1
|
White J, Choi YB, Zhang J, Vo MT, He C, Shaikh K, Harhaj EW. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2024:1-18. [PMID: 39193925 DOI: 10.1080/15548627.2024.2394306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chaoxia He
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
4
|
Sun N, Cai Q, Zhang Y, Zhang RR, Jiang J, Yang H, Qin CF, Cheng G. The aldehyde dehydrogenase ALDH1B1 exerts antiviral effects through the aggregation of the adaptor MAVS. Sci Signal 2024; 17:eadf8016. [PMID: 38194477 DOI: 10.1126/scisignal.adf8016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Type I interferons (IFNs) are produced by almost all cell types and play a vital role in host defense against viral infection. Infection with an RNA virus activates receptors such as RIG-I, resulting in the recruitment of the adaptor protein MAVS to the RIG-I-like receptor (RLR) signalosome and the formation of prion-like functional aggregates of MAVS, which leads to IFN-β production. Here, we identified the aldehyde dehydrogenase 1B1 (ALDH1B1) as a previously uncharacterized IFN-stimulated gene (ISG) product with critical roles in the antiviral response. Knockout of ALDH1B1 increased, whereas overexpression of ALDH1B1 restricted, the replication of RNA viruses, such as vesicular stomatitis virus (VSV), Zika virus (ZIKV), dengue virus (DENV), and influenza A virus (IAV). We found that ALDH1B1 localized to mitochondria, where it interacted with the transmembrane domain of MAVS to promote MAVS aggregation. ALDH1B1 was recruited to MAVS aggregates. In addition, ALDH1B1 also enhanced the interaction between activated RIG-I and MAVS, thus increasing IFN-β production and the antiviral response. Furthermore, Aldh1b1-/- mice developed more severe symptoms than did wild-type mice upon IAV infection. Together, these data identify an aldehyde dehydrogenase in mitochondria that functionally regulates MAVS-mediated signaling and the antiviral response.
Collapse
Affiliation(s)
- Nina Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Qiaomei Cai
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yurui Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingmei Jiang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Kobayashi T, Toyama-Sorimachi N. Metabolic control from the endolysosome: lysosome-resident amino acid transporters open novel therapeutic possibilities. Front Immunol 2023; 14:1243104. [PMID: 37781390 PMCID: PMC10540624 DOI: 10.3389/fimmu.2023.1243104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Amino acid transporters are generally recognized as machinery that transport amino acids from the extracellular environment into the cytoplasm. Although their primary function is the uptake of amino acids to supply the cell with nutrients and energy, endolysosome-resident amino acid (EL-aa) transporters possess several unique functions in accordance with their localization in intracellular vesicular membranes. They play pivotal roles in the maintenance of metabolic homeostasis via direct involvement in the amino acid sensing pathway, which regulates the activity of mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of cellular metabolism. Additionally, some EL-aa transporters contribute to the maintenance of dynamic homeostasis of endolysosomes, including the regulation of endolysosomal acidity, by carrying amino acids out of endolysosomes. In addition, EL-aa transporters act as a scaffold to gather signaling molecules and multiple enzymes to control cellular metabolism on the endolysosomal membrane. Among EL-aa transporters, solute carrier family 15 member 4 (SLC15A4) is preferentially expressed in immune cells, including macrophages, dendritic cells, and B cells, and plays a key role in the integration of metabolic and inflammatory signals. In this review, we summarize our recent findings on EL-aa transporter contributions to inflammatory and metabolic signaling in the endolysosomes of immune cells by focusing on the SLC15 family, including SLC15A4 and SLC15A3, and discuss their uniqueness and universality. We also discuss the potential of targeting these EL-aa transporters in immune cells for the development of novel therapeutic strategies for inflammatory diseases. Because these transporters are highly expressed in immune cells and significantly alter the functions of immune cells, targeting them would provide a great advantage in ensuring a wide safety margin.
Collapse
Affiliation(s)
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
6
|
Kischuck LT, Brown AI. Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface. SOFT MATTER 2023; 19:6771-6783. [PMID: 37642520 DOI: 10.1039/d3sm00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The endoplasmic reticulum (ER), a cellular organelle that forms a cell-spanning network of tubes and sheets, is an important location of protein synthesis and folding. When the ER experiences sustained unfolded protein stress, IRE1 proteins embedded in the ER membrane activate and assemble into clusters as part of the unfolded protein response (UPR). We use kinetic Monte Carlo simulations to explore IRE1 clustering dynamics on the surface of ER tubes. While initially growing clusters are approximately round, once a cluster is sufficiently large a shorter interface length can be achieved by 'wrapping' around the ER tube. A wrapped cluster can grow without further interface length increases. Relative to wide tubes, narrower tubes enable cluster wrapping at smaller cluster sizes. Our simulations show that wrapped clusters on narrower tubes grow more rapidly, evaporate more slowly, and require a lower protein concentration to grow compared to equal-area round clusters on wider tubes. These results suggest that cluster wrapping, facilitated by narrower tubes, could be an important factor in the growth and stability of IRE1 clusters and thus impact the persistence of the UPR, connecting geometry to signaling behavior. This work is consistent with recent experimental observations of IRE1 clusters wrapped around narrow tubes in the ER network.
