1
|
Sun Y, Zhou Q, Onzere LE, Dian Y, Meng Y, Li D, Zeng F, Lei S, Deng G. Evaluating the causal effect of using glucagon-like peptide-1 receptor agonists on the risk of autoimmune diseases. Diabetes Metab Syndr 2025; 19:103186. [PMID: 39793280 DOI: 10.1016/j.dsx.2025.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVE To investigate the causal association of using glucagon-like peptide-1 receptor (GLP1R) agonists with autoimmune diseases. METHODS The available cis-eQTLs for drugs target genes (GLP1R) were used as genetic variants for exposure to GLP1R agonists. Type 2 diabetes was used as positive control. Mendelian randomizations (MR) were performed to explore the association of genetically-proxied GLP1R agonists with 11 autoimmune diseases from large-scale consortia. Replicating the findings in the FinnGen study and then pooled with meta-analysis. Finally, we performed MR analysis to examine whether GLP1R agonists affect 731 immune cell phenotypes to clarify the potential mechanism. RESULTS We observed supportive evidence to support the association of GLP1R agonists with reduced the risk of hypothyroidism (OR [95 %] = 0.89 [0.82-0.95], P < 0.001), but increased risk of ulcerative colitis (OR [95 %] = 1.48 [1.27-1.71], P < 0.001), type 1 diabetes (OR [95 %] = 1.34 [1.21-1.50], P < 0.001), systemic lupus erythematosus (OR [95 %] = 1.61 [1.29-2.02], P < 0.001) and sarcoidosis (OR [95 %] = 1.38 [1.08-1.75], P = 0.008). There was no supporting evidence to verify the association of GLP1R expression with asthma, Crohn's disease, multiple sclerosis and myasthenia gravis (P > 0.05). In addition, we found that GLP1R agonists was positively associated with 221 immune cell phenotypes (P < 0.05, OR > 1), and negatively associated with 317 immune cell phenotypes (P < 0.05, OR < 1). CONCLUSION GLP1R agonists are causally associated with various autoimmune diseases potentially through the modulation of 731 immune cell phenotypes.
Collapse
Affiliation(s)
- Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Lorraine Edna Onzere
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shaorong Lei
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Lee JS, Oh JS, Kim S, Kim YJ, Hong S, Kim YG, Lee CK, Yoo B. The association of obesity and the risk of rheumatoid arthritis according to abdominal obesity status: a nationwide population-based study in Korea. Rheumatol Int 2024; 44:2863-2871. [PMID: 39576328 DOI: 10.1007/s00296-024-05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/06/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVES This study aimed to assess the association between obesity or changes in body mass index (BMI) and the risk of RA considering the abdominal obesity status. METHODS We included individuals aged 23 to 60 who underwent a national health examination in 2012-2013 (baseline) and four years prior. Obesity was defined by a BMI ≥ 25 kg/m2. The change in BMI over 4 years was divided into quartiles. Cox proportional hazard analysis was performed to assess the association of obesity and BMI change with the risk of RA. RESULTS A total of 6,207,246 subjects were included, and 7,859 incident cases of RA were identified. Obesity was associated with a reduced risk of RA in males (HR 0.78, 95% CI 0.71-0.85) and females (HR 0.91, 95% CI 0.85-0.97). In subgroup analysis according to abdominal obesity status, the associations were observed for obesity with normal waist circumference (WC) in males (HR 0.75, 95% CI 0.67-0.84) and females (HR 0.88, 95% CI 0.81-0.95). In terms of BMI change, compared to the stable BMI group (quartile 2), the third (HR 0.92, CI 0.85-0.99) and highest quartile (HR 0.89, CI 0.83-0.96) showed an inverse association with the risk of RA in females, particularly in those with normal WC. CONCLUSION Obesity was associated with a lower risk of RA, especially among individuals with a normal WC. Increased BMI was also associated with a lower risk of RA, but this association was mainly observed in females and specifically for those with normal WC.
Collapse
Affiliation(s)
- Jung Sun Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul Veterans Hospital, Seoul, Korea
| | - Ji Seon Oh
- Department of Information Medicine, Asan Medical Center, Seoul, Korea
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-GilSongpa-Gu, Seoul, 138-736, Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-GilSongpa-Gu, Seoul, 138-736, Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-GilSongpa-Gu, Seoul, 138-736, Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-GilSongpa-Gu, Seoul, 138-736, Korea.
