1
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
2
|
Zheng S, Liu Y. Progress in the Study of Fra-2 in Respiratory Diseases. Int J Mol Sci 2024; 25:7143. [PMID: 39000247 PMCID: PMC11240912 DOI: 10.3390/ijms25137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.
Collapse
Affiliation(s)
- Shuping Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Rodolfi S, Ong VH, Denton CP. Recent developments in connective tissue disease associated pulmonary arterial hypertension. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 16:100513. [PMID: 39712533 PMCID: PMC11657338 DOI: 10.1016/j.ijcchd.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 12/24/2024] Open
Abstract
Connective tissue disease associated pulmonary arterial hypertension (CTD-PAH) has benefited from the major treatment advances that have occurred within pulmonary hypertension over the past three decades. Inclusion of CTD-PAH cases in pivotal clinical trials led to regulatory approval and drug availability. This has improved outcomes but there are additional challenges for management. First, the multifaceted co-morbidity related to the associated CTD needs treatment alongside PAH and may impact on diagnosis and evaluation of treatment response. Secondary, cardiac involvement, interstitial lung disease and predisposition to thromboembolism in CTD may lead to compound phenotypes where PH has multiple mechanisms as well as precapillary pulmonary vasculopathy of PAH. In general, especially for systemic sclerosis, CTD-PAH has worse long-term survival than idiopathic or familial PAH. However, CTD also present an opportunity for screening and early detection and treatment for associated PAH, and this may in the future be a major advantage over idiopathic disease where presentation inevitable only occurs at symptomatic stages and diagnosis may be delayed. This article reviews and summarises some of the recent developments in investigation and management of CTD-PAH.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Voon H. Ong
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
| | - Christopher P. Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
| |
Collapse
|
4
|
Avouac J, Cauvet A, Orvain C, Boulch M, Tilotta F, Tu L, Thuillet R, Ottaviani M, Guignabert C, Bousso P, Allanore Y. Effects of B Cell Depletion by CD19-Targeted Chimeric Antigen Receptor T Cells in a Murine Model of Systemic Sclerosis. Arthritis Rheumatol 2024; 76:268-278. [PMID: 37610259 DOI: 10.1002/art.42677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Our goal was to study the tolerance and efficacy of two B cell depletion strategies, including one with CD19-targeted chimeric antigen receptor (CAR) T cells, in a preclinical model mimicking the severe lung damages observed in systemic sclerosis. METHODS B cell depletion strategies were evaluated in the Fra-2 transgenic (Tg) mouse model. We considered a first group of 16 untreated mice, a second group of 15 mice receiving a single dose of anti-CD20 monoclonal antibody (mAb), and a third group of 8 mice receiving CD19-targeted CAR-T cells in combination with anti-CD20 monoclonal antibody. After six weeks of clinical evaluation, different validated markers of inflammation, lung fibrosis, and pulmonary vascular remodeling were assessed. RESULTS CD19-targeted CAR-T cells infusion in combination with anti-CD20 mAb resulted in a deeper B cell depletion than anti-CD20 mAb alone in the peripheral blood and lesional lungs of Fra-2 Tg mice. CAR-T cell infusion worsened the clinical score and increased mortality in Fra-2 Tg mice. In line with the above findings, CAR-T cell infusion significantly increased lung collagen content, the histological fibrosis score, and right ventricular systolic pressure. CAR-T cells accumulated in lesional lungs and promoted T activation and inflammatory cytokine production. Treatment with anti-CD20 mAb in monotherapy had no impact on lung inflammation-driven fibrosis and pulmonary hypertension. CONCLUSION B cell therapies failed to show efficacy in the Fra2 Tg mice. The exacerbated Fra-2 lung inflammatory burden stimulated accumulation and expansion of activated CD19-targeted CAR-T cells, secondarily inducing T cell activation and systemic inflammation, finally leading to disease worsening.