Collapse
Affiliation(s)
- Liam T Kischuck
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
7
|
Li J, Zhang R, Wang C, Zhu J, Ren M, Jiang Y, Hou X, Du Y, Wu Q, Qi S, Li L, Chen S, Yang H, Hou F. WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response. Nat Commun 2023; 14:4824. [PMID: 37563140 PMCID: PMC10415273 DOI: 10.1038/s41467-023-40567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
RIG-I-MAVS signaling pathway plays a crucial role in defending against pathogen infection and maintaining immune balance. Upon detecting viral RNA, RIG-I triggers the formation of prion-like aggregates of the adaptor protein MAVS, which then activates the innate antiviral immune response. However, the mechanisms that regulate the aggregation of MAVS are not yet fully understood. Here, we identified WDR77 as a MAVS-associated protein, which negatively regulates MAVS aggregation. WDR77 binds to MAVS proline-rich region through its WD2-WD3-WD4 domain and inhibits the formation of prion-like filament of recombinant MAVS in vitro. In response to virus infection, WDR77 is recruited to MAVS to prevent the formation of its prion-like aggregates and thus downregulate RIG-I-MAVS signaling in cells. WDR77 deficiency significantly potentiates the induction of antiviral genes upon negative-strand RNA virus infections, and myeloid-specific Wdr77-deficient mice are more resistant to RNA virus infection. Our findings reveal that WDR77 acts as a negative regulator of the RIG-I-MAVS signaling pathway by inhibiting the prion-like aggregation of MAVS to prevent harmful inflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changwan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Junyan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Miao Ren
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingbo Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianteng Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yangting Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shishi Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Hui Yang
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Wang H, Sun W, Traba J, Wu J, Qi CF, Amo L, Kole HK, Scott B, Singh K, Sack MN, Bolland S. MAVS Positively Regulates Mitochondrial Integrity and Metabolic Fitness in B Cells. Immunohorizons 2023; 7:587-599. [PMID: 37610299 PMCID: PMC10587501 DOI: 10.4049/immunohorizons.2300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Activated B cells experience metabolic changes that require mitochondrial remodeling, in a process incompletely defined. In this study, we report that mitochondrial antiviral signaling protein (MAVS) is involved in BCR-initiated cellular proliferation and prolonged survival. MAVS is well known as a mitochondrial-tethered signaling adaptor with a central role in viral RNA-sensing pathways that induce type I IFN. The role of MAVS downstream of BCR stimulation was recognized in absence of IFN, indicative of a path for MAVS activation that is independent of viral infection. Mitochondria of BCR-activated MAVS-deficient mouse B cells exhibited a damaged phenotype including disrupted mitochondrial morphology, excess mitophagy, and the temporal progressive blunting of mitochondrial oxidative capacity with mitochondrial hyperpolarization and cell death. Costimulation of MAVS-deficient B cells with anti-CD40, in addition to BCR stimulation, partially corrected the mitochondrial structural defects and functionality. Our data reveal a (to our knowledge) previously unrecognized role of MAVS in controlling the metabolic fitness of B cells, most noticeable in the absence of costimulatory help.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Wenxiang Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Javier Traba
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Wu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
- Department of Nephrology, The People’s Hospital of Zhejiang Province, Hangzhou, China
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Laura Amo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Hemanta K. Kole
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Bethany Scott
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| |
Collapse
|
9
|
Xu Q, Zhang X, Ge S, Xu C, Lv Y, Shuai Z. Triptoquinone A and B exercise a therapeutic effect in systemic lupus erythematosus by regulating NLRC3. PeerJ 2023; 11:e15395. [PMID: 37312878 PMCID: PMC10259444 DOI: 10.7717/peerj.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023] Open
Abstract
The autoimmune disorder systemic lupus erythematosus (SLE) is multifaceted, with limited therapeutic alternatives and detrimental side effects, particularly on bones and joints. This research endeavors to examine the curative potential and underlying mechanisms of in addressing SLE-associated bone and joint complications. Triptoquinone A and triptoquinone B, constituents of Tripterygium wilfordii polyglycoside tablets (TGTs), exhibit antioxidant and anti-inflammatory attributes; nonetheless, its function in SLE therapy remains elusive. This investigation delves into the role of oxidative stress in systemic lupus erythematosus (SLE) and probes the prospective remedial effects of triptoquinone A and triptoquinone B on inflammation and cartilage deterioration in SLE-affected joints. Employing bioinformatics analyses, differentially expressed genes (DEGs) and protein-protein interactions were discerned in SLE, rheumatoid arthritis (RA), and osteoarthritis (OA) datasets. Enrichment analyses unveiled shared genes implicated in immune system regulation and toll-like receptor signaling pathways, among others. Subsequent examination of triptoquinone A and triptoquinone B revealed their capacity to diminish NLRC3 expression in chondrocytes, resulting in decreased pro-inflammatory cytokine levels and cartilage degradation enzyme expression. Suppression of NLRC3 augmented the protective effects of triptoquinone A and B, implying that targeting NLRC3 may constitute a potential therapeutic strategy for inflammation and cartilage degeneration-associated conditions in SLE patients. Our discoveries indicate that triptoquinone A and triptoquinone B may impede SLE progression via the NLRC3 axis, offering potential benefits for SLE-affected bone and joint health.
Collapse
Affiliation(s)
- Qinyao Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangzhi Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangqing Ge
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Xu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanfan Lv
- Department of Internal Medicine, School Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Zhao Y, Li R. Overview of the anti-inflammatory function of the innate immune sensor NLRC3. Mol Immunol 2023; 153:36-41. [PMID: 36403432 DOI: 10.1016/j.molimm.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The innate immune system is the first line of defense for the host against any microbial attack. It can quickly identify microorganisms and produce an immune response, removing pathogenic microorganisms. However, a strong immune response might lead to excessive inflammation and even autoimmune diseases. NLRC3 is an important regulator of innate immune system homeostasis. It is a member of the anti-inflammatory NLR family and can inhibit excessive immune response in the body. In this review, we primarily focused on the current research progress on NLRC3 and its potential application. It can decrease the production of pro-inflammatory cytokines by inhibiting the NF-κB, MAK-ERK, PI3K-mTOR, IL-6/JAK2/STAT3, and cGAS-STING pathways. It also inhibits inflammatory responses by interfering with the assembly and activity of the NLRP3 inflammasome complexes. Additionally, NLRC3 can also reduce the functions of some antigen-presenting cells and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. NLRC3 is closely related to the development of tumors, infectious diseases, autoimmune diseases, and AD. These diseases might be treated effectively by regulating the expression of NLRC3.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, PR. China; The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei, 230026, PR. China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR. China.
| |
Collapse
|
13
|
Nagashima S, Ito N, Shiiba I, Shimura H, Yanagi S. Ubiquitin-mediated mitochondrial regulation by MITOL/MARCHF5 at a glance. J Biochem 2022; 173:1-11. [PMID: 36346121 DOI: 10.1093/jb/mvac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mitochondria are involved in various cellular processes, such as energy production, inflammatory responses and cell death. Mitochondrial dysfunction is associated with many age-related diseases, including neurological disorders and heart failure. Mitochondrial quality is strictly maintained by mitochondrial dynamics linked to an adequate supply of phospholipids and other substances from the endoplasmic reticulum (ER). The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 is responsible for mitochondrial quality control through the regulation of mitochondrial dynamics, formation of mitochondria-ER contacts and mitophagy. MITOL deficiency has been shown to impair mitochondrial function, cause an excessive inflammatory response and increase vulnerability to stress, resulting in the exacerbation of the disease. In this study, we overview the ubiquitin-mediated regulation of mitochondrial function by MITOL and the relationship between MITOL and diseases.