| |
Collapse
|
3
|
Zhao CN, Jiang LQ, Musonye HA, Meng SY, He YS, Wang P, Ni J, Pan HF. Associations of accelerated biological aging and metabolic heterogeneity of obesity with rheumatoid arthritis: a prospective cohort study. Clin Rheumatol 2024; 43:3615-3623. [PMID: 39367918 DOI: 10.1007/s10067-024-07167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To evaluate the associations between biological aging, metabolic heterogeneity of obesity, and rheumatoid arthritis (RA). METHODS This prospective cohort study analyzed 268,184 individuals from the UK Biobank. Biological age was estimated using phenotypic age (PhenoAge), Klemera-Doubal methods (KDM-BA), and telomere length. We calculated KDM-BA acceleration and PhenoAge acceleration after subtracting the effect of chronological age by regression residual. The metabolic heterogeneity of obesity can be evaluated by four BMI metabolic phenotypes, namely metabolically unhealthy normal weight (MUNW), metabolically healthy normal weight (MHNW), metabolically unhealthy overweight/obesity (MUOO), and metabolically healthy overweight/obesity (MHOO). Cox models were employed to estimate the associations between biological aging, metabolic heterogeneity of obesity, and RA risk. RESULTS A total of 2842 patients experienced RA during a mean follow-up time of 12.21 years. A standard deviation (SD) increase in KDM-BA acceleration and PhenoAge acceleration was associated with an increased risk of RA by 13% (hazard ratio = 1.13; 95% CI, 1.09-1.17) and 39% (HR = 1.39; 95% CI, 1.34-1.44), respectively. A SD increase in telomere length was associated with a reduced risk of RA by 5% (HR = 0.95; 95% CI, 0.91-0.98). Compared to the MHNW group, the MUOO group was associated with a 51% increase in the risk of incident RA. In the joint effect analysis, compared to the MHNW + KDM-BA younger subgroup, the HR (95% CI) for RA was 1.68 (1.48, 1.90) in the MUOO + KDM-BA older subgroup. CONCLUSION Accelerated biological aging may heighten the susceptibility to RA, particularly in individuals with obesity or metabolic dysfunction. Key Points •Accelerated biological aging increases the risk of developing RA. •Overweight/obese people with a healthy metabolism have a higher risk of RA than those with normal weight and healthy metabolism. •The BMI metabolic phenotype has a strong modifying effect on the association between KDM-BA/PhenoAge and RA risk.
Collapse
Affiliation(s)
- Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shi-Yin Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Lee JH, Oh S, Kim K, Lee D, Son E, Kim TW, Goh TS, Cho NR, Kim YH. Body mass index and meniscal tears: Evidence from meta-analysis of observational studies and Mendelian randomization. Obes Rev 2024; 25:e13749. [PMID: 38616612 DOI: 10.1111/obr.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Obesity is a potential risk factor for meniscal tear (MT). We utilized meta-analysis of observational studies and Mendelian randomization (MR) analyses to elucidate the association between body mass index (BMI) and MT. In meta-analysis, a search was performed on June 27, 2022, using PubMed and Embase databases. Odds ratios and 95% confidence intervals were extracted from included studies. In MR analyses, the research utilized summary-level data on BMI and MT obtained from Genetic Investigation of Anthropometric Traits and the FinnGen Consortium, respectively. In meta-analysis, four studies comprising 826,383 participants were included. The pooled odds ratio of MT in the high BMI group was 1.32 (95% confidence interval, 0.83-2.09), compared with the nonhigh BMI group. The pooled odds ratio in the under 30 group was 1.76 (95% confidence interval, 0.61-5.03). In MR analyses, one standard deviation increase in genetically predicted BMI was associated with meniscus derangement as a chronic subtype of MT (odds ratio, 1.36; 95% confidential interval, 1.17-1.59). We found that a high BMI was not associated with an increased likelihood of MT based on meta-analysis of observational studies; however, by complementing MR analyses, we elucidated the causality of BMI increase on meniscus derangement as a chronic subtype of MT.
Collapse
Affiliation(s)
- Jung Hoon Lee
- School of Korean Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Seungyeop Oh
- School of Korean Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Kihun Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Eunjeong Son
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Republic of Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Yangsan-si, Republic of Korea
| | - Tae Sik Goh
- Department of Orthopaedic Surgery, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
5
|
Haas CB, Chen H, Harrison T, Fan S, Gago-Dominguez M, Castelao JE, Bolla MK, Wang Q, Dennis J, Michailidou K, Dunning AM, Easton DF, Antoniou AC, Hall P, Czene K, Andrulis IL, Mulligan AM, Milne RL, Fasching PA, Haeberle L, Garcia-Closas M, Ahearn T, Gierach GL, Haiman C, Maskarinec G, Couch FJ, Olson JE, John EM, Chenevix-Trench G, Berrington de Gonzalez A, Jones M, Stone J, Murphy R, Aronson KJ, Wernli KJ, Hsu L, Vachon C, Tamimi RM, Lindström S. Disentangling the relationships of body mass index and circulating sex hormone concentrations in mammographic density using Mendelian randomization. Breast Cancer Res Treat 2024; 206:295-305. [PMID: 38653906 DOI: 10.1007/s10549-024-07306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Mammographic density phenotypes, adjusted for age and body mass index (BMI), are strong predictors of breast cancer risk. BMI is associated with mammographic density measures, but the role of circulating sex hormone concentrations is less clear. We investigated the relationship between BMI, circulating sex hormone concentrations, and mammographic density phenotypes using Mendelian randomization (MR). METHODS We applied two-sample MR approaches to assess the association between genetically predicted circulating concentrations of sex hormones [estradiol, testosterone, sex hormone-binding globulin (SHBG)], BMI, and mammographic density phenotypes (dense and non-dense area). We created instrumental variables from large European ancestry-based genome-wide association studies and applied estimates to mammographic density phenotypes in up to 14,000 women of European ancestry. We performed analyses overall and by menopausal status. RESULTS Genetically predicted BMI was positively associated with non-dense area (IVW: β = 1.79; 95% CI = 1.58, 2.00; p = 9.57 × 10-63) and inversely associated with dense area (IVW: β = - 0.37; 95% CI = - 0.51,- 0.23; p = 4.7 × 10-7). We observed weak evidence for an association of circulating sex hormone concentrations with mammographic density phenotypes, specifically inverse associations between genetically predicted testosterone concentration and dense area (β = - 0.22; 95% CI = - 0.38, - 0.053; p = 0.009) and between genetically predicted estradiol concentration and non-dense area (β = - 3.32; 95% CI = - 5.83, - 0.82; p = 0.009), although results were not consistent across a range of MR approaches. CONCLUSION Our findings support a positive causal association between BMI and mammographic non-dense area and an inverse association between BMI and dense area. Evidence was weaker and inconsistent for a causal effect of circulating sex hormone concentrations on mammographic density phenotypes. Based on our findings, associations between circulating sex hormone concentrations and mammographic density phenotypes are weak at best.