Collapse
Affiliation(s)
- Jérôme Avouac
- INSERM U1016 and UMR8104, Institut Cochin and Université Paris Cité and Hôpital Cochin, AP-HP, Centre - Université Paris Cité, Paris, France
| | - Anne Cauvet
- INSERM U1016 and UMR8104, Institut Cochin, Paris, France
| | - Cindy Orvain
- INSERM U1016 and UMR8104, Institut Cochin, Paris, France
| | - Morgane Boulch
- Institut Pasteur, INSERM U1223, Université Paris Cité, Paris, France
| | - Françoise Tilotta
- URP 2496 Pathologies, Imagerie et Biothérapies Orofaciales, UFR Odontologie, and Plateforme Imagerie du Vivant, Université Paris Cité, Montrouge, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, and Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Le Plessis-Robinson, and Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999, Le Plessis-Robinson, and Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, and Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Philippe Bousso
- Institut Pasteur, INSERM U1223, Université Paris Cité, Paris, France
| | - Yannick Allanore
- INSERM U1016 and UMR8104, Institut Cochin and Université Paris Cité and Hôpital Cochin, AP-HP, Centre - Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Patnaik E, Lyons M, Tran K, Pattanaik D. Endothelial Dysfunction in Systemic Sclerosis. Int J Mol Sci 2023; 24:14385. [PMID: 37762689 PMCID: PMC10531630 DOI: 10.3390/ijms241814385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis, commonly known as scleroderma, is an autoimmune disorder characterized by vascular abnormalities, autoimmunity, and multiorgan fibrosis. The exact etiology is not known but believed to be triggered by environmental agents in a genetically susceptible host. Vascular symptoms such as the Raynaud phenomenon often precede other fibrotic manifestations such as skin thickening indicating that vascular dysfunction is the primary event. Endothelial damage and activation occur early, possibly triggered by various infectious agents and autoantibodies. Endothelial dysfunction, along with defects in endothelial progenitor cells, leads to defective angiogenesis and vasculogenesis. Endothelial to mesenchymal cell transformation is another seminal event during pathogenesis that progresses to tissue fibrosis. The goal of the review is to discuss the molecular aspect of the endothelial dysfunction that leads to the development of systemic sclerosis.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Matthew Lyons
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| | - Kimberly Tran
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| | - Debendra Pattanaik
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| |
Collapse
|
6
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
7
|
Chi PL, Cheng CC, Hung CC, Wang MT, Liu HY, Ke MW, Shen MC, Lin KC, Kuo SH, Hsieh PP, Wann SR, Huang WC. MMP-10 from M1 macrophages promotes pulmonary vascular remodeling and pulmonary arterial hypertension. Int J Biol Sci 2022; 18:331-348. [PMID: 34975336 PMCID: PMC8692144 DOI: 10.7150/ijbs.66472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/04/2021] [Indexed: 11/05/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by muscularized pulmonary blood vessels, leading to right heart hypertrophy and cardiac failure. However, state-of-the-art therapeutics fail to target the ongoing remodeling process. Here, this study shows that matrix metalloproteinases (MMP)-1 and MMP-10 levels are increased in the medial layer of vessel wall, serum, and M1-polarized macrophages from patients with PAH and the lungs of monocrotaline- and hypoxia-induced PAH rodent models. MMP-10 regulates the malignant phenotype of pulmonary artery smooth muscle cells (PASMCs). The overexpression of active MMP-10 promotes PASMC proliferation and migration via upregulation of cyclin D1 and proliferating cell nuclear antigen, suggesting that MMP-10 produced by infiltrating macrophages contributes to vascular remodeling. Furthermore, inhibition of STAT1 inhibits hypoxia-induced MMP-10 but not MMP-1 expression in M1-polarized macrophages from patients with PAH. In conclusion, circulating MMP-10 could be used as a potential targeted therapy for PAH.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan.,Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Cheng-Chung Hung
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung City, Taiwan
| | - Meng-Wei Ke
- The Agricultural College, Tunghai University, Taichung City, Taiwan
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Kun-Chang Lin
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Shu-Hung Kuo
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Pin-Pen Hsieh
- Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-yi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shue-Ren Wann
- Pingtung Branch, Kaohsiung Veterans General Hospital, Pingtung County, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Lechartier B, Berrebeh N, Huertas A, Humbert M, Guignabert C, Tu L. Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy. Chest 2021; 161:219-231. [PMID: 34391758 DOI: 10.1016/j.chest.2021.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodelling of the pulmonary circulation, leading to severe right heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells (PA-SMCs) play central roles in physiological and pathological vascular remodelling due to their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and non-medial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH.
