1
|
Sahoo A, Jaiswal S, Das S, Patra A. Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO 2 Fixation. Chempluschem 2024; 89:e202400189. [PMID: 38963082 DOI: 10.1002/cplu.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
Collapse
Affiliation(s)
- Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Aggarwal S, Awasthi SK. Emerging trends in the development and applications of triazine-based covalent organic polymers: a comprehensive review. Dalton Trans 2024; 53:11601-11643. [PMID: 38916403 DOI: 10.1039/d4dt01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Owing to unique structural features, triazine-based covalent organic polymers (COPs) have attracted significant attention and emerged as novel catalysts or support materials for an array of applications. Typically formed by reacting triazine-based monomers or the in situ creation of triazine rings from nitrile monomers, these COPs possess 2D/3D meso/microporous structures held together via strong covalent linkages. The quest for efficient, stable and recyclable catalytic systems globally necessitates the need for a well-structured and comprehensive review summarizing the synthetic methodologies and applications of triazine-based COPs. This review explores the various synthetic routes and applications of these COPs in photocatalysis, heterogeneous catalysis, electrocatalysis, adsorption and sensing. By exploring the latest advancements and future directions, this review offers valuable insights into the synthesis and applications of triazine-based COPs.
Collapse
Affiliation(s)
- Simran Aggarwal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
3
|
Eskemech A, Chand H, Karmakar A, Krishnan V, Koner RR. Zn-MOF as a Single Catalyst with Dual Lewis Acidic and Basic Reaction Sites for CO 2 Fixation. Inorg Chem 2024; 63:3757-3768. [PMID: 38354394 DOI: 10.1021/acs.inorgchem.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Continuous increase in carbon dioxide (CO2) emissions are causing imbalances in the environment, which impact biodiversity and human health. The conversion of CO2 to cyclic carbonates by means of metal-organic frameworks (MOFs) as a heterogeneous catalyst is a prominent strategy for rectifying this imbalance. Herein, we have developed nitrogen-rich Zn (II) based metal-organic framework, [Zn(CPMT)(bipy)]n (CPMT = 1-(4-carboxyphenyl)-5-mercapto-1H-tetrazole; bipy = 4,4'-bipyridine), synthesized via a mixed ligand strategy. This Zn-MOF showed high chemical stability in both acidic and basic conditions, and in organic solvents for a long time. On account of the concurrent presence of acid-base active sites and strong chemical stability under abrasive conditions, this Zn-MOF was employed as an effective catalyst for the coupling of CO2 and epoxides, under atmospheric pressure, mild temperature, and neat conditions. This Zn-MOF shows remarkable activity by producing high yields of epichlorohydrin carbonate (98%) and styrene carbonate (82%) at atmospheric CO2 pressure, 70 °C temperature, and 24 h reaction time, with turnover numbers (TON) of 217 and 181, respectively. The Zn-MOF could be reused for up to seven cycles with structural and framework integrity. Overall, this work demonstrates the synthesis of a novel and highly efficient MOF for CO2 conversion.
Collapse
Affiliation(s)
- Alehegn Eskemech
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hushan Chand
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
4
|
Shreeraj G, Sah A, Sarkar S, Giri A, Sahoo A, Patra A. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16069-16078. [PMID: 37847043 DOI: 10.1021/acs.langmuir.3c02215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developing efficient adsorbent materials for iodine scavenging is essential to mitigate the threat of radioactive iodine causing adverse effects on human health and the environment. In this context, we explored N-rich two-dimensional covalent organic frameworks (COFs) with diverse functionalities for iodine capture. The pyridyl-hydroxyl-functionalized triazine-based novel 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(pyridine-2-amine) (TTPA)-COF possesses high crystallinity (crystalline domain size: 24.4 ± 0.6 nm) and high porosity (specific BET surface area: 1000 ± 90 m2 g-1). TTPA-COF exhibits superior vapor-phase iodine adsorption (4.43 ± 0.01 g g-1) compared to analogous COF devoid of pyridinic moieties, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)-COF. The high iodine capture by TTPA-COF is due to the enhanced binding affinity conferred by the extra pyridinic active sites. Furthermore, the crucial role of long-range order in porous adsorbents has been experimentally evidenced by comparing the performance of iodine vapor capture of TTPA-COF with an amorphous network polymer having identical functionalities. We have also demonstrated the high iodine scavenging ability of TTPA-COF from the organic and aqueous phases. The mechanism of iodine adsorption by the heteroatom-rich framework is elucidated through FTIR, XPS, and Raman spectral analyses. The present study highlights the need for structural tweaking of the building blocks toward the rational construction of advanced functional porous materials for a task-specific application.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ajay Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Jain S, Batabyal M, Thorat RA, Choudhary P, Jha RK, Kumar S. 2-Benzamide Tellurenyl Iodides: Synthesis and Their Catalytic Role in CO 2 Mitigation. Chemistry 2023; 29:e202301502. [PMID: 37338224 DOI: 10.1002/chem.202301502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