Collapse
Affiliation(s)
- Cameron B Haas
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Hongjie Chen
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tabitha Harrison
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shaoqi Fan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Manuela Gago-Dominguez
- Health Research Institute of Santiago de Compostela Foundation (FIDIS), SERGAS, Cancer Genetics and Epidemiology Group, Santiago, Spain
| | - Jose E Castelao
- Unidad de Oncología Genética, Instituto de Investigación Sanitaria, Galicia Sur, Vigo, Spain
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Prevision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gertraud Maskarinec
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Janet E Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Esther M John
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Geogia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Michael Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA, Australia
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Kristan J Aronson
- Division of Cancer Care and Epidemiology, Department of Community Health and Epidemiology, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Celine Vachon
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
6
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
7
|
Li X, Zhu J, Zhao W, Zhu Y, Zhu L, Shi R, Wang Z, Pan H, Wang D. The Causal Effect of Obesity on the Risk of 15 Autoimmune Diseases: A Mendelian Randomization Study. Obes Facts 2023; 16:598-605. [PMID: 37827145 PMCID: PMC10697740 DOI: 10.1159/000534468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Observational studies have shown that obesity is a risk factor for various autoimmune diseases. However, the causal relationship between obesity and autoimmune diseases is unclear. Mendelian randomization (MR) was used to investigate the causal effects of obesity on 15 autoimmune diseases. METHODS MR analysis employed instrumental variables, specifically single-nucleotide polymorphisms associated with obesity measures such as body mass index (BMI), waist circumference, hip circumference, and waist-to-hip ratio. The study utilized UK Biobank and FinnGen data to estimate the causal relationship between obesity and autoimmune diseases. RESULTS Genetically predicted BMI was associated with risk for five autoimmune diseases. The odds ratio per 1-SD increase in genetically predicted BMI, the OR was 1.28 (95% CI, 1.18-1.09; p < 0.001) for asthma, 1.37 (95% CI, 1.24-1.51; p < 0.001) for hypothyroidism, 1.52 (95% CI, 1.27-1.83; p < 0.001) for psoriasis, 1.22 (95% CI, 1.06-1.40; p = 0.005) for rheumatoid arthritis, and 1.55 (95% CI, 1.32-1.83; p < 0.001) for type 1 diabetes. However, after adjusting for genetic susceptibility to drinking and smoking, the correlation between BMI and rheumatoid arthritis was not statistically significant. Genetically predicted waist circumference, hip circumference, and waist and hip circumference were associated with 6, 6, and 1 autoimmune disease, respectively. CONCLUSION This study suggests that obesity may be associated with an increased risk of several autoimmune diseases, such as asthma, hypothyroidism, psoriasis, rheumatoid arthritis, and type 1 diabetes.
Collapse
Affiliation(s)
- Xunliang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China,
| | - Jie Zhu
- Department of Infectious Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenman Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhijuan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Gu P, Pu B, Liu T, Yue D, Xin Q, Li HS, Yang BL, Ke DZ, Zheng XH, Zeng ZP, Zhang ZQ. Appraising causal risk and protective factors for rheumatoid arthritis. Bone Joint Res 2023; 12:601-614. [PMID: 37732818 PMCID: PMC10512867 DOI: 10.1302/2046-3758.129.bjr-2023-0118.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Aims Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. Methods PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines. Results A total of 517 potentially relevant articles were screened, 35 studies were included in the systematic review, and 19 studies were eligible to be included in the meta-analysis. Pooled estimates of 19 included studies (causality between 15 different risk factors and RA) revealed that obesity, smoking, coffee intake, lower education attainment, and Graves' disease (GD) were related to the increased risk of RA. In contrast, the causality contribution from serum mineral levels (calcium, iron, copper, zinc, magnesium, selenium), alcohol intake, and chronic periodontitis to RA is not significant. Conclusion Obesity, smoking, education attainment, and GD have real causal effects on the occurrence and development of RA. These results may provide insights into the genetic susceptibility and potential biological pathways of RA.
