1
|
Braun J, Märker-Hermann E, Rudwaleit M, Sieper J. HLA-B27 and the role of specific T cell receptors in the pathogenesis of spondyloarthritis. Ann Rheum Dis 2024; 83:1406-1408. [PMID: 38575323 DOI: 10.1136/ard-2024-225661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Jürgen Braun
- Ruhr University Bochum, Bochum, Germany
- Rheumatologisches Versorgungszentrum Steglitz (RVZ), Charité, Berlin, Germany
| | - Elisabeth Märker-Hermann
- Horst-Schmidt-Kliniken, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Wiesbaden, Germany
| | - Martin Rudwaleit
- Internal Medicine and Rheumatology, Klinikum Rosenhöhe, Universität Bielefeld, Bielefeld, NRW, Germany
| | - Joachim Sieper
- Medical Department I, Rheumatology, Department of Gastroenterology & Infectiology, Charité- University Medical Center,Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
2
|
Castro-Santos P, Díaz-Peña R. Precision immunotherapy: TRBV9+ T-cell depletion in ankylosing spondylitis. Rheumatology (Oxford) 2024; 63:e251-e252. [PMID: 38305452 DOI: 10.1093/rheumatology/keae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Brown EM, Nguyen PNU, Xavier RJ. Emerging biochemical, microbial and immunological evidence in the search for why HLA-B ∗27 confers risk for spondyloarthritis. Cell Chem Biol 2024:S2451-9456(24)00314-3. [PMID: 39168118 DOI: 10.1016/j.chembiol.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The strong association of the human leukocyte antigen B∗27 alleles (HLA-B∗27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B∗27 could trigger spondyloarthritis, with a focus on whether HLA-B∗27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B∗27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Bilski R, Kamiński P, Kupczyk D, Jeka S, Baszyński J, Tkaczenko H, Kurhaluk N. Environmental and Genetic Determinants of Ankylosing Spondylitis. Int J Mol Sci 2024; 25:7814. [PMID: 39063056 PMCID: PMC11277374 DOI: 10.3390/ijms25147814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to heavy metals and lifestyle factors like smoking contribute to the production of free oxygen radicals. This fact, combined with a lowered total antioxidant status, can induce even more damage in the development of ankylosing spondylitis (AS). Despite the fact that some researchers are looking for more genetic factors underlying AS, most studies focus on polymorphisms within the genes encoding the human leukocyte antigen (HLA) system. The biggest challenge is finding the effective treatment of the disease. Genetic factors and the influence of oxidative stress, mineral metabolism disorders, microbiota, and tobacco smoking seem to be of great importance for the development of AS. The data contained in this review constitute valuable information and encourage the initiation and development of research in this area, showing connections between inflammatory disorders leading to the pathogenesis of AS and selected environmental and genetic factors.
Collapse
Affiliation(s)
- Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Collegium Medicum, Nicolaus Copernicus University, University Hospital No. 2, Ujejski St. 75, 85-168 Bydgoszcz, Poland
| | - Jędrzej Baszyński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
5
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
6
|
Ermann J, Lefton M, Wei K, Gutierrez-Arcelus M. Understanding Spondyloarthritis Pathogenesis: The Promise of Single-Cell Profiling. Curr Rheumatol Rep 2024; 26:144-154. [PMID: 38227172 DOI: 10.1007/s11926-023-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW Single-cell profiling, either in suspension or within the tissue context, is a rapidly evolving field. The purpose of this review is to outline recent advancements and emerging trends with a specific focus on studies in spondyloarthritis. RECENT FINDINGS The introduction of sequencing-based approaches for the quantification of RNA, protein, or epigenetic modifications at single-cell resolution has provided a major boost to discovery-driven research. Fluorescent flow cytometry, mass cytometry, and image-based cytometry continue to evolve. Spatial transcriptomics and imaging mass cytometry have extended high-dimensional analysis to cells in tissues. Applications in spondyloarthritis include the indexing and functional characterization of cells, discovery of disease-associated cell states, and identification of signatures associated with therapeutic responses. Single-cell TCR-seq has provided evidence for clonal expansion of CD8+ T cells in spondyloarthritis. The use of single-cell profiling approaches in spondyloarthritis research is still in its early stages. Challenges include high cost and limited availability of diseased tissue samples. To harness the full potential of the rapidly expanding technical capabilities, large-scale collaborative efforts are imperative.
Collapse
Affiliation(s)
- Joerg Ermann
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Micah Lefton
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Liu WC, Chang CM, Zhang Y, Liao HT, Chang WC. Dynamics of T-cell receptor repertoire in patients with ankylosing spondylitis after biologic therapy. Int Immunopharmacol 2024; 127:111342. [PMID: 38101220 DOI: 10.1016/j.intimp.2023.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease in which T-cell immune responses play important roles. AS has been characterized by altered T-cell receptor (TCR) repertoire profiles, which are thought to be caused by expansion of disease-related TCR clonotypes. However, how biological agents affect the TCR repertoire status and whether their therapeutic outcomes are associated with certain features or dynamic patterns of the TCR repertoire are still elusive. MATERIAL AND METHODS We collected clinical samples from AS patients pre- and post-treatment with biologics. TCR repertoire sequencing was conducted to investigate associations of TCRα and TCRβ repertoire characteristics with disease activity and inflammatory indicators/cytokines. RESULTS Our results showed that good responders were associated with an increase in the TCR repertoire diversity with higher proportions of contracted TCR clonotypes. Additionally, we further identified a positive correlation between TCR repertoire diversity and interleukin (IL)-23 levels in AS patients. A network analysis revealed that contracted AS-associated TCR clonotypes with the same complementary-determining region 3 (CDR3) motifs, which represented high probabilities of sharing TCR specificities to AS-related antigens, were dominant in good responders of AS after treatment with biologic therapies. CONCLUSIONS Our findings suggested an important connection between TCR repertoire changes and therapeutic outcomes in biologic-treated AS patients. The status and dynamics of TCR repertoire profiles are useful for assessing the prognosis of biologic treatments in AS patients.
Collapse
Affiliation(s)
- Wei-Chih Liu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yanfeng Zhang
- Genetics Research Division, University of Alabama at Birmingham, USA
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Venerito V, Del Vescovo S, Lopalco G, Proft F. Beyond the horizon: Innovations and future directions in axial-spondyloarthritis. Arch Rheumatol 2023; 38:491-511. [PMID: 38125058 PMCID: PMC10728740 DOI: 10.46497/archrheumatol.2023.10580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the spine and sacroiliac joints. This review discusses recent advances across multiple scientific fields that promise to transform axSpA management. Traditionally, axSpA was considered an immune-mediated disease driven by human leukocyte antigen B27 (HLA-B27), interleukin (IL)-23/IL-17 signaling, biomechanics, and dysbiosis. Diagnosis relies on clinical features, laboratory tests, and imaging, particularly magnetic resonance imaging (MRI) nowadays. Management includes exercise, lifestyle changes, non-steroidal anti-inflammatory drugs and if this is not sufficient to achieve disease control also biological and targeted-synthetic disease modifying anti-rheumatic drugs. Beyond long-recognized genetic risks like HLA-B27, high-throughput sequencing has revealed intricate gene-environment interactions influencing dysbiosis, immune dysfunction, and aberrant bone remodeling. Elucidating these mechanisms promises screening approaches to enable early intervention. Advanced imaging is revolutionizing the assessment of axSpA's hallmark: sacroiliac bone-marrow edema indicating inflammation. Novel magnetic resonance imaging (MRI) techniques sensitively quantify disease activity, while machine learning automates complex analysis to improve diagnostic accuracy and monitoring. Hybrid imaging like synthetic MRI/computed tomography (CT) visualizes structural damage with new clarity. Meanwhile, microbiome analysis has uncovered gut ecosystem alterations that may initiate joint inflammation through HLA-B27 misfolding or immune subversion. Correcting dysbiosis represents an enticing treatment target. Moving forward, emerging techniques must augment patient care. Incorporating patient perspectives will be key to ensure innovations like genetics, microbiome, and imaging biomarkers translate into improved mobility, reduced pain, and increased quality of life. By integrating cutting-edge, multidisciplinary science with patients' lived experience, researchers can unlock the full potential of new technologies to deliver transformative outcomes. The future is bright for precision diagnosis, tightly controlled treatment, and even prevention of axSpA.
