibited significantly increased kidney expression of inflammatory cytokines including RANTES, IP-10, VCAM-1 and iNOS, whereas GW2580-treated mice were protected from the robust expression of these inflammatory cytokines that are associated with lupus nephritis. Quantification of macrophage related gene expression, flow cytometry analysis of kidney single cell suspensions, and immunofluorescence staining confirmed the depletion of macrophages in GW2580-treated mice, specifically within renal glomeruli. Our results strongly implicate a specific and necessary role for macrophages in the development of immune glomerulonephritis mediated by pathogenic antibodies, and support the development of macrophage targeting approaches for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Violeta Chitu
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, NY 10032, USA
| | - Ranjit Sahu
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - E Richard Stanley
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
46
|
Davis LS. Editorial: macrophages and dendritic cells in motion: tracking inflammation and fibrosis. Arthritis Rheumatol 2014; 66:1414-7. [PMID: 24574325 DOI: 10.1002/art.38407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 11/08/2022]
|