Collapse
Affiliation(s)
- Peng Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Pu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Yue
- Southwest Medical University, Luzhou, China
| | - Qiao Xin
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hai-Shan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bai-Lin Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dao-Ze Ke
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hui Zheng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhan-Peng Zeng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
9
|
Jiang Y, Liu Q, Alfredsson L, Klareskog L, Kockum I, Jiang X. A genome-wide cross-trait analysis identifies genomic correlation, pleiotropic loci, and causal relationship between sex hormone-binding globulin and rheumatoid arthritis. Hum Genomics 2023; 17:81. [PMID: 37644603 PMCID: PMC10466838 DOI: 10.1186/s40246-023-00528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Our study aims to investigate an intrinsic link underlying sex hormone-binding globulin (SHBG) and rheumatoid arthritis (RA), which remains inconclusive in observational settings. METHODS Summary statistics were collected from the largest GWAS(s) on SHBG adjusted for BMI (SHBGadjBMI; Noverall = 368,929; Nmen = 180,094; Nwomen = 188,908), crude SHBG (Noverall = 370,125; Nmen = 180,726; Nwomen = 189,473), and RA (Ncase = 22,350; Ncontrol = 74,823). A genome-wide cross-trait design was performed to quantify global and local genetic correlation, identify pleiotropic loci, and infer a causal relationship. RESULTS Among the overall population, a significant global genetic correlation was observed for SHBGadjBMI and RA ([Formula: see text] = 0.11, P = 1.0 × 10-4) which was further supported by local signal (1q25.2). A total of 18 independent pleiotropic SNPs were identified, of which three were highly likely causal variants and four were found to have effects on both traits through gene expression mediation. A putative causal association of SHBGadjBMI on RA was demonstrated (OR = 1.20, 95% CI = 1.01-1.43) without evidence of reverse causality (OR = 0.999, 95% CI = 0.997-1.000). Sex-specific analyses revealed distinct shared genetic regions (men: 1q32.1-q32.2 and 5p13.1; women: 1q25.2 and 22q11.21-q11.22) and diverse pleiotropic SNPs (16 in men and 18 in women, nearly half were sex-specific) underlying SHBGadjBMI and RA, demonstrating biological disparities between sexes. Replacing SHBGadjBMI with crude SHBG, a largely similar yet less significant pattern of results was observed. CONCLUSION Our cross-trait analysis suggests an intrinsic, as well as a sex-specific, link underlying SHBG and RA, providing novel insights into disease etiology.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Visionsgatan 18, 171 77, Solna, Stockholm, Sweden
| | - Qianwen Liu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Visionsgatan 18, 171 77, Solna, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Visionsgatan 18, 171 77, Solna, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Visionsgatan 18, 171 77, Solna, Stockholm, Sweden
| | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Visionsgatan 18, 171 77, Solna, Stockholm, Sweden.
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Zhang J, Fang XY, Leng R, Chen HF, Qian TT, Cai YY, Zhang XH, Wang YY, Mu M, Tao XR, Leng RX, Ye DQ. Metabolic signature of healthy lifestyle and risk of rheumatoid arthritis: observational and Mendelian randomization study. Am J Clin Nutr 2023:S0002-9165(23)48892-2. [PMID: 37127109 DOI: 10.1016/j.ajcnut.2023.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND While substantial evidence reveals that healthy lifestyle behaviors are associated with a lower risk of rheumatoid arthritis (RA), the underlying metabolic mechanisms remain unclear. OBJECTIVES This study aimed to identify the metabolic signature reflecting a healthy lifestyle and investigate its observational and genetic linkage with RA risk. METHODS This study included 87,258 UK Biobank participants (557 cases of incident RA) aged 37 to 73 years with complete lifestyle, genotyping and nuclear magnetic resonance (NMR) metabolomics data. A healthy lifestyle was assessed based on five factors: healthy diet, regular exercise, not smoking, moderate alcohol consumption, and normal body mass index. The metabolic signature was developed by summing selected metabolites' concentrations weighted by the coefficients using elastic net regression. We used multivariate Cox model to assess the associations between metabolic signatures and RA risk, and examined the mediating role of the metabolic signature in the impact of a healthy lifestyle on RA. We performed genome-wide association analysis (GWAS) to obtain genetic variants associated with the metabolic signature, then conducted Mendelian randomization (MR) analyses to detect causality. RESULTS The metabolic signature comprised of 81 metabolites, robustly correlated with healthy lifestyle ( r = 0.45, P = 4.2 × 10-15). The metabolic signature was inversely associated with RA risk (HR per SD increment: 0.76, 95% CI: 0.70-0.83), and largely explained protective effects of healthy lifestyle on RA with 64% (95%CI: 50.4-83.3) mediation proportion. One and two-sample MR analyses also consistently showed the associations of genetically inferred per SD increment in metabolic signature with a reduction in RA risk (HR: 0.84, 95% CI: 0.75-0.94, P = 0.002 and OR: 0.84, 95% CI: 0.73-0.97, P = 0.02 respectively). CONCLUSION Our findings implicate the metabolic signature reflecting healthy lifestyle as a potential causal mediator in the development of RA, highlighting the importance of early lifestyle intervention and metabolic tracking for precise prevention of RA.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Rui Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Hai-Feng Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Ting-Ting Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Yu-Yu Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Xin-Hong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Min Mu
- School of Public Health, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Xin-Rong Tao
- School of Public Health, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; School of Public Health, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
11
|
Martín-Masot R, Herrador-López M, Navas-López VM, Carmona FD, Nestares T, Bossini-Castillo L. Celiac Disease Is a Risk Factor for Mature T and NK Cell Lymphoma: A Mendelian Randomization Study. Int J Mol Sci 2023; 24:ijms24087216. [PMID: 37108375 PMCID: PMC10139431 DOI: 10.3390/ijms24087216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Celiac disease (CeD) is an immune-mediated disorder triggered by gluten ingestion that damages the small intestine. Although CeD has been associated with a higher risk for cancer, the role of CeD as a risk factor for specific malignancies, such as enteropathy-associated T-cell lymphoma (EATL), remains controversial. Using two-sample Mendelian randomization (2SMR) methods and the summarized results of large genome-wide association studies from public repositories, we addressed the causal relationship between CeD and eight different malignancies. Eleven non-HLA SNPs were selected as instrumental variables (IVs), and causality estimates were obtained using four 2SMR methods: random-effects inverse variance-weighted, weighted median estimation, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO). We identified a significant causal relationship between CeD and mature T/NK cell lymphomas. Under a multivariate Mendelian randomization model, we observed that the causal effect of CeD was not dependent on other known lymphoma risk factors. We found that the most instrumental IV was located in the TAGAP locus, suggesting that aberrant T cell activation might be relevant in the T/NK cell malignization process. Our findings provide new insights into the connection between immune imbalance and the development of severe comorbidities, such as EATL, in patients with CeD.