Collapse
Affiliation(s)
- Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Khan MA. HLA-B*27 and Ankylosing Spondylitis: 50 Years of Insights and Discoveries. Curr Rheumatol Rep 2023; 25:327-340. [PMID: 37950822 DOI: 10.1007/s11926-023-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
PURPOSE OF REVIEW To commemorate the 50th anniversary of the groundbreaking discovery of a remarkably strong association between HLA-B*27 and ankylosing spondylitis (AS). RECENT FINDINGS In addition to HLA-B*27, more than 116 other recognized genetic risk variants have been identified, while epigenetic factors largely remain unexplored in this context. Among patients with AS who carry the HLA-B*27 gene, clonally expanded CD8 + T cells can be found in their bloodstream and within inflamed tissues. Moreover, the α and β chain motifs of these T-cell receptors demonstrate a distinct affinity for certain self- and microbial-derived peptides, leading to an autoimmune response that ultimately results in the onset of the disease. These distinctive peptide-binding and presentation characteristics are a hallmark of the disease-associated HLA-B*27:05 subtype but are absent in HLA-B*27:09, a subtype not associated with the disease, differing by only a single amino acid. This discovery represents a significant advancement in unraveling the 50-year-old puzzle of how HLA-B*27 contributes to the development of AS. These findings will significantly accelerate the process of identifying peptides, both self- and microbial-derived, that instigate autoimmunity. This, in return, will pave the way for the development of more accurate and effective targeted treatments. Moreover, the discovery of improved biomarkers, in conjunction with the emerging technology of electric field molecular fingerprinting, has the potential to greatly bolster early diagnosis capabilities. A very recently published groundbreak paper underscores the remarkable effectiveness of targeting and eliminating disease-causing T cells in a HLA-B*27 patients with AS. This pivotal advancement not only signifies a paradigm shift but also bolsters the potential for preventing the disease in individuals carrying high-risk genetic variants.
Collapse
Affiliation(s)
- Muhammad A Khan
- Case Western Reserve School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Rosine N, Fogel O, Koturan S, Rogge L, Bianchi E, Miceli-Richard C. T cells in the pathogenesis of axial spondyloarthritis. Joint Bone Spine 2023; 90:105619. [PMID: 37487956 DOI: 10.1016/j.jbspin.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Axial spondyloarthritis (axSpA) is the prototype of the spondyloarthritis spectrum. The involvement of T cells in its pathogenesis has long been suspected on the basis of the association with the major histocompatibility complex I molecule HLA-B27 and the pivotal role of interleukin 17 in the inflammatory mechanisms associated with the disease. Moreover, the presence of unconventional or "innate-like" T cells within the axial enthesis suggests an important role for these cells in the pathophysiology of the disease. In this review, we describe the characteristics and the interleukin 17 secretion capacity of the T-cell subsets identified in axSpA. We discuss the genetic and epigenetic mechanisms that support the alteration of T-cell functions and promote their activation in axSpA. We also discuss recent data on T cells that could explain the extra-articular manifestations of the SpA spectrum.
Collapse
Affiliation(s)
- Nicolas Rosine
- Service de rhumatologie, université Angers, CHU d'Angers, Paris, France.
| | - Olivier Fogel
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| | - Surya Koturan
- Faculty of Medicine, MRC London Institute of Medical Science, Institute of Clinical Sciences, Imperial College, W12 0NN London, United Kingdom
| | - Lars Rogge
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| |
Collapse
|
11
|
Britanova OV, Lupyr KR, Staroverov DB, Shagina IA, Aleksandrov AA, Ustyugov YY, Somov DV, Klimenko A, Shostak NA, Zvyagin IV, Stepanov AV, Merzlyak EM, Davydov AN, Izraelson M, Egorov ES, Bogdanova EA, Vladimirova AK, Iakovlev PA, Fedorenko DA, Ivanov RA, Skvortsova VI, Lukyanov S, Chudakov DM. Targeted depletion of TRBV9 + T cells as immunotherapy in a patient with ankylosing spondylitis. Nat Med 2023; 29:2731-2736. [PMID: 37872223 PMCID: PMC10667094 DOI: 10.1038/s41591-023-02613-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Autoimmunity is intrinsically driven by memory T and B cell clones inappropriately targeted at self-antigens. Selective depletion or suppression of self-reactive T cells remains a holy grail of autoimmune therapy, but disease-associated T cell receptors (TCRs) and cognate antigenic epitopes remained elusive. A TRBV9-containing CD8+ TCR motif was recently associated with the pathogenesis of ankylosing spondylitis, psoriatic arthritis and acute anterior uveitis, and cognate HLA-B*27-presented epitopes were identified. Following successful testing in nonhuman primate models, here we report human TRBV9+ T cell elimination in ankylosing spondylitis. The patient achieved remission within 3 months and ceased anti-TNF therapy after 5 years of continuous use. Complete remission has now persisted for 4 years, with three doses of anti-TRBV9 administered per year. We also observed a profound improvement in spinal mobility metrics and the Bath Ankylosing Spondylitis Metrology Index (BASMI). This represents a possibly curative therapy of an autoimmune disease via selective depletion of a TRBV-defined group of T cells. The anti-TRBV9 therapy could potentially be applicable to other HLA-B*27-associated spondyloarthropathies. Such targeted elimination of the underlying cause of the disease without systemic immunosuppression could offer a new generation of safe and efficient therapies for autoimmunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Kseniia R Lupyr
- Pirogov Russian National Research Medical University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry B Staroverov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Irina A Shagina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Dmitry V Somov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alesia Klimenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadejda A Shostak
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan V Zvyagin
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexey V Stepanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina M Merzlyak
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- MiLaboratories Inc., Sunnyvale, CA, USA
| | | | - Evgeniy S Egorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | | | - Denis A Fedorenko
- Department of Hematology and Chemotherapy, Pirogov National Medical and Surgical Center, Moscow, Russia
| | | | - Veronika I Skvortsova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Medical Biological Agency, Moscow, Russia
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates.
| |
Collapse
|
12
|
van de Sande MGH, Elewaut D. Pathophysiology and immunolgical basis of axial spondyloarthritis. Best Pract Res Clin Rheumatol 2023; 37:101897. [PMID: 38030467 DOI: 10.1016/j.berh.2023.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Over the recent years the wider availability and application of state-of-the-art immunological technologies greatly advanced the insight into the mechanisms that play an important role in axial spondyloarthritis (axSpA) pathophysiology. This increased understanding has facilitated the development of novel treatments that target disease relevant pathways, hereby improving outcome for axSpA patients. In axSpA pathophysiology genetic and environmental factors as well as immune activation by mechanical or bacterial stress resulting in a chronic inflammatory response have a central role. The TNF and IL-23/IL-17 immune pathways play a pivotal role in these disease mechanisms. This review provides an outline of the immunological basis of axSpA with a focus on key genetic risk factors and their link to activation of the pathological immune response, as well as on the role of the gut and entheses in the initiation of inflammation with subsequent new bone formation in axSpA.