Collapse
Affiliation(s)
- Benoit Lechartier
- Pulmonary Division, Lausanne University Hospital, Lausanne, Switzerland; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
9
|
Decato BE, Ammar R, Reinke-Breen L, Thompson JR, Azzara AV. Transcriptome analysis reveals key genes modulated by ALK5 inhibition in a bleomycin model of systemic sclerosis. Rheumatology (Oxford) 2021; 61:1717-1727. [PMID: 34289031 PMCID: PMC8996787 DOI: 10.1093/rheumatology/keab580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Objective SSc is a rheumatic autoimmune disease affecting roughly 20 000 people worldwide and characterized by excessive collagen accumulation in the skin and internal organs. Despite the high morbidity and mortality associated with SSc, there are no approved disease-modifying agents. Our objective in this study was to explore transcriptomic and model-based drug discovery approaches for SSc. Methods In this study, we explored the molecular basis for SSc pathogenesis in a well-studied mouse model of scleroderma. We profiled the skin and lung transcriptomes of mice at multiple timepoints, analysing the differential gene expression that underscores the development and resolution of bleomycin-induced fibrosis. Results We observed shared expression signatures of upregulation and downregulation in fibrotic skin and lung tissue, and observed significant upregulation of key pro-fibrotic genes including GDF15, Saa3, Cxcl10, Spp1 and Timp1. To identify changes in gene expression in responses to anti-fibrotic therapy, we assessed the effect of TGF-β pathway inhibition via oral ALK5 (TGF-β receptor I) inhibitor SB525334 and observed a time-lagged response in the lung relative to skin. We also implemented a machine learning algorithm that showed promise at predicting lung function using transcriptome data from both skin and lung biopsies. Conclusion This study provides the most comprehensive look at the gene expression dynamics of an animal model of SSc to date, provides a rich dataset for future comparative fibrotic disease research, and helps refine our understanding of pathways at work during SSc pathogenesis and intervention.
Collapse
Affiliation(s)
- Benjamin E Decato
- Research & Early Development, Bristol-Myers Squibb Company, Route 206 & Province Line Rd, Lawrenceville, NJ, 08543, USA
| | - Ron Ammar
- Research & Early Development, Bristol-Myers Squibb Company, Route 206 & Province Line Rd, Lawrenceville, NJ, 08543, USA
| | - Lauren Reinke-Breen
- Research & Early Development, Bristol-Myers Squibb Company, Route 206 & Province Line Rd, Lawrenceville, NJ, 08543, USA
| | - John R Thompson
- Research & Early Development, Bristol-Myers Squibb Company, Route 206 & Province Line Rd, Lawrenceville, NJ, 08543, USA
| | - Anthony V Azzara
- Research & Early Development, Bristol-Myers Squibb Company, Route 206 & Province Line Rd, Lawrenceville, NJ, 08543, USA
| |
Collapse
|
10
|
Avouac J, Pezet S, Vandebeuque E, Orvain C, Gonzalez V, Marin G, Mouterde G, Daïen C, Allanore Y. Semaphorins: From Angiogenesis to Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1579-1588. [PMID: 33605067 DOI: 10.1002/art.41701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To study the potential role of semaphorins in the pathogenesis of rheumatoid arthritis (RA). METHODS Microarray experiments were performed on Affymetrix GeneChip Human Exon 1.0 ST arrays in RA endothelial cells (ECs) and control ECs derived from circulating progenitors. Expression of class 3 and class 4 semaphorins and their receptors in the serum of RA patients and healthy controls was assessed by immunohistochemical analysis in synovial tissue and by enzyme-linked immunosorbent assay. RESULTS Microarray analysis revealed differential expression of class 3 and class 4 semaphorins and their receptors in RA ECs. Semaphorin 4A (SEMA4A), plexin D1, and neuropilin 1 messenger RNA (mRNA) levels were markedly increased in RA ECs by 1.75-, 2.21-, and 1.68-fold, respectively. Stimulation with tumor necrosis factor (TNF) led to a 2-fold increase in SEMA4A mRNA levels in RA ECs, and deficient SEMA4A expression modified RA EC angiogenic properties. Class 3 and class 4 semaphorins as well as their receptors were overexpressed in RA synovial tissue. A respective 1.30-fold increase and 