Collapse
Affiliation(s)
- Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
14
|
Liu M, Liu K, Cheng D, Zheng B, Li S, Mo Z. The regulatory role of NLRX1 in innate immunity and human disease. Cytokine 2022; 160:156055. [DOI: 10.1016/j.cyto.2022.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
|
15
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Bai X, Sui C, Liu F, Chen T, Zhang L, Zheng Y, Liu B, Gao C. The protein arginine methyltransferase PRMT9 attenuates MAVS activation through arginine methylation. Nat Commun 2022; 13:5016. [PMID: 36028484 PMCID: PMC9418238 DOI: 10.1038/s41467-022-32628-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
The signaling adaptor MAVS forms prion-like aggregates to activate the innate antiviral immune response after viral infection. However, spontaneous aggregation of MAVS can lead to autoimmune diseases. The molecular mechanism that prevents MAVS from spontaneous aggregation in resting cells has been enigmatic. Here we report that protein arginine methyltransferase 9 targets MAVS directly and catalyzes the arginine methylation of MAVS at the Arg41 and Arg43. In the resting state, this modification inhibits MAVS aggregation and autoactivation of MAVS. Upon virus infection, PRMT9 dissociates from the mitochondria, leading to the aggregation and activation of MAVS. Our study implicates a form of post-translational modification on MAVS, which can keep MAVS inactive in physiological conditions to maintain innate immune homeostasis.
Collapse
Affiliation(s)
- Xuemei Bai
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
17
|
Cao L, Zhang H, Bai J, Wu T, Wang Y, Wang N, Huang C. HERC6 is upregulated in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and promotes the disease progression. Autoimmunity 2022; 55:506-514. [PMID: 35880641 DOI: 10.1080/08916934.2022.2103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Peripheral blood mononuclear cells (PBMCs) are any peripheral blood cell with round nuclei, including lymphocytes (T cells, B cells) and monocytes, whose physicochemical properties are randomized by obvious immune changes, and are a potentially effective source of SLE blood test samples and therapeutic targets. This study aimed to explore the upregulation molecules of PBMCs in patients with SLE and to explore their biological role. Homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain (RLD) containing E3 ubiquitin protein ligase family member 6 (HERC6) expression was found significantly upregulated in four Gene Expression Omnibus gene sets. Moreover, HERC6 expression was upregulated in PBMCs from SLE patients compared with that in PBMCs from normal donors. HERC6 was significantly associated with SLE clinical phenotypes such as complement C3 content, erythrocyte sedimentation rate, and SLE disease activity index. In vitro, knockdown of HERC6 inhibited PBMC apoptosis, inflammatory response, and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway, while overexpression of HERC6 led to the opposite results. In addition, AG490, a JAK/STAT pathway inhibitor, reversed the promoting effect of HERC6 overexpression on PBMC apoptosis and inflammation. In conclusion, the level of HERC6 in PBMCs in patients with SLE was upregulated. Overexpression of HERC6 promoted PBMC apoptosis and inflammatory response, which was involved in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ling Cao
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Hui Zhang
- Cardiology Department, The First Hospital of Yulin, Yulin, PR China
| | - Jin Bai
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Tingting Wu
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Yingjuan Wang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Ning Wang
- Pediatric Department, Xi'an International Medical Center Hospital, Xi'an, PR China
| | - Caihong Huang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| |
Collapse
|
18
|
Xiao Y, Chen X, Wang Z, Quan J, Zhao X, Tang H, Wu H, Di Q, Wu Z, Chen W. Succinate Is a Natural Suppressor of Antiviral Immune Response by Targeting MAVS. Front Immunol 2022; 13:816378. [PMID: 35309330 PMCID: PMC8924363 DOI: 10.3389/fimmu.2022.816378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Succinate is at the crossroads of multiple metabolic pathways and plays a role in several immune responses acting as an inflammation signal. However, whether succinate regulates antiviral immune response remains unclear. Here, we found that the production of succinate was reduced in RAW264.7 cells during vesicular stomatitis virus (VSV) infection. Using diethyl succinate to pretreat the mouse peritoneal macrophages and RAW264.7 cells before VSV infection, the production of interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL-10), and IFN-stimulated genes 15 (ISG15) was significantly decreased, following which the VSV replication in diethyl succinate-pretreated cells was obviously increased. Moreover, succinate decreased the expression of IFN-β in serum, lung, and spleen derived from the VSV-infected mice. The overall survival rate in the VSV-infected mice with diethyl succinate pretreatment was also remarkably downregulated. Furthermore, we identified that succinate inhibited the activation of MAVS-TBK1-IRF3 signaling by suppressing the formation of MAVS aggregates. Our findings provide previously unrecognized roles of succinate in antiviral immune response and establish a novel link between metabolism and innate immune response.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xinyi Chen
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhun Wang
- Technological Center, Changchun Customs, Changchun, China
| | - Jiazheng Quan
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xibao Zhao
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Haimei Tang
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Han Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qianqian Di
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zherui Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Weilin Chen