Collapse
Affiliation(s)
- Marleen G H van de Sande
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands.
| | - Dirk Elewaut
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium.
| |
Collapse
|
13
|
Tedeschi V, Paldino G, Alba J, Molteni E, Paladini F, Scrivo R, Congia M, Cauli A, Caccavale R, Paroli M, Di Franco M, Tuosto L, Sorrentino R, D’Abramo M, Fiorillo MT. ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes. Int J Mol Sci 2023; 24:13335. [PMID: 37686141 PMCID: PMC10488187 DOI: 10.3390/ijms241713335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Giorgia Paldino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Josephine Alba
- Department of Biology, University of Fribourg, Chemin du Musée, 1700 Fribourg, Switzerland;
| | - Emanuele Molteni
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Mattia Congia
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Alberto Cauli
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Rosalba Caccavale
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Marino Paroli
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rosa Sorrentino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
14
|
Paschold L, Gottschick C, Langer S, Klee B, Diexer S, Aksentijevich I, Schultheiß C, Purschke O, Riese P, Trittel S, Haase R, Dressler F, Eberl W, Hübner J, Strowig T, Guzman CA, Mikolajczyk R, Binder M. T cell repertoire breadth is associated with the number of acute respiratory infections in the LoewenKIDS birth cohort. Sci Rep 2023; 13:9516. [PMID: 37308563 DOI: 10.1038/s41598-023-36144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
We set out to gain insight into peripheral blood B and T cell repertoires from 120 infants of the LoewenKIDS birth cohort to investigate potential determinants of early life respiratory infections. Low antigen-dependent somatic hypermutation of B cell repertoires, as well as low T and B cell repertoire clonality, high diversity, and high richness especially in public T cell clonotypes reflected the immunological naivety at 12 months of age when high thymic and bone marrow output are associated with relatively few prior antigen encounters. Infants with inadequately low T cell repertoire diversity or high clonality showed higher numbers of acute respiratory infections over the first 4 years of life. No correlation of T or B cell repertoire metrics with other parameters such as sex, birth mode, older siblings, pets, the onset of daycare, or duration of breast feeding was noted. Together, this study supports that-regardless of T cell functionality-the breadth of the T cell repertoire is associated with the number of acute respiratory infections in the first 4 years of life. Moreover, this study provides a valuable resource of millions of T and B cell receptor sequences from infants with available metadata for researchers in the field.
Collapse
Affiliation(s)
- Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Cornelia Gottschick
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Susan Langer
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Bianca Klee
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Sophie Diexer
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Oliver Purschke
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Peggy Riese
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stephanie Trittel
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Hospital St. Elisabeth und St. Barbara, 06110, Halle (Saale), Germany
| | - Frank Dressler
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, 30625, Hannover, Germany
| | - Wolfgang Eberl
- Department of Paediatrics, Hospital Braunschweig, 38118, Braunschweig, Germany
| | - Johannes Hübner
- Department of Paediatrics, Dr. von Hauner Children's Hospital, Ludwig- Maximilians-University Munich, 80337, Munich, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Carlos A Guzman
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Rafael Mikolajczyk
- Interdisciplinary Center for Health Sciences, Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 40314031, Basel, Switzerland.
| |
Collapse
|
15
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
16
|
Ding Y, Yang Y, Xue L. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases. Front Immunol 2023; 14:1137523. [PMID: 37063924 PMCID: PMC10101339 DOI: 10.3389/fimmu.2023.1137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe close relationship between ankylosing spondylitis (AS) and inflammatory bowel diseases (IBD) has been supported by many aspects, including but not limited to clinical manifestations, epidemiology and pathogenesis. Some evidence suggests that immune cells actively participated in the pathogenesis of both diseases. However, information on which cells are primarily involved in this process and how these cells mobilize, migrate and interact is still limited.MethodsDatasets were downloaded from Gene Expression Omnibus (GEO) database. Common differentially expressed genes (coDEGs) were identified by package “limma”. The protein-protein interaction (PPI) network and Weighted Gene Co-Expression Network Analysis (WGCNA) were used to analyze the interactions between coDEGs. KEGG pathway enrichment analysis and inverse cumulative distribution function were applied to identify common differential pathways, while Gene Set Enrichment Analysis (GSEA) was used to confirm the significance. Correlation analysis between coDEGs and immune cells led to the identification of critical immune-cell-related coDEGs. The diagnostic models were established based on least absolute shrinkage and selection operator (LASSO) regression, while receiver operating characteristic (ROC) analysis was used to identify the ability of the model. Validation datasets were imported to demonstrate the significant association of coDEGs with specific immune cells and the capabilities of the diagnostic model.ResultsIn total, 67 genes were up-regulated and 185 genes were down-regulated in both diseases. Four down-regulated pathways and four up-regulated pathways were considered important. Up-regulated coDEGs were firmly associated with neutrophils, while down-regulated genes were significantly associated with CD8+ T−cells and CD4+ T−cells in both AS and IBD datasets. Five up-regulated and six down-regulated key immue-cell-related coDEGs were identified. Diagnostic models based on key immue-cell-related coDEGs were established and tested. Validation datasets confirmed the significance of the correlation between coDEGs and specific immune cells.ConclusionThis study provides fresh insights into the co-pathogenesis of AS and IBD. It is proposed that neutrophils and T cells may be actively involved in this process, however, in opposite ways. The immue-cell-related coDEGs, revealed in this study, may be relevant to their regulation, although relevant research is still lacking.
Collapse
|
17
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
18
|
Sen R, Caplan L. Current treatment and molecular targets for axial spondyloarthritis: Evidence from randomized controlled trials. Curr Opin Pharmacol 2022; 67:102307. [PMID: 36335714 DOI: 10.1016/j.coph.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that predominantly affects the axial skeleton and is characterized by inflammatory back pain. While much has been published regarding non-steroidal anti-inflammatory drugs and tumor necrosis factor inhibitors, other classes of medications which leverage alternate molecular mechanisms receive less attention. In this review, we summarize a few of the novel targets in axSpA, review the putative mechanism of action of therapies that focus on these targets, and reference the germane recently completed, ongoing, or proposed randomized controlled clinical trials. The agents addressed include inhibitors of interleukin-23, interleukin-17, janus kinases, granulocyte-macrophage colony-stimulating factor, macrophage migration inhibitory factor, antibodies recognizing T cell receptor beta variable 9 gene positive clones, as well as inhibitors of mitogen-activated protein kinase-activated protein kinase-2.
Collapse
Affiliation(s)
- Rouhin Sen
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | - Liron Caplan
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
19
|
Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, Zhao X, Fernandes RA, Hassman LM, Paley GL, Savvides CS, Brackenridge S, Quastel MN, Chudakov DM, Bowness P, Yokoyama WM, McMichael AJ, Gillespie GM, Garcia KC. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 2022; 612:771-777. [PMID: 36477533 PMCID: PMC10511244 DOI: 10.1038/s41586-022-05501-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region-complementary-determining region 3β (BV9-CDR3β) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3β TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.
Collapse
Affiliation(s)
- Xinbo Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lee I Garner
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivan V Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Michael A Paley
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina A Komech
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn M Hassman
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Grace L Paley
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina S Savvides
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Max N Quastel
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dmitriy M Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Muscuoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Oxford, UK
| | - Wayne M Yokoyama
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, Krebs S, Blum H, Haibel H, Proft F, Protopopov M, Rodriguez VR, Beltrán E, Poddubnyy D, Dornmair K. Antigen-specific immune reactions by expanded CD8 + T cell clones from HLA-B*27-positive patients with spondyloarthritis. J Autoimmun 2022; 133:102901. [PMID: 36115212 DOI: 10.1016/j.jaut.2022.102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR β-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αβ-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.