1.54-fold increase in SEMA4A and SEMA3E, as well as a 24% decrease in SEMA3A, was observed in the serum of RA patients. Serum levels of SEMA4A, SEMA4D, and SEMA3A correlated with levels of inflammation and proangiogenic markers. In 2 independent cohorts of patients with low disease activity or with RA in remission, the presence of SEMA4A identified patients with residual disease activity. CONCLUSION Gene expression profiling of ECs identified class 3 and class 4 semaphorins as potential biomarkers and therapeutic candidates in RA, with confirmed overexpression in ECs, synovial vessels, and serum, and correlation with validated markers of inflammation and angiogenesis. Thus, semaphorins might be novel and appealing EC-derived inflammatory and proangiogenic targets in RA.
Collapse
Affiliation(s)
- Jérôme Avouac
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Université Paris Descartes, Hôpital Cochin, AP-HP, Paris, France
| | - Sonia Pezet
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Université Paris Descartes, Paris, France
| | - Eloïse Vandebeuque
- Université de Paris, Université Paris Descartes, Hôpital Cochin, AP-HP, Paris, France
| | - Cindy Orvain
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Université Paris Descartes, Paris, France
| | - Virginie Gonzalez
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Université Paris Descartes, Paris, France
| | - Grégory Marin
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Gaël Mouterde
- Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Claire Daïen
- Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Yannick Allanore
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Université Paris Descartes, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
11
|
Lechartier B, Humbert M. Pulmonary arterial hypertension in systemic sclerosis. Presse Med 2021; 50:104062. [PMID: 33548377 DOI: 10.1016/j.lpm.2021.104062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a frequent and severe complication of systemic sclerosis (SSc) due to combined vasculopathy and fibrogenesis. Early diagnosis and treatment are highly challenging in SSc-PAH and require referral to an expert PAH centre. Diagnostic algorithms evolved in the last decade. Novel therapeutic options notably targeting pulmonary vascular remodeling are needed.
Collapse
Affiliation(s)
- Benoît Lechartier
- Lausanne University Hospital, Department of Respiratory Medicine, Lausanne, Switzerland
| | - Marc Humbert
- Université Paris-Saclay, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; Hôpital Marie-Lannelongue, INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Le Plessis-Robinson, France; Assistance publique-Hôpitaux de Paris (AP-HP), French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Department of Respiratory and Intensive Care Medicine, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Bruni C, Guignabert C, Manetti M, Cerinic MM, Humbert M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. THE LANCET. RHEUMATOLOGY 2021; 3:e149-e159. [PMID: 38279370 DOI: 10.1016/s2665-9913(20)30356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/16/2023]
Abstract
Cardiopulmonary complications are a leading cause of death in systemic sclerosis. Pulmonary hypertension in particular carries a high mortality and morbidity burden. Patients with systemic sclerosis can suffer from all of the clinical groups of pulmonary hypertension, particularly pulmonary arterial hypertension and pulmonary hypertension related to interstitial lung disease. Despite a similar pathogenetic background with idiopathic pulmonary arterial hypertension, different mechanisms determine a worse prognostic outcome for patients with systemic sclerosis. In this Viewpoint, we will consider the link between pathogenetic and potential therapeutic targets for the treatment of pulmonary hypertension in the context of systemic sclerosis, with a focus on the current unmet needs, such as the importance of early screening and detection, the absence of agreed criteria to distinguish pulmonary arterial hypertension with interstitial lung disease from pulmonary hypertension due to lung fibrosis, and the need for a holistic treatment approach to target all the vascular, immunological, and inflammatory components of the disease.