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Koenig A, Buskiewicz-Koenig IA. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxid Redox Signal 2022; 36:441-461. [PMID: 35352943 PMCID: PMC8982130 DOI: 10.1089/ars.2021.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Reactive oxygen species (ROS) are well known to promote innate immune responses during and in the absence of microbial infections. However, excessive or prolonged exposure to ROS provokes innate immune signaling dysfunction and contributes to the pathogenesis of many autoimmune diseases. The relatively high basal expression of pattern recognition receptors (PRRs) in innate immune cells renders them prone to activation in response to minor intrinsic or extrinsic ROS misbalances in the absence of pathogens. Critical Issues: A prominent source of ROS are mitochondria, which are also major inter-organelle hubs for innate immunity activation, since most PRRs and downstream receptor molecules are directly located either at mitochondria or at mitochondria-associated membranes. Due to their ancestral bacterial origin, mitochondria can also act as quasi-intrinsic self-microbes that mimic a pathogen invasion and become a source of danger-associated molecular patterns (DAMPs) that triggers innate immunity from within. Recent Advances: The release of mitochondrial DAMPs correlates with mitochondrial metabolism changes and increased generation of ROS, which can lead to the oxidative modification of DAMPs. Recent studies suggest that ROS-modified mitochondrial DAMPs possess increased, persistent immunogenicity. Future Directions: Herein, we discuss how mitochondrial DAMP release and oxidation activates PRRs, changes cellular metabolism, and causes innate immune response dysfunction by promoting systemic inflammation, thereby contributing to the onset or progression of autoimmune diseases. The future goal is to understand what the tipping point for DAMPs is to become oxidized, and whether this is a road without return. Antioxid. Redox Signal. 36, 441-461.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
20
|
Budd RC, Scharer CD, Barrantes-Reynolds R, Legunn S, Fortner KA. T Cell Homeostatic Proliferation Promotes a Redox State That Drives Metabolic and Epigenetic Upregulation of Inflammatory Pathways in Lupus. Antioxid Redox Signal 2022; 36:410-422. [PMID: 34328790 PMCID: PMC8982120 DOI: 10.1089/ars.2021.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Numerous abnormalities in T cells have been described in patients with systemic lupus erythematosus (SLE), including lymphopenia, DNA demethylation, expression of endogenous retroviruses (ERVs), increased cell death, enlarged mitochondria, production of reactive oxygen species (ROS), and the appearance of unusual CD4-CD8- T cells. Our studies propose a model in which accelerated homeostatic proliferation of T cells promotes an epigenetic and metabolic program, leading to this cluster of abnormalities. Recent Advances: Growing knowledge of the innate immune disorders in SLE has included increased mitochondrial size and ROS production that induces oligomerization of the mitochondrial antiviral signaling (MAVS) protein and type I interferon production, as well as DNA demethylation, upregulation of inflammatory genes, and expression of certain ERVs in SLE peripheral blood mononuclear cells. All these events are part of the cellular program that occurs during homeostatic proliferation of T cells. Evidence from a murine model of SLE as well as in human SLE reveals that increased T cell homeostatic proliferation may be a driving factor in these processes. Critical Issues: Despite extensive knowledge of the myriad autoantibodies in SLE and other immune abnormalities, a cogent model has been lacking to link the numerous and seemingly disparate immune aberrations. This may partly explain the general lack of new drugs specifically for SLE in over 50 years. A more coherent model of SLE would not only unify the variety of immune abnormalities is SLE but would also suggest new therapies. Future Directions: The model of augmented homeostatic proliferation leading to increased mitochondrial mass, ROS, DNA demethylation, and upregulation of inflammatory genes suggests strategic new targets for SLE, including antioxidants and certain inhibitors of metabolism. Antioxid. Redox Signal. 36, 410-422.
Collapse
Affiliation(s)
- Ralph C Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Scott Legunn
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Karen A Fortner
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
21
|
Hwang BJ, Tsao LC, Acharya CR, Trotter T, Agarwal P, Wei J, Wang T, Yang XY, Lei G, Osada T, Lyerly HK, Morse MA, Hartman ZC. Sensitizing immune unresponsive colorectal cancers to immune checkpoint inhibitors through MAVS overexpression. J Immunother Cancer 2022; 10:e003721. [PMID: 35361727 PMCID: PMC8971789 DOI: 10.1136/jitc-2021-003721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of colorectal carcinomas (CRCs) are insensitive to programmed death protein-1/programmed death-ligand 1 (anti-PD-1/PD-L1) immune checkpoint inhibitor (ICI) antibodies. While there are many causes for ICI insensitivity, recent studies suggest that suppression of innate immune gene expression in tumor cells could be a root cause of this insensitivity and an important factor in the evolution of tumor immunosuppression. METHODS We first assessed the reduction of mitochondrial antiviral signaling gene (MAVS) and related RIG-I pathway gene expression in several patient RNA expression datasets. We then engineered MAVS expressing tumor cells and tested their ability to elicit innate and adaptive anti-tumor immunity using both in vitro and in vivo approaches, which we then confirmed using MAVS expressing viral vectors. Finally, we observed that MAVS stimulated PD-L1 expression in multiple cell types and then assessed the combination of PD-L1 ICI antibodies with MAVS tumor expression in vivo. RESULTS MAVS was significantly downregulated in CRCs, but its re-expression could stimulate broad cellular interferon-related responses, in both murine and patient-derived CRCs. In vivo, local MAVS expression elicited significant anti-tumor responses in both immune-sensitive and insensitive CRC models, through the stimulation of an interferon responsive axis that provoked tumor antigen-specific adaptive immunity. Critically, we found that tumor-intrinsic MAVS expression triggered systemic adaptive immune responses that enabled abscopal CD8 +T cell cytotoxicity against distant CRCs. As MAVS also induced PD-L1 expression, we further found synergistic anti-tumor responses in combination with anti-PD-L1 ICIs. CONCLUSION These data demonstrate that intratumoral MAVS expression results in local and systemic tumor antigen-specific T cell responses, which could be combined with PD-L1 ICI to permit effective anti-tumor immunotherapy in ICI resistant cancers.