Collapse
Affiliation(s)
- Katharina Deschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Judith Rademacher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Sonja M Lacher
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Markus Utzt
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Fabian Proft
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Mikhail Protopopov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Valeria Rios Rodriguez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Denis Poddubnyy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
21
|
Komech EA, Koltakova AD, Barinova AA, Minervina AA, Salnikova MA, Shmidt EI, Korotaeva TV, Loginova EY, Erdes SF, Bogdanova EA, Shugay M, Lukyanov S, Lebedev YB, Zvyagin IV. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front Immunol 2022; 13:973243. [PMID: 36325356 PMCID: PMC9618624 DOI: 10.3389/fimmu.2022.973243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Spondyloarthritis (SpA) comprises a number of inflammatory rheumatic diseases with overlapping clinical manifestations. Strong association with several HLA-I alleles and T cell infiltration into an inflamed joint suggest involvement of T cells in SpA pathogenesis. In this study, we performed high-throughput T cell repertoire profiling of synovial fluid (SF) and peripheral blood (PB) samples collected from a large cohort of SpA patients. We showed that synovial fluid is enriched with expanded T cell clones that are shared between patients with similar HLA genotypes and persist during recurrent synovitis. Using an algorithm for identification of TCRs involved in immune response we discovered several antigen-driven CD8+ clonal groups associated with risk HLA-B*27 or HLA-B*38 alleles. We further show that these clonal groups were enriched in SF and had higher frequency in PB of SpA patients vs healthy donors, implying their relevance to SpA pathogenesis. Several of the groups were shared among patients with different SpAs that suggests a common immunopathological mechanism of the diseases. In summary, our results provide evidence for the role of specific CD8+ T cell clones in pathogenesis of SpA.
Collapse
Affiliation(s)
- Ekaterina A. Komech
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasia D. Koltakova
- Department of Systemic Sclerosis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Anna A. Barinova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasia A. Minervina
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Maria A. Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Evgeniya I. Shmidt
- Department of Rheumatology, Pirogov City Clinical Hospital #1, Moscow, Russia
| | - Tatiana V. Korotaeva
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Elena Y. Loginova
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Shandor F. Erdes
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Ekaterina A. Bogdanova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail Shugay
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sergey Lukyanov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- *Correspondence: Ivan V. Zvyagin,
| |
Collapse
|
22
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
23
|
Garrido-Mesa J, Brown MA. T cell Repertoire Profiling and the Mechanism by which HLA-B27 Causes Ankylosing Spondylitis. Curr Rheumatol Rep 2022; 24:398-410. [PMID: 36197645 PMCID: PMC9666335 DOI: 10.1007/s11926-022-01090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Purpose of Review Ankylosing spondylitis (AS) is strongly associated with the HLA-B27 gene. The canonical function of HLA-B27 is to present antigenic peptides to CD8 lymphocytes, leading to adaptive immune responses. The ‘arthritogenic peptide’ theory as to the mechanism by which HLA-B27 induces ankylosing spondylitis proposes that HLA-B27 presents peptides derived from exogenous sources such as bacteria to CD8 lymphocytes, which subsequently cross-react with antigens at the site of inflammation of the disease, causing inflammation. This review describes findings of studies in AS involving profiling of T cell expansions and discusses future research opportunities based on these findings. Recent Findings Consistent with this theory, there is an expanding body of data showing that expansion of a restricted pool of CD8 lymphocytes is found in most AS patients yet only in a small proportion of healthy HLA-B27 carriers. Summary These exciting findings strongly support the theory that AS is driven by presentation of antigenic peptides to the adaptive immune system by HLA-B27. They point to new potential approaches to identify the exogenous and endogenous antigens involved and to potential therapies for the disease.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, England
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, England.
- Genomics England, Charterhouse Square, London, EC1M 6BQ, England.
| |
Collapse
|
24
|
Navarro-Compán V, Ermann J, Poddubnyy D. A glance into the future of diagnosis and treatment of spondyloarthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221111611. [PMID: 35898564 PMCID: PMC9310200 DOI: 10.1177/1759720x221111611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
The last two decades have seen major developments in the field of spondyloarthritis (SpA), but there are still important unmet needs to address. In the future, we envisage important advances in the diagnosis and treatment of SpA. In the diagnosis of SpA, the use of online and social media tools will increase awareness of the disease and facilitate the referral of patients to rheumatology clinics. In addition, more specific diagnostic tests will be available, especially advanced imaging methods and new biomarkers. This will allow most patients to be diagnosed at an early stage of the disease. In the treatment of SpA, an increasing number of novel treatment targets can be expected, most of which will be directed against intracellular enzymes. We hope to see more strategy trials shaping treatment pathways in SpA and accommodating principals of precision medicine. Approved treatment options will be available for both axial and peripheral SpA. We also hope to intervene not only at the inflammation level but also at the level of underlying immunological processes that might be associated with a higher probability of long-standing remission if not a cure. Finally, artificial intelligence techniques will allow for the analysis of large-scale data to answer relevant research questions for the diagnosis and management of patients with SpA.
Collapse
Affiliation(s)
| | - Joerg Ermann
- Division of Rheumatology, Inflammation and
Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston,
MA, USA
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology
and Rheumatology (Including Nutrition Medicine), Charité –
Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and
Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin 12203,
Germany
- Epidemiology Unit, German Rheumatism Research
Centre, Berlin, Germany
| |
Collapse
|
25
|
Huda TI, Diaz MJ, Gozlan EC, Chobrutskiy A, Chobrutskiy BI, Blanck G. Immunogenomics Parameters for Patient Stratification in Alzheimer's Disease. J Alzheimers Dis 2022; 88:619-629. [PMID: 35662120 DOI: 10.3233/jad-220119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite the fact that only modest adaptive immune system related approaches to treating Alzheimer's disease (AD) are available, an immunogenomics approach to the study of AD has not yet substantially advanced. OBJECTIVE Thus, we sought to better understand adaptive immune receptor chemical features in the AD setting. METHODS We characterized T-cell receptor alpha (TRA) complementarity determining region-3 (CDR3) physicochemical features and identified TRA CDR3 homology groups, represented by TRA recombination reads extracted from 2,665 AD-related, blood- and brain-derived exome files. RESULTS We found that a higher isoelectric value for the brain TRA CDR3s was associated with a higher (clinically worse) Braak stage and that a number of TRA CDR3 chemical homology groups, in particular representing bloodborne TRA CDR3s, were associated with higher or lower Braak stages. Lastly, greater chemical complementarity of both blood- and brain-derived TRA CDR3s and tau, based on a recently described CDR3-candidate antigen chemical complementarity scoring process (https://adaptivematch.com), was associated with higher Braak stages. CONCLUSION Overall, the data reported here raise the questions of (a) whether progression of AD is facilitated by the adaptive immune response to tau; and (b) whether assessment of such an anti-tau immune response could potentially serve as a basis for adaptive immune receptor related, AD risk stratification?