Collapse
Affiliation(s)
- Rafael Martín-Masot
- Sección de Gastroenterología y Nutrición Infantil, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú" (INYTA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain
| | - Marta Herrador-López
- Sección de Gastroenterología y Nutrición Infantil, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain
| | - Víctor Manuel Navas-López
- Sección de Gastroenterología y Nutrición Infantil, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain
- Reproducción Humana y Enfermedades Hereditarias y Complejas (IBS-TEC14), Terapias Avanzadas y Tecnologías Biomédicas, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Teresa Nestares
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú" (INYTA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain
- Reproducción Humana y Enfermedades Hereditarias y Complejas (IBS-TEC14), Terapias Avanzadas y Tecnologías Biomédicas, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
12
|
Zhou W, Cai J, Li Z, Lin Y. Association of atopic dermatitis with autoimmune diseases: A bidirectional and multivariable two-sample mendelian randomization study. Front Immunol 2023; 14:1132719. [PMID: 37063839 PMCID: PMC10098361 DOI: 10.3389/fimmu.2023.1132719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Background Observational studies have suggested the association between atopic dermatitis (AD) and the risks of autoimmune diseases. It is still unclear, however, whether or in which direction causal relationships exist, because these associations could be confounded. Objectives Our study seeks to assess the possibility of AD as a cause of autoimmune diseases, and to estimate the magnitude of the causal effect. Methods Two-sample mendelian randomization (MR) analyses were performed using genome-wide association study (GWAS) summary-level statistics. Specifically, bidirectional MR analyses were conducted to examine the direction of association of AD with autoimmune diseases; multivariable MR analyses (MVMR1) were used to test the independence of causal association of AD with autoimmune diseases after controlling other atopic disorders (asthma and allergic rhinitis), while MVMR2 analyses were conducted to account for potential confounding factors such as smoking, drinking, and obesity. Genetic instruments for AD (Ncases=22 474) were from the latest GWAS meta-analysis. The GWAS summary data for asthma and allergic rhinitis were obtained from UK Biobank. The GWAS summary data for smoking, alcohol consumption, obesity and autoimmune diseases (alopecia areata, vitiligo, systemic lupus erythematosus, ankylosing spondylitis, rheumatoid arthritis, and type 1 diabetes) were selected from the largest GWASs available. Causal estimates were derived by the inverse-variance weighted method and verified through a series of sensitivity analyses. Results Genetically predicted AD linked to higher risks of rheumatoid arthritis (OR, 1.28; P=0.0068) (ORMVMR1, 1.65; P=0.0020) (ORMVMR2, 1.36; P<0.001), type 1 diabetes (OR, 1.37; P=0.0084) (ORMVMR1, 1.42; P=0.0155) (ORMVMR2, 1.45; P=0.002), and alopecia areata (OR, 1.98; P=0.0059) (ORMVMR1, 2.55; P<0.001) (ORMVMR2, 1.99; P=0.003) in both univariable and multivariable MR. These causal relationships were supported by sensitivity analyses. No causal effect of AD was identified in relation to systemic lupus erythematosus, vitiligo, and ankylosing spondylitis. Concerning the reverse directions, no significant association was noted. Conclusion The results of this MR study provide evidence to support the idea that AD causes a greater risk of rheumatoid arthritis, type 1 diabetes and alopecia areata. Further replication in larger samples is needed to validate our findings, and experimental studies are needed to explore the underlying mechanisms of these causal effects.
Collapse
Affiliation(s)
- Weixin Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifan Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
13
|
Epidemiologic Opportunities and Challenges in Studying Environmental Risk Factors for Rheumatic Diseases. Rheum Dis Clin North Am 2022; 48:763-779. [PMID: 36332994 DOI: 10.1016/j.rdc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most rheumatic diseases have a stronger environmental than hereditary etiology. This article summarizes the key environmental risk factors for rheumatic diseases, the data sources that generated these findings, and the key pitfalls with existing research that every rheumatology clinician should know. Emerging research opportunities hold promise to revolutionize this field, and soon.