Collapse
Affiliation(s)
- Cosimo Bruni
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Christophe Guignabert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mirko Manetti
- Section of Anatomy and Histology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Leblond A, Pezet S, Cauvet A, Casas C, Pires Da Silva J, Hervé R, Clavel G, Dumas S, Cohen-Kaminsky S, Bessis N, Semerano L, Lemaire C, Allanore Y, Avouac J. Implication of the deacetylase sirtuin-1 on synovial angiogenesis and persistence of experimental arthritis. Ann Rheum Dis 2020; 79:891-900. [PMID: 32381568 DOI: 10.1136/annrheumdis-2020-217377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To decipher the phenotype of endothelial cells (ECs) derived from circulating progenitors issued from patients with rheumatoid arthritis (RA). METHODS RA and control ECs were compared according to their proliferative capacities, apoptotic profile, response to tumour necrosis factor (TNF)-α stimulation and angiogenic properties. Microarray experiments were performed to identify gene candidates relevant to pathological angiogenesis. Identified candidates were detected by RT-PCR and western blot analysis in ECs and by immunohistochemistry in the synovium. Their functional relevance was then evaluated in vitro after gene invalidation by small interfering RNA and adenoviral gene overexpression, and in vivo in the mouse model of methyl-bovine serum albumin-(mBSA)-induced arthritis. RESULTS RA ECs displayed higher proliferation rate, greater sensitisation to TNF-α and enhanced in vitro and in vivo angiogenic capacities. Microarray analyses identified the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) as a relevant gene candidate. Decreased SIRT1 expression was detected in RA ECs and synovial vessels. Deficient endothelial SIRT1 expression promoted a proliferative, proapoptotic and activated state of ECs through the acetylation of p53 and p65, and lead the development of proangiogenic capacities through the upregulation of the matricellular protein cysteine-rich angiogenic protein-61. Conditional deletion of SIRT1 in ECs delayed the resolution of experimental methyl-bovine serum albumin-(mBSA)-induced arthritis. Conversely, SIRT1 activation reversed the pathological phenotype of RA ECs and alleviates signs of experimental mBSA-induced arthritis. CONCLUSIONS These results support a role of SIRT1 in RA and may have therapeutic implications, since targeting angiogenesis, and especially SIRT1, might be used as a complementary therapeutic approach in RA.
Collapse
Affiliation(s)
- Agathe Leblond
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Sonia Pezet
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Anne Cauvet
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Claudine Casas
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Julie Pires Da Silva
- Université Versailles St-Quentin, Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, Univ Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| | - Roxane Hervé
- UMR 1125 INSERM, Bobigny, France
- Sorbonne Paris Cité Université Paris 13, Bobigny, France
| | - Gaelle Clavel
- UMR 1125 INSERM, Bobigny, France
- Sorbonne Paris Cité Université Paris 13, Bobigny, France
- Service de Médecine Interne, Fondation Rothschild, Paris, France
| | - Sébastien Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Natacha Bessis
- UMR 1125 INSERM, Bobigny, France
- Sorbonne Paris Cité Université Paris 13, Bobigny, France
| | - Luca Semerano
- UMR 1125 INSERM, Bobigny, France
- Sorbonne Paris Cité Université Paris 13, Bobigny, France
- Service de Rhumatologie, GH Avicenne-Jean Verdier-René Muret, APHP, Bobigny, France
| | - Christophe Lemaire
- Université Versailles St-Quentin, Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, Univ Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Jérôme Avouac
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| |
Collapse
|
14
|
Birnhuber A, Biasin V, Schnoegl D, Marsh LM, Kwapiszewska G. Transcription factor Fra-2 and its emerging role in matrix deposition, proliferation and inflammation in chronic lung diseases. Cell Signal 2019; 64:109408. [PMID: 31473307 DOI: 10.1016/j.cellsig.2019.109408] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Fos-related antigen-2 (Fra-2) belongs to the activator protein 1 (AP-1) family of transcription factors and is involved in a broad variety of cellular processes, such as proliferation or differentiation. Aberrant expression of Fra-2 or regulation can lead to severe growth defects or diverse pathologies. Elevated Fra-2 expression has been described in several chronic lung diseases, such as pulmonary fibrosis, chronic obstructive pulmonary disease and asthma. However, the pathomechanisms behind the Fra-2-induced pulmonary remodelling are still not fully elucidated. Fra-2 overexpressing mice were initially described as a model of systemic sclerosis associated organ fibrosis, with predominant alterations in the lung. High levels of Fra-2 expression give rise to profound inflammation with severe remodelling of the parenchyma and the vasculature, resulting in fibrosis and pulmonary hypertension, respectively, but also alters bronchial function. In this review we discuss the central role of Fra-2 connecting inflammation, cellular proliferation and extracellular matrix deposition underlying chronic lung diseases and what we can learn for future therapeutic options.