Collapse
Affiliation(s)
- Bin-Jin Hwang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Li-Chung Tsao
- Surgery, Duke University, Durham, North Carolina, USA
| | | | | | | | - Junping Wei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Tao Wang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Takuya Osada
- Surgery, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Surgery, Duke University, Durham, North Carolina, USA
- Immunology, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| | - Michael A Morse
- Surgery, Duke University, Durham, North Carolina, USA
- Medicine, Duke University, Durham, NC, USA
| | - Zachary Conrad Hartman
- Surgery, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Liu HM. Intracellular innate immunity and mechanism of action of cytosolic nucleic acid receptor-mediated type I IFN against viruses. IUBMB Life 2021; 74:180-189. [PMID: 34500496 DOI: 10.1002/iub.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/05/2022]
Abstract
The induction of type I interferons (IFN) is critical for antiviral innate immune response. The rapid activation of antiviral innate immune responses is the key to successful clearance of evading pathogens. To achieve this, a series of proteins, including the pathogen recognition receptors (PRRs), the adaptor proteins, the accessory proteins, kinases, and the transcription factors, are all involved and finely orchestrated. The magnitude and latitude of type I IFN induction however are distinctly regulated in different tissues. A set of interferon simulated genes (ISGs) are then expressed in response to type I IFN signaling to set the cells in the antiviral state. In this review, how type I IFN is induced by viral infections by intracellular PRRs and how type I IFN triggers the expression of downstream effectors will be discussed.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
24
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
25
|
IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus. Arthritis Res Ther 2021; 23:153. [PMID: 34051843 PMCID: PMC8164314 DOI: 10.1186/s13075-021-02538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most patients with systemic lupus erythematosus (SLE) have IgG autoantibodies against the RNA-binding p40 (ORF1p) protein encoded by the L1 retroelement. This study tested if these autoantibodies are also present in children with pediatric SLE (pSLE) and if the p40 protein itself could be detected in immune cells. METHODS Autoantibodies in the plasma of pSLE patients (n = 30), healthy children (n = 37), and disease controls juvenile idiopathic arthritis (JIA) (n = 32) and juvenile dermatomyositis (JDM) (n = 60), were measured by ELISA. Expression of p40 in immune cells was assessed by flow cytometry. Markers of neutrophil activation and death were quantitated by ELISA. RESULTS IgG and IgA autoantibodies reactive with p40 were detected in the pSLE patients, but were low in healthy controls and in JIA or JDM. pSLE patients with active disease (13 of them newly diagnosed) had higher titers than the same patients after effective therapy (p = 0.0003). IgG titers correlated with SLEDAI (r = 0.65, p = 0.0001), ESR (r = 0.43, p = 0.02), and anti-dsDNA antibodies (r = 0.49, p < 0.03), and inversely with complement C3 (r = -0.55, p = 0.002) and C4 (r = -0.51, p = 0.006). p40 protein was detected in a subpopulation of CD66b+ granulocytes in pSLE, as well as in adult SLE patients. Myeloperoxidase and neutrophil elastase complexed with DNA and the neutrophil-derived S100A8/A9 were elevated in plasma from pSLE patients with active disease and correlated with anti-p40 autoantibodies and disease activity. CONCLUSIONS Children with active SLE have elevated IgG and IgA autoantibodies against L1 p40, and this protein can be detected in circulating granulocytes in both pediatric and adult SLE patients. P40 expression and autoantibody levels correlate with disease activity. Markers of neutrophil activation and death also correlate with these autoantibodies and with disease activity, suggesting that neutrophils express L1 and are a source of p40.
Collapse
|
26
|
Kim SH, Shin HJ, Yoon CM, Lee SW, Sharma L, Dela Cruz CS, Kang MJ. PINK1 Inhibits Multimeric Aggregation and Signaling of MAVS and MAVS-Dependent Lung Pathology. Am J Respir Cell Mol Biol 2021; 64:592-603. [PMID: 33577398 PMCID: PMC8086043 DOI: 10.1165/rcmb.2020-0490oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria have emerged as important signaling organelles where intracellular perturbations are integrated and, consequently, intracellular signaling pathways are modulated to execute appropriate cellular functions. MAVS (mitochondrial antiviral signaling protein) represents such an example that functions as a platform molecule to mediate mitochondrial innate immune signaling. Recently, multimeric aggregation of MAVS has been identified as a key molecular process for its signaling. The underlying mechanisms to regulate this, however, are still incompletely understood. We hypothesized that PINK1 (PTEN-induced kinase 1) plays an important role in the regulation of multimeric MAVS aggregation and its consequent pathobiology. To test whether PINK1 interacts with MAVS, bimolecular fluorescence complementation analysis and IP were performed. RLH (RIG-I-like helicase) and NLRP3 inflammasome signaling were evaluated by in vitro assay. In vivo functional significance of PINK1 in the regulation of MAVS signaling was evaluated from both murine modeling of influenza viral infection and bleomycin-induced experimental pulmonary fibrosis, wherein MAVS plays important roles. Multimeric MAVS aggregation was induced by mitochondria dysfunction, and, during this event, the stabilized PINK1 interacted physically with MAVS and antagonized multimeric MAVS aggregation. Accordingly, the MAVS-mediated antiviral innate immune and NLRP3 inflammasome signaling were enhanced in PINK1 deficiency. In addition, in vivo studies revealed that MAVS-mediated pulmonary antiviral innate immune responses and fibrotic responses after bleomycin injury were enhanced in PINK1 deficiency. In conclusion, these results establish a new role of PINK1 in the regulation of MAVS signaling and the consequent pulmonary pathobiology.
Collapse
Affiliation(s)
- Sang-Hun Kim
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Hyeon Jun Shin
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Chang Min Yoon
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Sei Won Lee
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lokesh Sharma
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Charles S. Dela Cruz
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Min-Jong Kang
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
27
|
Lai JH, Hung LF, Huang CY, Wu DW, Wu CH, Ho LJ. Mitochondrial protein CMPK2 regulates IFN alpha-enhanced foam cell formation, potentially contributing to premature atherosclerosis in SLE. Arthritis Res Ther 2021; 23:120. [PMID: 33874983 PMCID: PMC8054390 DOI: 10.1186/s13075-021-02470-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Premature atherosclerosis occurs in patients with SLE; however, the mechanisms remain unclear. Both mitochondrial machinery and proinflammatory cytokine interferon alpha (IFN-α) potentially contribute to atherogenic processes in SLE. Here, we explore the roles of the mitochondrial protein cytidine/uridine monophosphate kinase 2 (CMPK2) in IFN-α-mediated pro-atherogenic events. Methods Foam cell measurements were performed by oil red O staining, Dil-oxLDL uptake and the BODIPY approach. The mRNA and protein levels were measured by qPCR and Western blotting, respectively. Isolation of CD4+ T cells and monocytes was performed with monoclonal antibodies conjugated with microbeads. Manipulation of protein expression was conducted by either small interference RNA (siRNA) knockdown or CRISPR/Cas9 knockout. The expression of mitochondrial reactive oxygen species (mtROS) was determined by flow cytometry and confocal microscopy. Results IFN-α enhanced oxLDL-induced foam cell formation and Dil-oxLDL uptake by macrophages. In addition to IFN-α, several triggers of atherosclerosis, including thrombin and IFN-γ, can induce CMPK2 expression, which was elevated in CD4+ T cells and CD14+ monocytes isolated from SLE patients compared to those isolated from controls. The analysis of cellular subfractions revealed that CMPK2 was present in both mitochondrial and cytosolic fractions. IFN-α-induced CMPK2 expression was inhibited by Janus kinase (JAK)1/2 and tyrosine kinase 2 (Tyk2) inhibitors. Both the knockdown and knockout of CMPK2 attenuated IFN-α-mediated foam cell formation, which involved the reduction of scavenger receptor class A (SR-A) expression. CMPK2 also regulated IFN-α-enhanced mtROS production and inflammasome activation. Conclusions The study suggests that CMPK2 plays contributing roles in the pro-atherogenic effects of IFN-α. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02470-6.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China.,Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China.
| |
Collapse
|
28
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
29
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
30
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
31
|
Pickering RJ, Booty LM. NLR in eXile: Emerging roles of NLRX1 in immunity and human disease. Immunology 2020; 162:268-280. [PMID: 33314068 DOI: 10.1111/imm.13291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.