Collapse
|
14
|
Chen W, Liu K, Huang L, Mao Y, Wen C, Ye D, He Z. Beef intake and risk of rheumatoid arthritis: Insights from a cross-sectional study and two-sample Mendelian randomization. Front Nutr 2022; 9:923472. [PMID: 36147307 PMCID: PMC9486088 DOI: 10.3389/fnut.2022.923472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBeef is common in daily diet, but its association with the risk of rheumatoid arthritis (RA) remains uncertain. The objective of this study is to explore the relationship between beef intake and the risk of RA.Materials and methodsWe investigated the association between beef intake and risk of RA by multivariate logistic regression, based on the National Health and Nutrition Examination Survey (NHANES) 1999–2016 involving 9,618 participants. The dose–response relationship between beef intake and RA was explored as well. Furthermore, we performed Mendelian randomization (MR) analysis to examine the causal effect of beef intake on RA. Genetic instruments for beef intake were selected from a genome-wide association study (GWAS) including 335,576 individuals from the UK Biobank study, and summary statistics relating to RA were obtained from a GWAS meta-analysis of 14,361 RA patients and 43,923 controls. The inverse-variance weighted (IVW) approach was used to estimate the causal association, and MR-Egger regression and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test were applied to evaluate the pleiotropy and outliers.ResultsCompared with the lowest quintile (0 to ≤33.50 g/d), beef intake was found to be significantly associated with the risk of RA [odds ratio (OR): 1.94; 95% confidence interval (CI): 1.20–3.12] in the third quintile (50.26 to ≤76.50 g/d). Moreover, a reversed “U” dose–response relationship between beef and RA (Pnon–linearity = 0.023) was found. In the MR analysis, beef intake was associated with an increased risk of RA (OR: 3.05; 95% CI: 1.11–8.35; P = 0.030) by the IVW method. The results from MR-Egger regression and MR-PRESSO test showed that there were no pleiotropic variations and outliers.ConclusionThis study indicated that there is suggestive evidence to support the causal effect of beef intake on the risk of RA, while further studies are warranted to elucidate the exact association.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Huang
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Ding Ye,
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Zhixing He,
| |
Collapse
|
15
|
Ortíz-Fernández L, Martín J, Alarcón-Riquelme ME. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren's Syndrome. Clin Rev Allergy Immunol 2022; 64:392-411. [PMID: 35749015 DOI: 10.1007/s12016-022-08951-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.
Collapse
Affiliation(s)
- Lourdes Ortíz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av de la Ilustración 114, Parque Tecnológico de La Salud, 18016, Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, 171 77, Solna, Sweden.
| |
Collapse
|
16
|
Zhao SS, Holmes MV, Zheng J, Sanderson E, Carter AR. The impact of education inequality on rheumatoid arthritis risk is mediated by smoking and body mass index: Mendelian randomization study. Rheumatology (Oxford) 2022; 61:2167-2175. [PMID: 34436562 PMCID: PMC9071527 DOI: 10.1093/rheumatology/keab654] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To estimate the causal relationship between educational attainment-as a proxy for socioeconomic inequality-and risk of RA, and quantify the roles of smoking and BMI as potential mediators. METHODS Using the largest genome-wide association studies (GWAS), we performed a two-sample Mendelian randomization (MR) study of genetically predicted educational attainment (instrumented using 1265 variants from 766 345 individuals) and RA (14 361 cases, 43 923 controls). We used two-step MR to quantify the proportion of education's effect on RA mediated by smoking exposure (as a composite index capturing duration, heaviness and cessation, using 124 variants from 462 690 individuals) and BMI (517 variants, 681 275 individuals), and multivariable MR to estimate proportion mediated by both factors combined. RESULTS Each s.d. increase in educational attainment (4.2 years of schooling) was protective of RA (odds ratio 0.37; 95% CI: 0.31, 0.44). Higher educational attainment was also protective for smoking exposure (β = -0.25 s.d.; 95% CI: -0.26, -0.23) and BMI [β = -0.27 s.d. (∼1.3 kg/m2); 95% CI: -0.31, -0.24]. Smoking mediated 24% (95% CI: 13%, 35%) and BMI 17% (95% CI: 11%, 23%) of the total effect of education on RA. Combined, the two risk factors explained 47% (95% CI: 11%, 82%) of the total effect. CONCLUSION Higher educational attainment has a protective effect on RA risk. Interventions to reduce smoking and excess adiposity at a population level may reduce this risk, but a large proportion of education's effect on RA remains unexplained. Further research into other risk factors that act as potentially modifiable mediators are required.
Collapse
Affiliation(s)
- Sizheng Steven Zhao
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol
| | - Michael V Holmes
- MRC Population Health Research Unit at the University of Oxford, Oxford
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alice R Carter
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Yuan S, Li X, Lin A, Larsson SC. Interleukins and rheumatoid arthritis: bi-directional Mendelian randomization investigation. Semin Arthritis Rheum 2022; 53:151958. [DOI: 10.1016/j.semarthrit.2022.151958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
18
|
Liu Q, Zhu Z, Kraft P, Deng Q, Stener-Victorin E, Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genome-wide cross-trait analysis. BMC Med 2022; 20:66. [PMID: 35144605 PMCID: PMC8832782 DOI: 10.1186/s12916-022-02238-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The comorbidity between polycystic ovary syndrome (PCOS) and obesity has long been observed in clinical settings, but their shared genetic basis remains unclear. METHODS Leveraging summary statistics of large-scale GWAS(s) conducted in European-ancestry populations on body mass index (adult BMI, Nfemale=434,794; childhood BMI, N=39,620), waist-to-hip ratio (WHR, Nfemale=381,152), WHR adjusted for BMI (WHRadjBMI, Nfemale=379,501), and PCOS (Ncase=10,074, Ncontrol=103,164), we performed a large-scale genome-wide cross-trait analysis to quantify overall and local genetic correlation, to identify shared loci, and to infer causal relationship. RESULTS We found positive genetic correlations between PCOS and adult BMI (rg=0.47, P=2.19×10-16), childhood BMI (rg=0.31, P=6.72×10-5), and WHR (rg=0.32, P=1.34×10-10), all withstanding Bonferroni