Collapse
Affiliation(s)
- A Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - V Biasin
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - D Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - L M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - G Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Su M, Hu X, Lin J, Zhang L, Sun W, Zhang J, Tian Y, Qiu W. Identification of Candidate Genes Involved in Renal Ischemia/Reperfusion Injury. DNA Cell Biol 2019; 38:256-262. [PMID: 30668132 PMCID: PMC6434600 DOI: 10.1089/dna.2018.4551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia/reperfusion injury (IRI) is a main risk factor for the occurrence of delayed graft function or primary graft nonfunction of kidney transplantation. However, it lacks ideal molecular markers for indicating IRI in kidney transplantation. The present study is to explore novel candidate genes involved in renal IRI. Experimental renal IRI mouse models were constructed, and the differentially expressed genes were screened using a microarray assay. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed. The expression of genes was detected using real-time qPCR assay. Western blotting and immunohistochemistry staining assays were performed for protein determination. We identified that renal IRI induced the upregulation of SPRR2F, SPRR1A, MMP-10, and long noncoding RNA (lncRNA) Malat1 in kidney tissues for 479.3-, 4.98-, 238.1-, and 3.79-fold, respectively. The expression of miR-139-5p in kidney tissues of IRI-treated mice was decreased to 40.4% compared with the sham-operated mice. These genes are associated with keratinocyte differentiation, regeneration and repair of kidney tissues, extracellular matrix degradation and remodeling, inflammation, and cell proliferation in renal IRI. Identification of novel biomarkers involved in renal IRI may provide evidences for the diagnosis and treatment of renal IRI.
Collapse
Affiliation(s)
- Ming Su
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xinyi Hu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Lin
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Sun
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ye Tian
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Qiu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Poble PB, Phan C, Quatremare T, Bordenave J, Thuillet R, Cumont A, Huertas A, Tu L, Dorfmüller P, Humbert M, Ghigna MR, Savale L, Guignabert C. Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension. FASEB J 2018; 33:3670-3679. [DOI: 10.1096/fj.201801659r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul-Benoit Poble
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Carole Phan
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Timothée Quatremare
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Jennifer Bordenave
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Raphaël Thuillet
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Amélie Cumont
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Alice Huertas
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Ly Tu
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Peter Dorfmüller
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Pathology DepartmentHôpital Marie Lannelongue Le Plessis-Robinson France
| | - Marc Humbert
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Pathology DepartmentHôpital Marie Lannelongue Le Plessis-Robinson France
| | - Laurent Savale
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Christophe Guignabert
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| |
Collapse
|
17
|
Boleto G, Guignabert C, Pezet S, Cauvet A, Sadoine J, Tu L, Nicco C, Gobeaux C, Batteux F, Allanore Y, Avouac J. T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis. Arthritis Res Ther 2018; 20:197. [PMID: 30157927 PMCID: PMC6116494 DOI: 10.1186/s13075-018-1694-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background We aimed to investigate the efficacy of abatacept in preclinical mouse models of digestive involvement, pulmonary fibrosis, and related pulmonary hypertension (PH), mimicking internal organ involvement in systemic sclerosis (SSc). Methods Abatacept has been evaluated in the chronic graft-versus-host disease (cGvHD) mouse model (abatacept 1 mg/mL for 6 weeks), characterized by liver and intestinal fibrosis and in the Fra-2 mouse model (1 mg/mL