Collapse
Affiliation(s)
- Robert J Pickering
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Lee M Booty
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
32
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
35
|
Shi Y, Wu J, Zhong T, Zhu W, She G, Tang H, Du W, Ye BC, Qi N. Upstream ORFs Prevent MAVS Spontaneous Aggregation and Regulate Innate Immune Homeostasis. iScience 2020; 23:101059. [PMID: 32339989 PMCID: PMC7190755 DOI: 10.1016/j.isci.2020.101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 11/24/2022] Open
Abstract
The monomer-to-filament transition of MAVS is essential for the RIG-I/MDA5-mediated antiviral signaling. In quiescent cells, monomeric MAVS is under strict regulation for preventing its spontaneous aggregation, which would result in dysregulated interferon (IFN-α/β) production and autoimmune diseases like systemic lupus erythematosus. However, the detailed mechanism by which MAVS is kept from spontaneous aggregation remains largely unclear. Here, we show that upstream open reading frames (uORFs) within the MAVS transcripts exert a post-transcriptional regulation for preventing MAVS spontaneous aggregation and auto-activation. Mechanistically, we demonstrate that uORFs are cis-acting elements initiating leaky ribosome scanning of the downstream ORF codons, thereby repressing the full-length MAVS translation. We further uncover that endogenous MAVS generated from the uORF-deprived transcript spontaneously aggregates, triggering the Nix-mediated mitophagic clearance of damaged mitochondria and aggregated MAVS. Our findings reveal the uORF-mediated quantity and quality control of MAVS, which prevents aberrant protein aggregation and maintains innate immune homeostasis. uORFs are safety checks preventing MAVS spontaneous aggregation and auto-activation uORFs exert the quantity and quality control of MAVS Spontaneously aggregated MAVS induces an antiviral state in quiescent cells Nix mediates the cargo selection and mitophagic clearance of MAVS aggregates
Collapse
Affiliation(s)
- Yuheng Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tiansheng Zhong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenting Zhu
- Materials Interfaces Center Institute of Advanced Materials Science and Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guolan She
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
36
|
Nagai-Singer MA, Morrison HA, Allen IC. NLRX1 Is a Multifaceted and Enigmatic Regulator of Immune System Function. Front Immunol 2019; 10:2419. [PMID: 31681307 PMCID: PMC6797603 DOI: 10.3389/fimmu.2019.02419] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, significant progress has been achieved in defining mechanisms underlying NLR regulation of immune system function. However, several NLR family members continue to defy our best attempts at characterization and routinely exhibit confounding data. This is particularly true for NLR family members that regulate signaling associated with the activation of other pattern recognition receptors. NLRX1 is a member of this NLR sub-group and acts as an enigmatic regulator of immune system function. NLRX1 has been shown to negatively regulate type-I interferon, attenuate pro-inflammatory NF-κB signaling, promote reactive oxygen species production, and modulate autophagy, cell death, and proliferation. However, the mechanism/s associated with NLRX1 modulation of these pathways is not fully understood and there are inconsistencies within the field. Likewise, it is highly likely that the full repertoire of biological functions impacted by NLRX1 are yet to be defined. Recent mouse studies have shown that NLRX1 significantly impacts a multitude of diseases, including cancer, virus infection, osteoarthritis, traumatic brain injury, and inflammatory bowel disease. Thus, it is essential that the underlying mechanism associated with NLRX1 function in each of these diseases be robustly defined. Here, we summarize the current progress in understanding mechanisms associated with NLRX1 function. We also offer insight into both unique and overlapping mechanisms regulated by NLRX1 that likely contribute to disease pathobiology. Ultimately, we believe that an improved understanding of NLRX1 will result in better defined mechanisms associated with immune system attenuation and the resolution of inflammation in a myriad of diseases.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
37
|
Alunno A, Padjen I, Fanouriakis A, Boumpas DT. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent. Cells 2019; 8:cells8080898. [PMID: 31443172 PMCID: PMC6721755 DOI: 10.3390/cells8080898] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Four Janus kinases (JAKs) (JAK1, JAK2, JAK3, TYK2) and seven signal transducers and activators of transcription (STATs) (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6) mediate the signal transduction of more than 50 cytokines and growth factors in many different cell types. Located intracellularly and downstream of cytokine receptors, JAKs integrate and balance the actions of various signaling pathways. With distinct panels of STAT-sensitive genes in different tissues, this highly heterogeneous system has broad in vivo functions playing a crucial role in the immune system. Thus, the JAK/STAT pathway is critical for resisting infection, maintaining immune tolerance, and enforcing barrier functions and immune surveillance against cancer. Breakdowns of this system and/or increased signal transduction may lead to autoimmunity and other diseases. Accordingly, the recent development and approval of the first small synthetic molecules targeting JAK molecules have opened new therapeutic avenues of potentially broad therapeutic relevance. Extensive data are now available regarding the JAK/STAT pathway in rheumatoid arthritis. Dysregulation of the cytokines is also a hallmark of systemic lupus erythematosus (SLE), and targeting the JAK/STAT proteins allows simultaneous suppression of multiple cytokines. Evidence from in vitro studies and animal models supports a pivotal role also in the pathogenesis of cutaneous lupus and SLE. This has important therapeutic implications, given the current paucity of targeted therapies especially in the latter. Herein, we summarize the currently available literature in experimental SLE, which has led to the recent promising Phase II clinical trial of a JAK inhibitor.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Ospedale S.M. della Misericordia, Edificio C, 5° piano, Piazzale Menghini 1, 06129 S. Andrea delle Fratte, Perugia, Italy.