correction. A suggestive significant genetic correlation was found between PCOS and WHRadjBMI (rg=0.09, P=0.04). Partitioning the whole genome into 1703 nearly independent regions, we observed a significant local genetic correlation for adult BMI and PCOS at chromosome 18: 57630483-59020751. We identified 16 shared loci underlying PCOS and obesity-related traits via cross-trait meta-analysis including 9 loci shared between BMI and PCOS (adult BMI and PCOS: 5 loci; childhood BMI and PCOS: 4 loci), 6 loci shared between WHR and PCOS, and 5 loci shared between WHRadjBMI and PCOS. Mendelian randomization (MR) supported the causal roles of both adult BMI (OR=2.92, 95% CI=2.33-3.67) and childhood BMI (OR=2.76, 95% CI=2.09-3.66) in PCOS, but not WHR (OR=1.19, 95% CI=0.93-1.52) or WHRadjBMI (OR=1.03, 95% CI=0.87-1.22). Genetic predisposition to PCOS did not seem to influence the risk of obesity-related traits. CONCLUSIONS Our cross-trait analysis suggests a shared genetic basis underlying obesity and PCOS and provides novel insights into the biological mechanisms underlying these complex traits. Our work informs public health intervention by confirming the important role of weight management in PCOS prevention.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| |
Collapse
|
19
|
Zhou J, Dai Y, Lin Y, Chen K. Association between serum amyloid A and rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 2021; 52:151943. [PMID: 35027248 DOI: 10.1016/j.semarthrit.2021.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUNDS Consistent correlation of serum amyloid A (SAA) to rheumatoid arthritis (RA) is not completely established. The present study is to systematically summarize their relationship. METHODS Publications up to may 2021 were examined using key terms in the PubMed, Cochrane Library, Embase and China national knowledge infrastructure (CNKI) databases. RESULTS The total 33 studies, involving in 3524 RA cases and 3537 normal participants, were included. The pooled result indicated that the SAA level in the RA group was markedly higher than that in the control group [standardized mean difference (SMD) = 0.80, 95% CI (0.51, 1.08)]. By stratified analyses, the concentration of SAA was found to be gradually increased with the aggravation of RA. Additionally, the meta-analysis of correlation demonstrated that SAA levels were positively associated with the levels of disease activity score 28 (DAS28) [r = 0.55, 95% CI (0.15, 0.94)], erythrocyte sedimentation rate (ESR) [r = 0.65, 95% CI (0.53, 0.76)], C-reactive protein (CRP) [r = 0.92, 95% CI (0.57, 1.57)], rheumatoid factor (RF) [r = 0.24, 95% CI (0.09, 0.39)], interleukin 4 (IL-4) [r = 0.54, 95% CI (0.30, 0.78)], interleukin 6 (IL-6) [r = 0.46, 95% CI (0.27, 0.65)], interleukin 10 (IL-10) [r = 0.53, 95% CI (0.29, 0.77)], interleukin 17 (IL-17) [r = 0.52, 95% CI (0.27, 0.77)], and anti-cyclic citrullinated peptide antibody (A-CCP) [r = 0.32, 95% CI (0.15, 0.50)], but inversely linked with the levels of hemoglobin [r=-0.51, 95% CI (-0.84, -0.18)]. Furthermore, the allele of SAA 1.3 was actively related with increased risks of RA [OR=1.30, 95% CI (1.02, 1.65)] and of RA with amyloidosis [OR=2.06, 95% CI (1.63, 2.60)]. Besides, the genotype of SAA 1.3/1.3 was positively connected with the risks of RA [OR=1.56, 95% CI (1.00, 2.43)] and of RA with amyloidosis [OR=4.47, 95% CI (2.70, 7.41)]. CONCLUSIONS High levels of SAA might be associated with elevated risk of RA, and the concentration of SAA might be gradually increased with the aggravation of RA. Moreover, high levels of SAA might play a vital role in RA by enhancing the levels of DAS28, ESR, CRP, RF, IL-4, IL-6, IL-10, IL-17 and A-CCP, or by attenuating hemoglobin levels. More importantly, the allele of SAA 1.3 and genotype of SAA 1.3/1.3 might be the risk factor of RA and of RA with amyloidosis.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032,China
| | - Yu Dai
- Department of Surgery, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China
| | - Yan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032,China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
20
|
Larsson SC, Burgess S. Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med 2021; 19:320. [PMID: 34906131 PMCID: PMC8672504 DOI: 10.1186/s12916-021-02188-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity is a worldwide epidemic that has been associated with a plurality of diseases in observational studies. The aim of this study was to summarize the evidence from Mendelian randomization (MR) studies of the association between body mass index (BMI) and chronic diseases. METHODS PubMed and Embase were searched for MR studies on adult BMI in relation to major chronic diseases, including diabetes mellitus; diseases of the circulatory, respiratory, digestive, musculoskeletal, and nervous systems; and neoplasms. A meta-analysis was performed for each disease by using results from published MR studies and corresponding de novo analyses based on summary-level genetic data from the FinnGen consortium (n = 218,792 individuals). RESULTS In a meta-analysis of results from published MR studies and de novo analyses of the FinnGen consortium, genetically predicted higher BMI was associated with increased risk of type 2 diabetes mellitus, 14 circulatory disease outcomes, asthma, chronic obstructive pulmonary disease, five digestive system diseases, three musculoskeletal system diseases, and multiple sclerosis as well as cancers of the digestive system (six cancer sites), uterus, kidney, and bladder. In contrast, genetically predicted higher adult BMI was associated with a decreased risk of Dupuytren's disease, osteoporosis, and breast, prostate, and non-melanoma cancer, and not associated with Alzheimer's disease, amyotrophic lateral sclerosis, or Parkinson's disease. CONCLUSIONS The totality of the evidence from MR studies supports a causal role of excess adiposity in a plurality of chronic diseases. Hence, continued efforts to reduce the prevalence of overweight and obesity are a major public health goal.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Prädisponiert die Adipositas für eine rheumatoiden Arthritis? AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1512-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Es wird angenommen, dass ein Zusammenhang zwischen der Adipositas und dem Risiko, an einer rheumatoiden Arthritis (RA) zu erkranken, besteht und dass Frauen diesbezüglich stärker gefährdet sind als Männer. Ein Team schwedischer und US-amerikanischer Forscherinnen und Forscher hat diese Fragestellung nun mithilfe einer genetischen Korrelationsanalyse sowie einer Mendelschen Randomisierungsstudie beleuchtet.