Collapse
Affiliation(s)
- Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Liao HT, Tsai CY, Lai CC, Hsieh SC, Sun YS, Li KJ, Shen CY, Wu CH, Lu CH, Kuo YM, Li TH, Chou CT, Yu CL. The Potential Role of Genetics, Environmental Factors, and Gut Dysbiosis in the Aberrant Non-Coding RNA Expression to Mediate Inflammation and Osteoclastogenic/Osteogenic Differentiation in Ankylosing Spondylitis. Front Cell Dev Biol 2022; 9:748063. [PMID: 35127698 PMCID: PMC8811359 DOI: 10.3389/fcell.2021.748063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) or radiographic axial spondyloarthritis is a chronic immune-mediated rheumatic disorder characterized by the inflammation in the axial skeleton, peripheral joints, and soft tissues (enthesis, fascia, and ligament). In addition, the extra-skeletal complications including anterior uveitis, interstitial lung diseases and aortitis are found. The pathogenesis of AS implicates an intricate interaction among HLA (HLA-B27) and non-HLA loci [endoplasmic reticulum aminopeptidase 1 (ERAP1), and interleukin-23 receptor (IL23R), gut dysbiosis, immune plasticity, and numerous environmental factors (infections, heavy metals, stress, cigarette smoking, etc.) The latter multiple non-genetic factors may exert a powerful stress on epigenetic regulations. These epigenetic regulations of gene expression contain DNA methylation/demethylation, histone modifications and aberrant non-coding RNAs (ncRNAs) expression, leading to inflammation and immune dysfunctions. In the present review, we shall discuss these contributory factors that are involved in AS pathogenesis, especially the aberrant ncRNA expression and its effects on the proinflammatory cytokine productions (TNF-α, IL-17 and IL-23), T cell skewing to Th1/Th17, and osteoclastogenic/osteogenic differentiation. Finally, some potential investigatory approaches are raised for solving the puzzles in AS pathogenesis.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| | - Chien-Chih Lai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Syuan Sun
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chia-Li Yu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| |
Collapse
|
27
|
Cios KJ, Huda TI, Eakins RA, Mihyu MM, Blanck G. Specific TCR V-J gene segment recombinations leading to the identification pan-V-J CDR3s associated with survival distinctions: diffuse large B-cell lymphoma. Leuk Lymphoma 2022; 63:1314-1322. [PMID: 35019822 DOI: 10.1080/10428194.2021.2020781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the diffuse large B-cell lymphoma (DLBCL) setting, we examined lymph node biopsy, T-cell receptor features, and the DLBLC patient human leukocyte antigen (HLA) alleles, to provide a basis for assessing survival distinctions represented by the National Cancer Institute Center for Cancer Research (NCICCR) dataset. While previous analyses of other cancer datasets have indicated that specific T-cell receptor (TCR) V or J gene segments, independently, can be associated with a survival distinction, we have here identified V-J recombinations, representing specific V and J gene segments associated with survival distinctions. As specific V-J recombinations represent relatively conserved complementarity determining region-3 (CDR3) amino acid sequences, we assessed the entire DLBCL NCICCR dataset for such conserved CDR3 features. Overall, this approach indicated the opportunity of identifying DLBCL patient subpopulations with TCR CDR3 features, and HLA alleles, with significant survival distinctions, possibly identifying cohorts more likely to benefit from a given immunotherapy.
Collapse
Affiliation(s)
- Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Moody M Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
28
|
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J Clin Med 2021; 10:3334. [PMID: 34362117 PMCID: PMC8348854 DOI: 10.3390/jcm10153334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
29
|
Patel DN, Yeagley M, Arturo JF, Falasiri S, Chobrutskiy BI, Gozlan EC, Blanck G. A comparison of immune receptor recombination databases sourced from tumour exome or RNAseq files: Verifications of immunological distinctions between primary and metastatic melanoma. Int J Immunogenet 2021; 48:409-418. [PMID: 34298587 DOI: 10.1111/iji.12550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
It became apparent several years ago that RNAseq and exome files prepared from tissue could be mined for adaptive immune receptor (IR) recombinations, which has given extra value to datasets originally intended for gene expression or mutation studies. For example, recovery of IR recombination reads from tumour specimen genomics files can correlate with survival rates. In particular, many benchmarking processes have been applied to the two sets of the IR recombination reads obtained from the cancer genome atlas files, but these two sets have never been directly compared. Here we show that both sets largely agree regarding several parameters. For example, recovery of TRB recombination reads from both WXS and RNAseq files representing metastatic melanoma was associated with a better outcome (p < .0004 in both cases); and T-cell receptor recombination read recovery, for both genomics file types, associated very strongly with T-cell gene expression markers. However, the use of CDR3 chemical features for survival distinctions was not consistent. This topic, and the surprising result that both datasets indicated that primary melanoma with recovery of IR recombination reads, in stark contrast to metastatic melanoma, represents a worse outcome, are discussed.
Collapse
Affiliation(s)
- Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shayan Falasiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
30
|
Hwang MC, Ridley L, Reveille JD. Ankylosing spondylitis risk factors: a systematic literature review. Clin Rheumatol 2021; 40:3079-3093. [PMID: 33754220 DOI: 10.1007/s10067-021-05679-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Radiographic axial spondyloarthritis (also known as ankylosing spondylitis [AS]) is a chronic immune-mediated arthritis characterized by inflammation of the axial skeleton, peripheral joints, and entheses. It is estimated that 1 in every 200 people are affected by AS, making it an important healthcare and socioeconomic issue. In this review, we aim to explore the current understanding of AS risk factors and provide a comprehensive update. Multiple search strings were used to identify articles of interest published in PubMed between January 1, 2013, and February 1, 2021. On the basis of the literature review and analysis, we present up-to-date information on the risk factors of developing AS and our viewpoints on disease onset and progression. Multiple genetic and nongenetic risk factors have been suggested in the onset of AS. HLA-B27 is known to have a strong association with the disease, but other genes have been implicated in disease development. Aside from genetics, other factors are thought to be involved; up to 70% of patients with AS have subclinical intestinal inflammation, suggesting that the origin of the disease may be in the gut. The exact mechanism by which AS onset begins is most likely complex and multifactorial. Key Points • It remains unclear how interactions between genes, microbes, mechanical stress, gender, and other environmental and lifestyle factors predispose patients to the development of ankylosing spondylitis (AS). • The exact mechanisms of AS are complex and multifactorial which will require much future research • Recognizing the risk factors, as well as understanding gene-environment interactions, may offer valuable insights into the etiology of AS and have important implications for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Mark C Hwang
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA
| | - Lauren Ridley
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA
| | - John D Reveille
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Wordsworth BP, Cohen CJ, Davidson C, Vecellio M. Perspectives on the Genetic Associations of Ankylosing Spondylitis. Front Immunol 2021; 12:603726. [PMID: 33746951 PMCID: PMC7977288 DOI: 10.3389/fimmu.2021.603726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common form of inflammatory spinal arthritis with a complex polygenic aetiology. Genome-wide association studies have identified more than 100 loci, including some involved in antigen presentation (HLA-B27, ERAP1, and ERAP2), some in Th17 responses (IL6R, IL23R, TYK2, and STAT3), and others in macrophages and T-cells (IL7R, CSF2, RUNX3, and GPR65). Such observations have already helped identify potential new therapies targeting IL-17 and GM-CSF. Most AS genetic associations are not in protein-coding sequences but lie in intergenic regions where their direct relationship to particular genes is difficult to assess. They most likely reflect functional polymorphisms concerned with cell type-specific regulation of gene expression. Clarifying the nature of these associations should help to understand the pathogenic pathways involved in AS better and suggest potential cellular and molecular targets for drug therapy. However, even identifying the precise mechanisms behind the extremely strong HLA-B27 association with AS has so far proved elusive. Polygenic risk scores (using all the known genetic associations with AS) can be effective for the diagnosis of AS, particularly where there is a relatively high pre-test probability of AS. Genetic prediction of disease outcomes and response to biologics is not currently practicable.