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, "Attikon" University Hospital, 12462 Athens, Greece
- Department of Rheumatology, "Asklepieion" General Hospital, 16673 Athens, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, "Attikon" University Hospital, 12462 Athens, Greece
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Joint Academic Rheumatology Program, Medical School, National and Kapodestrian University of Athens, Athens, Greece and Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|
38
|
TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proc Natl Acad Sci U S A 2019; 116:16479-16488. [PMID: 31346090 PMCID: PMC6697806 DOI: 10.1073/pnas.1901090116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activators of interferons have received a great deal of interest in recent decades, both due to the central role they play in host defense against a range of pathogens, as well as the now well-recognized importance of dysregulated interferon activation/signaling in the pathogenesis of a number of highly prevalent and hard-to-treat diseases, such as systemic lupus erythematosus (SLE). Therefore, novel regulators of interferon activation are being sought as they may provide better targets to treat these diseases. We report the discovery of TMEM203 as an SLE-associated gene and a regulator of ligand-dependent activation of interferon production via STING. Thus, our work could form the basis of a novel therapeutic strategy for the treatment of interferonopathies, including SLE. Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-β. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.
Collapse
|
39
|
An update on the role of type I interferons in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2019; 30:471-481. [PMID: 29889694 DOI: 10.1097/bor.0000000000000524] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share several clinical and laboratory features, including an overexpression of type I interferon (IFN) regulated genes. The genetic background to this IFN signature and the role of the type I IFN system in the disease process have been partly clarified. Here, we summarize the latest information concerning the type I IFN system in both diseases. RECENT FINDINGS A number of gene variants in the type I IFN signalling pathways associate with an increased risk for both SLE and pSS in several ethnicities. The function of some risk gene variants has been elucidated, as well as the importance of epigenetic changes in type I IFN regulated genes. MicroRNA-451 and miR-302d have been shown to target IFN regulatory factor 8 and 9, suggesting that noncoding RNAs can control the IFN system. A prominent type I IFN activation is related to several disease manifestations, and in SLE to a more severe disease phenotype. Phase II studies in SLE suggest beneficial effects of blocking the type I IFN receptor. SUMMARY The activated type I IFN system in SLE and pSS has a strong genetic component, is important in the disease etiopathogenesis and can be targeted.
Collapse
|
40
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
41
|
Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine 2019; 132:154635. [PMID: 30685202 DOI: 10.1016/j.cyto.2018.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Systemic Sclerosis (Scleroderma, SSc) is a multifaceted disease characterized by autoimmunity, vasculopathy, and fibrosis affecting the skin and internal organs. Despite advances in the understanding and treatment of SSc in recent years, SSc continues to cause reduced quality of life and premature mortality. Type I interferons (IFNs), a family of cytokines with essential roles in the immune response to microbial infection, play a pathogenic role in certain autoimmune diseases (reviewed elsewhere in this edition). Polymorphisms in interferon-regulatory factors confer an increased risk of SSc, and IFN excess is evident in the blood and skin of a large percentage of SSc patients. Here we describe the evidence of Type I IFN dysregulation in SSc, revealed predominately by genetics and gene expression profiling. We also discuss evidence regarding mechanisms by which Type I IFN might contribute to SSc pathogenesis, mechanisms driving excess Type I IFN production in SSc, and the potential roles of Type I IFNs as biomarkers and therapeutic targets in SSc.
Collapse
Affiliation(s)
- Brian Skaug
- The University of Texas Health Science Center in Houston, Division of Rheumatology, 6431 Fannin, MSB 5.262, Houston, TX 77030, United States
| | - Shervin Assassi
- The University of Texas Health Science Center in Houston, Division of Rheumatology, 6431 Fannin, MSB 5.262, Houston, TX 77030, United States.
| |
Collapse
|
42
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|
43
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
44
|
Antiochos B, Matyszewski M, Sohn J, Casciola-Rosen L, Rosen A. IFI16 filament formation in salivary epithelial cells shapes the anti-IFI16 immune response in Sjögren's syndrome. JCI Insight 2018; 3:120179. [PMID: 30232276 DOI: 10.1172/jci.insight.120179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
IFN-inducible protein 16 (IFI16) is an innate immune sensor that forms filamentous oligomers when activated by double-stranded DNA (dsDNA). Anti-IFI16 autoantibodies occur in patients with Sjögren's syndrome (SS) and associate with severe phenotypic features. We undertook this study to determine whether the structural and functional properties of IFI16 play a role in its status as an SS autoantigen. IFI16 immunostaining in labial salivary glands (LSGs) yielded striking evidence of filamentous IFI16 structures in the cytoplasm of ductal epithelial cells, representing the first microscopic description of IFI16 oligomerization in human tissues, to our knowledge. Transfection of cultured epithelial cells with dsDNA triggered the formation of cytoplasmic IFI16 filaments with similar morphology to those observed in LSGs. We found that a majority of SS anti-IFI16 autoantibodies immunoprecipitate IFI16 more effectively in the oligomeric dsDNA-bound state. Epitopes in the C-terminus of IFI16 are accessible to antibodies in the DNA-bound oligomer and are preferentially targeted by SS sera. Furthermore, cytotoxic lymphocyte granule pathways (highly enriched in the SS gland) induce striking release of IFI16•dsDNA complexes from cultured cells. Our studies reveal that IFI16 is present in a filamentous state in the target tissue of SS and suggest that this property of DNA-induced filament formation contributes to its status as an autoantigen in SS. These studies highlight the role that tissue-specific modifications and immune effector pathways might play in the selection of autoantigens in rheumatic diseases.