Collapse
|
22
|
Zhao SS, Maglio C, Hughes DM, Cook JP. Body fat composition and risk of rheumatoid arthritis: Mendelian randomization study. Arthritis Rheumatol 2021; 73:1943-1944. [PMID: 33844473 DOI: 10.1002/art.41766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023]
Affiliation(s)
| | - Cristina Maglio
- Wallenberg Centre for Molecular and Translational Medicine and University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
23
|
Zhu J, Niu Z, Alfredsson L, Klareskog L, Padyukov L, Jiang X. Age at menarche, age at natural menopause, and risk of rheumatoid arthritis - a Mendelian randomization study. Arthritis Res Ther 2021; 23:108. [PMID: 33836822 PMCID: PMC8034136 DOI: 10.1186/s13075-021-02495-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hormonal reproductive factors have been suggested to play an important role in the etiology of rheumatoid arthritis (RA), an autoimmune inflammatory disorder affecting primarily women. We conducted a two-sample Mendelian randomization (MR) study examining three relevant exposures, age at menarche (AAM), age at natural menopause (ANM), and age at first birth (AFB) with the risk of RA. METHODS We collected summary statistics from the hitherto largest GWAS conducted in AAM (N = 329,345), ANM (N = 69,360), AFB (N = 251,151), and RA (Ncase = 14,361, Ncontrol = 43,923), all of European ancestry. We constructed strong instruments using hundreds of exposure-associated genetic variants and estimated causal relationship through different MR approaches including an inverse-variance weighted method, an MR-Egger regression and a weighted median method. We conducted a multivariable MR to control for pleiotropic effect acting in particular through obesity and socioeconomic status. We also performed important sensitivity analyses to verify model assumptions. RESULTS We did not find any evidence in support for a causal association between genetically predicted reproductive factors and risk of RA (ORper-SD increment in AAM = 1.06 [0.98-1.15]; ORper-SD increment in ANM = 1.05 [0.98-1.11], OR per-SD increment in AFB = 0.85 [0.65-1.10]). Results remained consistent after removing palindromic SNPs (ORper-SD increment in AAM = 1.06 [0.97-1.15], ORper-SD increment in ANM = 1.05 [0.98-1.13], ORper-SD increment in AFB = 0.81 [0.61-1.07]) or excluding SNPs associated with potential confounding traits (ORper-SD increment in AAM = 1.03 [0.94-1.12], ORper-SD increment in ANM = 1.04 [0.95-1.14]). No outlying instrument was identified through the leave-one-out analysis. CONCLUSIONS Our MR study does not convincingly support a casual effect of reproductive factors, as reflected by age at menarche, age at menopause, and age at first birth, on the development of RA. Despite the largely augmented set of instruments we used, these instruments only explained a modest proportion of phenotypic variance of exposures. Our knowledge regarding this topic is still insufficient and future studies with larger sample size should be designed to replicate or dispute our findings.
Collapse
Affiliation(s)
- Jingjing Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Tomtebodavägen 5, 17 177, Stockholm, Sweden
| | - Lars Klareskog
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Leonid Padyukov
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Tomtebodavägen 5, 17 177, Stockholm, Sweden. .,Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA. .,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Etiologies of Rheumatoid Arthritis: Update on Mucosal, Genetic, and Cellular Pathogenesis. Curr Rheumatol Rep 2021; 23:21. [PMID: 33646410 PMCID: PMC7919619 DOI: 10.1007/s11926-021-00993-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review Over the last few years, the scientific community has made significant progress in understanding the etiology of rheumatoid arthritis (RA). In this review, we summarize those key findings and trends. Recent Findings New data strongly implicates respiratory exposures, obesity, diet and microbiome, genetics, and their interactions in the etiology of RA. Furthermore, anti-posttranslationally modified protein antibodies (AMPAs) and abnormal glycosylation may be additional biomarkers for RA. Finally, functional genomics techniques implicate loss of certain macrophage populations and proliferation of synovial fibroblasts in RA. Summary These findings support the notion that RA originates at mucosal sites, augmented by genetic predisposition, and mediated by certain cell types including macrophages and fibroblasts. Weight loss, physical activity, and diet are additional modifiable factors beyond smoking cessation that can reduce risk of RA. Future epidemiologic and translational studies leveraging multi-omics approaches will help map the precise sequence of events in RA pathogenesis.
Collapse
|