or 10 mg/mL for 4 weeks), characterized by interstitial lung disease (ILD) and pulmonary vascular remodeling leading to PH. Results In the cGvHD model, abatacept significantly decreased liver transaminase levels and markedly improved colon inflammation. In the Fra-2 model, abatacept alleviated ILD, with a significant reduction in lung density on chest microcomputed tomography (CT), fibrosis histological score, and lung biochemical markers. Moreover, abatacept reversed PH in Fra-2 mice by improving vessel remodeling and related cardiac hemodynamic impairment. Abatacept significantly reduced fibrogenic marker levels, T-cell proliferation, and M1/M2 macrophage infiltration in lesional lungs of Fra-2 mice. Conclusion Abatacept improves digestive involvement, prevents lung fibrosis, and attenuates PH. These findings suggest that abatacept might be an appealing therapeutic approach beyond skin fibrosis for organ involvement in SSc. Electronic supplementary material The online version of this article (10.1186/s13075-018-1694-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gonçalo Boleto
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sonia Pezet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Anne Cauvet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Jérémy Sadoine
- EA 2496 Pathologie, Imagerie et Biothérapies Orofaciales, UFR Odontologie, Université Paris Descartes and PIDV, PRES Sorbonne Paris Cité, Montrouge, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Carole Nicco
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Camille Gobeaux
- Clinical Chemistry Laboratory, Cochin and Hôtel-Dieu Hospitals, Paris, France
| | - Frédéric Batteux
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
18
|
Denton CP, Wells AU, Coghlan JG. Major lung complications of systemic sclerosis. Nat Rev Rheumatol 2018; 14:511-527. [DOI: 10.1038/s41584-018-0062-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Odler B, Foris V, Gungl A, Müller V, Hassoun PM, Kwapiszewska G, Olschewski H, Kovacs G. Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: A Pathophysiological Approach. Front Physiol 2018; 9:587. [PMID: 29971007 PMCID: PMC6018494 DOI: 10.3389/fphys.2018.00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc) associated with high morbidity and mortality. There are several biomarkers of SSc-PAH, reflecting endothelial physiology, inflammation, immune activation, extracellular matrix, metabolic changes, or cardiac involvement. Biomarkers associated with diagnosis, disease severity and progression have been identified, however, very few have been tested in a prospective setting. Some antinuclear antibodies such as nucleosome antibodies (NUC), anti-centromere antibodies (CENP-A/B) and anti-U3-ribonucleoprotein (anti-U3-RNP) are associated with PAH while anti-U1-ribonucleoprotein (anti-U1-RNP) is associated with a reduced PAH risk. Anti-endothelin receptor and angiotensin-1 receptor antibodies might be good markers of SSc-PAH and progression of pulmonary vasculopathy. Regarding the markers reflecting immune activation and inflammation, there are many inconsistent results. CXCL-4 was associated with SSc progression including PAH and lung fibrosis. Growth differentiation factor (GDF)-15 was associated with PAH and mortality but is not specific for SSc. Among the metabolites, kynurenine was identified as diagnostic marker for PAH, however, its pathologic role in the disease is unclear. Endostatin, an angiostatic factor, was associated with heart failure and poor prognosis. Established heart related markers, such as N-terminal fragment of A-type natriuretic peptide/brain natriuretic peptide (NT-proANP, NT-proBNP) or troponin I/T are elevated in SSc-PAH but are not specific for the right ventricle and may be increased to the same extent in left heart disease. Taken together, there is no universal specific biomarker for SSc-PAH, however, there is a pattern of markers that is strongly associated with a risk of vascular complications in SSc patients. Further comprehensive, multicenter and prospective studies are warranted to develop reliable algorithms for detection and prognosis of SSc-PAH.
Collapse
Affiliation(s)
- Balazs Odler
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Anna Gungl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul M Hassoun
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|