Collapse
Affiliation(s)
| | - Mariusz Matyszewski
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
45
|
Zurawek M, Dzikiewicz-Krawczyk A, Izykowska K, Ziolkowska-Suchanek I, Skowronska B, Czainska M, Podralska M, Fichna P, Przybylski G, Fichna M, Nowak J. miR-487a-3p upregulated in type 1 diabetes targets CTLA4 and FOXO3. Diabetes Res Clin Pract 2018; 142:146-153. [PMID: 29859273 DOI: 10.1016/j.diabres.2018.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
AIMS Type 1 diabetes (T1D) is an autoimmune disorder caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. T1D is a consequence of complex processes, influenced by genetic, epigenetic and environmental factors. MicroRNAs (miRNAs) are small non-coding RNAs that target multiple mRNAs and regulate gene expression. The implication of miRNAs in T1D pathogenesis, as potential modulators of immune response genes, remains poorly defined. The aim of this study was to investigate the expression profile of miRNAs in new onset T1D and the impact of deregulated miRNAs on target genes. METHODS Total RNA from peripheral blood mononuclear cells of newly diagnosed T1D pediatric patients and age-matched controls was screened for disease-associated miRNAs by a microarray analysis, with subsequent validation by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). miRNA targets were identified by luciferase reporter assays. RESULTS The microarray analysis revealed 91 deregulated miRNAs (P < 0.05) in T1D group compared to non-diabetic controls. Within this group we observed one upregulated and seven downregulated miRNAs with fold change >2.0. qRT-PCR validation revealed overexpression of miR-487a-3p which has not been previously reported in the context of T1D. Luciferase reporter assays indicated CTLA4 and FOXO3 genes as miR-487a-3p targets. CONCLUSION Our study suggests that miR-487a-3p might repress CTLA4 and FOXO3 by binding to their 3'UTRs and contribute to the development of T1D.
Collapse
Affiliation(s)
- Magdalena Zurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | | | | | | | - Bogda Skowronska
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Fichna
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; Department of Endocrinology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
46
|
Elkon KB. Review: Cell Death, Nucleic Acids, and Immunity: Inflammation Beyond the Grave. Arthritis Rheumatol 2018; 70:805-816. [PMID: 29439290 PMCID: PMC5984680 DOI: 10.1002/art.40452] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022]
Abstract
Cells of the innate immune system are rigged with sensors that detect nucleic acids derived from microbes, especially viruses. It has become clear that these same sensors that respond to nucleic acids derived from damaged cells or defective intracellular processing are implicated in triggering diseases such as lupus and arthritis. The ways in which cells die and the concomitant presence of proteins and peptides that allow nucleic acids to re-enter cells profoundly influence innate immune responses. In this review, we briefly discusses different types of programmed necrosis, such as pyroptosis, necroptosis, and NETosis, and explains how nucleic acids can engage intracellular receptors and stimulate inflammation. Host protective mechanisms that include compartmentalization of receptors and nucleases as well as the consequences of nuclease deficiencies are explored. In addition, proximal and distal targets in the nucleic acid stimulation of inflammation are discussed in terms of their potential amenability to therapy for the attenuation of innate immune activation and disease pathogenesis.
Collapse
Affiliation(s)
- Keith B. Elkon
- Department of Medicine and Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes. Neuropharmacology 2018; 135:431-443. [PMID: 29578037 DOI: 10.1016/j.neuropharm.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immunity. Lastly, PPF and PIO have therapeutic potential to ameliorate cocaine-mediated dysregulation of astrocyte antiviral immunity possibly via a myriad of protective actions including decreases in reactive phenotype and damaging immune factors.
Collapse
|
48
|
Cucuzza ME, Marino SD, Schiavone L, Smilari P, Filosco F, Barone P. Diffuse alveolar haemorrage as initial presentation of systemic lupus erythematosus: a case report. Lupus 2018; 27:507-510. [DOI: 10.1177/0961203317713144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Diffuse alveolar haemorrhage (DAH) is a rare life-threatening complication of systemic lupus erythematosus (SLE), associated with high mortality rates. It usually occurs in patients with an established diagnosis of SLE. It has been reported as the initial presentation of SLE in 11−20% of cases. It occurs most frequently in females. We describe the case of a child, aged 14 years, with fever, asthenia, haemoptysis, dyspnea, anaemia, increased inflammatory markers, positivity to ANA, nDNA, direct Coombs tests, anticardiolipin antibodies and complement factors consumption. Computed tomography (CTscan) of the chest showed bilateral pulmonary alveolar infiltrates. He also developed renal involvement with nephritis later in the course of the disease. He was started on the treatment approved by the Euro Lupus Protocol for critical patients. After starting Mycophenolate Mofetil the clinical and radiological features were improved as was the survival outcome.
Collapse
Affiliation(s)
- M E Cucuzza
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - S D Marino
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - L Schiavone
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - P Smilari
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - F Filosco
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - P Barone
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| |
Collapse
|
49
|
Regulation of MAVS activation through post-translational modifications. Curr Opin Immunol 2018; 50:75-81. [DOI: 10.1016/j.coi.2017.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
|
50
|
Takashima K, Oshiumi H, Matsumoto M, Seya T. DNAJB1/HSP40 Suppresses Melanoma Differentiation-Associated Gene 5-Mitochondrial Antiviral Signaling Protein Function in Conjunction with HSP70. J Innate Immun 2017; 10:44-55. [PMID: 29069650 DOI: 10.1159/000480740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a pattern recognition receptor that recognizes cytoplasmic viral double-stranded RNA (dsRNA) and initiates rapid innate antiviral responses. MDA5 forms a filament-like multimer along the dsRNA leading to oligomerization, which in turn activates the adaptor protein mitochondrial antiviral signaling protein (MAVS) to provide a signal platform for the induction of type I interferon (IFN) and proinflammatory cytokines. The conformational switch of MDA5 causes antiviral defense, but excessive activation of the MDA5-MAVS pathway may result in autoimmune diseases. The regulatory mechanisms of MDA5 activation remain largely unknown. By yeast 2-hybrid, we identified DNAJB1, a member of the HSP40 (heat shock protein 40) family, as an MDA5-binding protein. HSP40s usually cowork with HSP70s. We found that dsRNA stimulation with physiological conditions upregulated the expression levels of DNAJB1 and HSP70; then the proteins were coupled and translocated into the stress granules, where MDA5 encounters dsRNA. DNAJB1 disrupted MDA5 multimer formation, resulting in the suppression of type I IFN induction. The disruption of endogenous DNAJB1 increased MDA5- and MAVS-mediated IFN promoter activation and rendered cells virus resistant. HSP70 inhibitor also enhanced the IFN-inducing function of MDA5 and MAVS. These results suggest that the DNAJB1-HSP70 complex functions for the natural maintenance of RNA sensing by interacting with MDA5/MAVS.
Collapse
Affiliation(s)
- Ken Takashima
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|