Collapse
Affiliation(s)
- B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Oxford, United Kingdom.,Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Carla J Cohen
- Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Oxford, United Kingdom.,Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Qaiyum Z, Lim M, Inman RD. The gut-joint axis in spondyloarthritis: immunological, microbial, and clinical insights. Semin Immunopathol 2021; 43:173-192. [PMID: 33625549 DOI: 10.1007/s00281-021-00845-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The strong genetic and clinical overlaps between spondyloarthritis (SpA) and inflammatory bowel disease (IBD) have placed much needed focus on the gut-joint axis of inflammation in SpA, leading to three key hypotheses that attempt to unravel this complex relationship. The arthritogenic peptide hypothesis and the aberrant cellular trafficking hypothesis have been put forth to rationalize the manner by which the innate and adaptive immune systems cooperate and converge during SpA pathogenesis. The bacterial dysbiosis hypothesis discusses how changes in the microbiome lead to architectural and immunological consequences in SpA. These theories are not mutually exclusive, but can provide an explanation as to why subclinical gut inflammation may sometimes precede joint inflammation in SpA patients, thereby implying a causal relationship. Such investigations will be important in informing therapeutic decisions which may be common to both SpA and IBD. However, these hypotheses can also offer insights for a coincident inflammatory relationship between the gut and the joint, particularly when assessing the immunological players involved. Insights from understanding how these systems might affect the gut and joint differently will be equally imperative to address where the therapeutic differences lie between the two diseases. Collectively, this knowledge has practical implications in predicting the likelihood of IBD development in SpA or presence of coincident SpA-IBD, uncovering novel therapeutic targets, and redesigning currently approved treatments. It is evident that a multidisciplinary approach between the rheumatology and gastroenterology fields cannot be ignored, when it comes to the care of SpA patients at risk of IBD or vice versa.
Collapse
Affiliation(s)
- Zoya Qaiyum
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Tang M, Inman RD. Recent advances on the role of cytotoxic T lymphocytes in the pathogenesis of spondyloarthritis. Semin Immunopathol 2021; 43:255-264. [PMID: 33608820 DOI: 10.1007/s00281-021-00846-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disorder with complex etiology and pathogenesis. Its pathogenesis likely involves a combination of different factors. These factors include host genetics, environmental triggers, and immune and microbiota dysregulation. One of the strongest genetic associations with SpA is HLA-B27, implicating the involvement of cytotoxic T lymphocytes (CTLs) in SpA pathogenesis. Despite this discovery dating back decades ago, the CTL compartment that underlies SpA inflammation has yet to be fully defined until recently. Indeed, recent published studies support a significant role that CTLs play in contributing to chronic joint inflammation, which is a hallmark of SpA pathology. In this review chapter, we discuss emerging evidence that supports a newfound role of CTLs in SpA pathogenesis. This emerging evidence includes enrichment of CTL-related genes from genome-wide association studies, overrepresentation of pathogenic synovial CTL phenotype, clonal expansion, and immune dysregulation of CTLs. The discoveries of this mounting evidence suggest that CTL homeostasis is altered, and a disrupted adaptive immunity underlies the chronic inflammatory features seen in SpA pathology.
Collapse
Affiliation(s)
- Michael Tang
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Ave, 5KD-508, Toronto, Ontario, M5T 0S8, Canada. .,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Canada.
| | - Robert D Inman
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Ave, 5KD-508, Toronto, Ontario, M5T 0S8, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:265-277. [PMID: 33569634 PMCID: PMC7990868 DOI: 10.1007/s00281-021-00837-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Spondyloarthritis (SpA) is a heterogeneous group of chronic inflammatory diseases of unknown etiology. Over time, the plethora of cellular elements involved in its pathogenesis has progressively enriched together with the definition of specific cytokine pathways. Recent evidence suggests the involvement of new cellular mediators of inflammation in the pathogenesis of SpA or new subgroups of known cellular mediators. The research in this sense is ongoing, and it is clear that this challenge aimed at identifying new cellular actors involved in the perpetuation of the inflammatory process in AxSpA is not a mere academic exercise but rather aims to define a clear cellular hierarchy. Such a definition could pave the way for new targeted therapies, which could interfere with the inflammatory process and specific pathways that trigger immune system dysregulation and stromal cell activity, ultimately leading to significant control of the inflammation and new bone formation in a significant number of patients. In this review, we will describe the recent advances in terms of new cellular actors involved in the pathogenesis of SpA, focusing our attention on stromal cells and innate and adaptive immunity cells.
Collapse
Affiliation(s)
- Daniele Mauro
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
35
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
36
|
Navid F, Holt V, Colbert RA. The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:235-243. [PMID: 33481054 DOI: 10.1007/s00281-021-00838-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Establishing a clear role for HLA-B*27 in the pathogenesis of spondyloarthritis continues to be challenging. Aberrant properties of the heavy chain as well as a potential role presenting arthritogenic peptides continue to be pursued as plausible mechanisms. Recent studies implicate HLA-B*27 in aberrant bone formation. An unanticipated cell surface interaction between HLA-B*27 and the bone morphogenetic protein pathway receptor subunit ALK2 may augment TGFβ superfamily signaling pathways, increasing responsiveness to Activin A and TGFβ. This has the potential to increase bone formation as well as Th17 T cell development, presenting an attractive model to explain several aspects of axial and peripheral spondyloarthritis. In a separate study, intracellular effects of misfolded HLA-B*27 implicate this mechanism in increased osteoblast mineralization and bone formation. HLA-B*27 expression in early osteoblasts activates unfolded protein response-mediated X-box binding protein-1 mRNA splicing and induction of the retinoic acid receptor-β gene, with downstream increases in expression of tissue non-specific alkaline phosphatase. Increased TNAP expression in osteoblasts was linked to increased mineralization in vitro and bone formation in vivo. In the ongoing search for evidence of arthritogenic peptides, high-throughput TCR (T cell receptor) sequencing has provided evidence for reduced clonal expansion and increased TCR diversity in ankylosing spondylitis. In addition to two common CD8+ TCR sequences identified in one study, similar CD8 and CD4 TCR motifs were found in another study. Further work will be needed to shed light on the nature of the peptide-HLA class I complex recognized by these T cells and its role in disease.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vance Holt
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA. .,, Bethesda, USA.
| |
Collapse
|
37
|
Wakefield D, Clarke D, McCluskey P. Recent Developments in HLA B27 Anterior Uveitis. Front Immunol 2021; 11:608134. [PMID: 33469457 PMCID: PMC7813675 DOI: 10.3389/fimmu.2020.608134] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/23/2020] [Indexed: 02/03/2023] Open
Abstract
There has been steady progress in understanding the pathogenesis, clinical features, and effective treatment of acute anterior uveitis (AU) over the past 5 years. Large gene wide association studies have confirmed that AU is a polygenic disease, with overlaps with the seronegative arthropathies and inflammatory bowel diseases, associations that have been repeatedly confirmed in clinical studies. The role of the microbiome in AU has received increased research attention, with recent evidence indicating that human leukocyte antigen B27 (HLA B27) may influence the composition of the gut microbiome in experimental animals. Extensive clinical investigations have confirmed the typical features of acute AU (AAU) and its response to topical, regional and systemic immunosuppressive treatment. Increased understanding of the role of cytokines has resulted in studies confirming the value of anti-cytokine therapy [anti-tumor necrosis factor (anti-TNF) and interleukin 6 (IL-6) therapy] in severe and recurrent cases of AAU, particularly in subjects with an associated spondyloarthopathy (SpA) and in juvenile idiopathic arthritis (JIA)-associated AAU.
Collapse
Affiliation(s)
- Denis Wakefield
- Faculty of Medicine, University of NSW Sydney, Kensington, NSW, Australia
- NSW Health Pathology and South Eastern Sydney, LHD, Sydney, NSW, Australia
| | - Daniel Clarke
- Department of Medicine, South Eastern Sydney, LHD, Sydney, NSW, Australia
| | - Peter McCluskey
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Arndt MF, Koohestani DM, Chobrutskiy BI, Mihyu MM, Diaz M, Gozlan EC, Yeagley M, Zaman S, Roca AM, Blanck G. TRBV and TRBJ usage, when paired with specific HLA alleles, associates with distinct head and neck cancer survival rates. Hum Immunol 2020; 81:692-696. [PMID: 32950267 DOI: 10.1016/j.humimm.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Common or dominant, T-cell receptor (TCR), V and J usage, in combination with particular human leukocyte antigen (HLA) alleles, has been associated with differing outcomes in viral infections, autoimmunity, and more recently, in cancer. Cervical cancer in particular represents the most dramatic series of distinctions of outcomes associated with differing combinations of dominant V or J usage and HLA alleles, possibly because of the strong association of cervical cancer with human papilloma virus (HPV), in turn leading to a likely molecular consistency in the mechanism of HPV antigen presentation. Thus, we considered assessing TRB V and J usage, HLA allele combinations, for their associations with survival rates and related data, in the cancer genome atlas head and neck cancer dataset. We obtained the TRB VDJ recombination reads from both the blood and tumor exome files and determined the V and J identities. We then established case ID (patient) subsets of V or J usage, HLA alleles, and determined, for example, that the TRBJ2-7, HLA-B*40:01 combination was associated with a better disease free survival rate than were either the TRBJ1-3, HLA-DPB1*03:01 or the TRBJ2-1, HLA-DPB1*02:01 combinations. Furthermore, these analyses led to the conclusion that TRBJ1-5 usage, and the HLA-C*08:02 and HLA-DRB1*03:01 alleles, had independent associations with distinct overall survival rates. In sum, the results suggest that dominant V or J usage, HLA allele combinations, and in certain cases, dominant V or J usage independently of HLA, could be useful in prognosis and in guiding immunotherapies.
Collapse
Affiliation(s)
- Mary F Arndt
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Darush M Koohestani
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Moody M Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Michael Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Andrea M Roca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
39
|
Hanson AL, Nel HJ, Bradbury L, Phipps J, Thomas R, Lê Cao KA, Kenna TJ, Brown MA. Altered Repertoire Diversity and Disease-Associated Clonal Expansions Revealed by T Cell Receptor Immunosequencing in Ankylosing Spondylitis Patients. Arthritis Rheumatol 2020; 72:1289-1302. [PMID: 32162785 DOI: 10.1002/art.41252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a common spondyloarthropathy primarily affecting the axial skeleton and strongly associated with HLA-B*27 carriage. Genetic evidence implicates both autoinflammatory processes and autoimmunity against an HLA-B*27-restricted autoantigen in immunopathology. In addition to articular symptoms, up to 70% of AS patients present with concurrent bowel inflammation, suggesting that adverse interactions between a genetically primed host immune system and the gut microbiome contribute to the disease. Accordingly, this study aimed to characterize adaptive immune responses to antigenic stimuli in AS. METHODS The peripheral CD4 and CD8 T cell receptor (TCR) repertoire was profiled in AS patients (n = 47) and HLA-B*27-matched healthy controls (n = 38). Repertoire diversity was estimated using the Normalized Shannon Diversity Entropy (NSDE) index, and univariate and multivariate statistical analyses were performed to characterize AS-associated clonal signatures. Furthermore, T cell proliferation and cytokine production in response to immunogenic antigen exposure were investigated in vitro in peripheral blood mononuclear cells from AS patients (n = 19) and HLA-B*27-matched healthy controls (n = 14). RESULTS Based on the NSDE measure of sample diversity across CD4 and CD8 T cell repertoires, AS patients showed increased TCR diversity compared to healthy controls (for CD4 T cells, P = 7.8 × 10-6 ; for CD8 T cells, P = 9.3 × 10-4 ), which was attributed to a significant reduction in the magnitude of peripheral T cell expansions globally. Upon in vitro stimulation, fewer T cells from AS patients than from healthy controls expressed interferon-γ (for CD8 T cells, P = 0.03) and tumor necrosis factor (for CD4 T cells, P = 0.01; for CD8 T cells, P = 0.002). In addition, the CD8 TCR signature was altered in HLA-B*27+ AS patients compared to healthy controls, with significantly expanded Epstein-Barr virus-specific clonotypes (P = 0.03) and cytomegalovirus-specific clonotypes (P = 0.02). HLA-B*27+ AS patients also showed an increased incidence of "public" CD8 TCRs, representing identical clonotypes emerging in response to common antigen encounters, including homologous clonotypes matching those previously isolated from individuals with bacterial-induced reactive arthritis. CONCLUSION The dynamics of peripheral T cell responses in AS patients are altered, suggesting that differential antigen exposure and disrupted adaptive immunity are underlying features of the disease.
Collapse
Affiliation(s)
- Aimee L Hanson
- University of Queensland, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland, Brisbane, Queensland, Australia
| | - Linda Bradbury
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Julie Phipps
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Ranjeny Thomas
- University of Queensland, Brisbane, Queensland, Australia
| | | | - Tony J Kenna
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia, and Guy's and St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, King's College London, UK
| |
Collapse
|
40
|
Hu J, Lu C, Zhu W, Jiang Q, Du W, Wu N. Establishment of an induced pluripotent stem cell line (SHFDi001-A) from a patient with ankylosing spondylitis. Stem Cell Res 2020; 46:101879. [PMID: 32570173 DOI: 10.1016/j.scr.2020.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Abstract
Ankylosing spondylitis (AS) is a highly heritable, inflammatory rheumatic disease, characterized by inflammation of the spine and the sacroiliac joints. Although some genes are reportedly associated with this disease, the pathogenesis of AS remains largely unknown. In this study, the peripheral blood mononuclear cells of a patient with AS were reprogrammed to induced pluripotent stem cells (iPSCs) using transgene-free, episomal plasmid vectors. The established iPSC line was validated by multiple methods and demonstrated typical characteristics of embryonic stem cells. This cell line (SHFDi001-A) may be beneficial in disease modeling and related research.
Collapse
Affiliation(s)
- Jintao Hu
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou 312001, China; Department of Orthopedics, Hangzhou Xiaoshan District Chinese Medicine Hospital, Hangzhou 311200, China
| | - Chuanjia Lu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
| | - Wenjing Zhu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
| | - Qun Jiang
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou 312001, China; Department of Orthopedics, Hangzhou Xiaoshan District Chinese Medicine Hospital, Hangzhou 311200, China
| | - Nan Wu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| |
Collapse
|
41
|
Sethna Z, Elhanati Y, Callan CG, Walczak AM, Mora T. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 2020; 35:2974-2981. [PMID: 30657870 PMCID: PMC6735909 DOI: 10.1093/bioinformatics/btz035] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/10/2018] [Accepted: 01/13/2019] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. RESULTS We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/zsethna/OLGA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zachary Sethna
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
| | - Yuval Elhanati
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
| | - Curtis G Callan
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA.,Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| |
Collapse
|
42
|
Dumas E, Venken K, Rosenbaum JT, Elewaut D. Intestinal Microbiota, HLA-B27, and Spondyloarthritis: Dangerous Liaisons. Rheum Dis Clin North Am 2020; 46:213-224. [PMID: 32340697 DOI: 10.1016/j.rdc.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis, although primarily a joint-centered disease, is associated with extra-articular features, such as gut inflammation, psoriasis, and/or uveitis. Evidence points to underlying genetic predisposing factors and/or environmental factors. This is most clear in the gut, with progress through 16S and metagenomics sequencing studies and the results of functional studies in preclinical arthritis models. Translation of these findings to the clinic is making progress based on encouraging results of fecal microbial transplant studies in several human diseases. This review elaborates on novel trends in host-microbial interplay in spondyloarthritis, focusing on microbiota, immune dysregulation, and disease progression, and modulation by HLA-B27.
Collapse
Affiliation(s)
- Emilie Dumas
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium
| | - Koen Venken
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium
| | - James T Rosenbaum
- Oregon Health & Science University, Portland, OR, USA; Legacy Devers Eye Institute, Portland, OR, USA
| | - Dirk Elewaut
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium.
| |
Collapse
|
43
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
44
|
Gracey E, Yao Y, Qaiyum Z, Lim M, Tang M, Inman RD. Altered Cytotoxicity Profile of CD8+ T Cells in Ankylosing Spondylitis. Arthritis Rheumatol 2020; 72:428-434. [PMID: 31599089 DOI: 10.1002/art.41129] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/01/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is an inflammatory arthritis in which men have a higher risk of developing progressive axial disease than women. Transcriptomic studies have shown reduced expression of cytotoxic cell genes in the blood of AS patients. HLA-B27 contributes the greatest risk for AS, suggesting a role for CD8+ T cells. This study was undertaken to profile AS patient cytotoxic cells with the hypothesis that an alteration in CD8+ T cells might explain the aberrant cytotoxic profile observed in patients. METHODS Whole blood was examined for GZM and PRF1 gene expression by quantitative polymerase chain reaction. Serum and synovial fluid (SF) were examined for granzyme and perforin 1 expression by bead array, and blood and SF mononuclear cells were examined for granzyme and perforin 1 expression by fluorescence-activated cell sorting (FACS). RESULTS GZM and PRF1 gene expression were both reduced in AS patients compared to healthy controls, especially in men. Perforin 1, but not granzyme, protein levels were reduced in AS patient serum. Granzymes were elevated in AS SF, but not in rheumatoid arthritis or osteoarthritis SF. FACS revealed a reduction in granzyme-positive and perforin 1-positive lymphocytes, but not an intrinsic defect in CD8+ T cell granzyme or perforin 1 production. CD8+ T cell frequency was reduced in the blood and increased in the SF of AS patients. CONCLUSION Our findings indicate that AS patients have an altered cytotoxic T cell profile. These data suggest that CD8+ T cells with a cytotoxic phenotype are recruited to the joints, where they exhibit an activated phenotype. Thus, a central role for CD8+ T cells in AS may have been overlooked and deserves further study.
Collapse
Affiliation(s)
- Eric Gracey
- University of Toronto, Krembil Research Institute, Toronto Western Hospital, and University Health Network, Toronto, Ontario, Canada
| | - Yuchen Yao
- University of Toronto, Krembil Research Institute, and University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Krembil Research Institute, Toronto Western Hospital, and University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Krembil Research Institute, Toronto Western Hospital, and University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Krembil Research Institute, Toronto Western Hospital, and University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- University of Toronto, Krembil Research Institute, Toronto Western Hospital, and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Pakasticali N, Gill T, Chobrutskiy BI, Tong WL, Ramsamooj M, Blanck G. TRAV gene segments further away from the TRAJ gene segment cluster appear more commonly in human tumor and blood samples. Mol Immunol 2019; 116:174-179. [PMID: 31704500 DOI: 10.1016/j.molimm.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
We considered the possibility that the greater the distance between an immune receptor V and J, the more likely the V usage. Such a hypothesis is supported by results from mouse experiments. And, such a hypothesis is consistent with the fundamental nature of recombination and genomic distance: the further the distance, the greater the chance of a DNA break. Thus, we exploited the vast dataset of V and J recombination reads available for the human TRA gene, particularly from cancer and blood specimens, to assess the frequency of TRAV usage with respect to distance from the TRAJ cluster. Results indicated that, indeed, over the entire TRAV cluster, there is a greater chance of V usage the further the distance from the J cluster. These results do not address causation, and are not consistent for certain individual V gene segments, but the results do indicate that overall, the larger the distance between the V and J gene segment cluster, the more likely the appearance of at least a subset of TRAV segments, particularly among tumor infiltrating lymphocytes. With a similar approach, the distal TRAV gene segments were also found to be more commonly associated with a subset of distal TRAJ segments. These results have implications for restrictions on the apparent TRA repertoire in disease settings.
Collapse
Affiliation(s)
- Nagehan Pakasticali
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States; Department of Basic Sciences, National University of Health Sciences, Pinellas Park, Florida, 33781, United States
| | - Tommy Gill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Michael Ramsamooj
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, United States.
| |
Collapse
|
46
|
Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 2019; 7:22. [PMID: 31666997 PMCID: PMC6804882 DOI: 10.1038/s41413-019-0057-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.
Collapse
Affiliation(s)
- Wei Zhu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xuxia He
- 2Department of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Kaiyuan Cheng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Linjie Zhang
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Di Chen
- 3Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao Wang
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Guixing Qiu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xu Cao
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Xisheng Weng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
47
|
He D, Wang R, Liang S, Liang D, Xu F, Zeng C, Tang Z. Comparison of secondary IgA nephropathy in patients with ankylosing spondylitis and rheumatoid arthritis. Mod Rheumatol 2019; 30:648-656. [PMID: 31370733 DOI: 10.1080/14397595.2019.1651493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives: The aim of the present study was to investigate the differences in clinic-pathological features of secondary IgA nephropathy (SIgAN) between patients with ankylosing spondylitis (AS) and rheumatoid arthritis (RA).Methods: Forty-six patients with SIgAN related to AS (SIgAN-AS) and 26 patients with SIgAN related to RA (SIgAN-RA) were enrolled in this retrospective study. The two groups were compared for their clinic-pathological characteristics.Results: The 10-year prevalence of SIgAN-AS and SIgAN-RA were 167 per 1000 and 51.3 per 1000, respectively. Compared with SIgAN-RA patients, SIgAN-AS patients had lower incidences of edema and nephrotic syndrome, but higher levels of eGFR, serum C3, and CD3- and CD8-positive T-cell counts, but less incidences of acute tubulointerstitial lesions and interlobular arterial lesions. IgM was the most familiar co-depositing immune complex on tissue with significantly different frequencies. In SIgAN-AS patients, those with positive HLA-B27 presented with lower levels of proteinuria, higher levels of serum IgG and C3, and less incidence of renal insufficiency, crescents >14.5%, glomerular sclerosis >32.6% and segmental sclerosis >5.2%.Conclusion: SIgAN was more prevalent in AS than in RA. SIgAN-AS patients differed from SIgAN-RA patients in certain clinic-pathological characteristics. HLA-B27 likely protected SIgAN-AS patients from renal insufficiency.
Collapse
Affiliation(s)
- Dafeng He
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China.,Nephrology Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rong Wang
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China.,Nephrology Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China
| | - Zheng Tang
- National Clinical Research Center of Kidney Disease, Jinling Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
49
|
Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, Mora T, Walczak AM. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol 2019; 17:e3000314. [PMID: 31194732 PMCID: PMC6592544 DOI: 10.1371/journal.pbio.3000314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Collapse
Affiliation(s)
- Mikhail V. Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Center of Life Sciences, Skoltech, Moscow, Russia
- Masaryk University, Central European Institute of Technology, Brno, Czech Republic
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Center of Life Sciences, Skoltech, Moscow, Russia
- Masaryk University, Central European Institute of Technology, Brno, Czech Republic
| | - Yuri B. Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - Thierry Mora
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure (PSL University), Paris, France
- * E-mail: (TM); (AW)
| | - Aleksandra M. Walczak
- Laboratoire de physique théorique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure (PSL University), Paris, France
- * E-mail: (TM); (AW)
| |
Collapse
|
50
|
Haroon N. Thinking Positive in Spondyloarthritis. Arthritis Rheumatol 2019; 71:839-841. [DOI: 10.1002/art.40832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Nigil Haroon
- University of TorontoKrembil Research Institute Toronto Ontario Canada
| |
Collapse
|