Benzamide-derived organochalcogens (chalcogen=S, Se, and Te) have shown promising interest in biological and synthetic chemistry. Ebselen molecule derived from benzamide moiety is the most studied organoselenium. However, its heavier congener organotellurium is under-explored. Here, an efficient copper-catalyzed atom economical synthetic method has been developed to synthesize 2-phenyl-benzamide tellurenyl iodides by inserting a tellurium atom into carbon-iodine bond of 2-iodobenzamides in one pot with 78-95 % yields. Further, the Lewis acidic nature of Te center and Lewis basic nature of nitrogen of the synthesized 2-Iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides enabled them as pre-catalyst for the activation of epoxide with CO2 at 1 atm for the preparation of cyclic carbonates with TOF and TON values of 1447 h-1 and 4343, respectively, under solvent-free conditions. In addition, 2-iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides have also been used as pre-catalyst for activating anilines and CO2 to form a variety of 1,3-diaryl ureas up to 95 % yield. The mechanistic investigation for CO2 mitigation is done by 125 Te NMR and HRMS studies. It seems that the reaction proceeds via formation of catalytically active Te-N heterocycle, an ebtellur intermediate which is isolated and structurally characterized.
Collapse
Affiliation(s)
- Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Pratibha Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
6
|
Chen Z, Zhi Y, Li W, Li S, Liu Y, Tang X, Hu T, Shi L, Shan S. One-step synthesis of nitrogen-rich organic polymers for efficient catalysis of CO 2 cycloaddition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67290-67302. [PMID: 37103698 DOI: 10.1007/s11356-023-26728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen-rich organic polymer poly(chloride triazole) (PCTs) was synthesized by a one-step method as metal-halogen-free heterogeneous catalyst for the solvent-free CO2 cycloaddition. PCTs had abundant nitrogen sites and hydrogen bond donors, exhibited great activity for the cycloaddition of CO2 and epichlorohydrin, and achieved 99.6% yield of chloropropene carbonate under the conditions of 110 ℃, 6 h, and 0.5 MPa CO2. The activation of epoxides and CO2 by hydrogen bond donor and nitrogen sites was further explained by density functional theory (DFT) calculations. In summary, this study showed that nitrogen-rich organic polymer is a versatile platform for CO2 cycloaddition, and this paper provides a reference for the design of CO2 cycloaddition catalysts.
Collapse
Affiliation(s)
- Zewen Chen
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yunfei Zhi
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenlong Li
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Shuangjiang Li
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yi Liu
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiaoning Tang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Tianding Hu
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Lan Shi
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Shaoyun Shan
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
7
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
8
|
Mondal J, Sivaramakrishna A. Functionalized Triazines and Tetrazines: Synthesis and Applications. Top Curr Chem (Cham) 2022; 380:34. [PMID: 35737142 DOI: 10.1007/s41061-022-00385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022]
Abstract
The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.
Collapse
Affiliation(s)
- Joydip Mondal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
9
|
Mitra A, Biswas T, Ghosh S, Tudu G, Paliwal KS, Ganatra P, Mahalingam V. Prudent Choice of Iron‐based Metal‐Organic Networks for Solvent‐free CO
2
Fixation at Ambient Pressure. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Tanmoy Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sourav Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Gouri Tudu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Khushboo S. Paliwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Pragati Ganatra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
10
|
Tudu G, Paliwal KS, Ghosh S, Biswas T, Koppisetti HVSRM, Mitra A, Mahalingam V. para-Aminobenzoic acid-capped hematite as an efficient nanocatalyst for solvent-free CO 2 fixation under atmospheric pressure. Dalton Trans 2022; 51:1918-1926. [PMID: 35019928 DOI: 10.1039/d1dt03821d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Utilization of carbon dioxide by converting it into value-added chemicals is a sustainable remedy approach that stipulates abundant, cheap, non-toxic and efficient catalytic materials. In this study, we have demonstrated the use of para-aminobenzoic acid-capped hematite (PABA@α-Fe2O3) as an efficient nanocatalyst for the conversion of epoxides to cyclic carbonates utilizing CO2. The developed PABA@α-Fe2O3 nanocatalyst along with a cocatalyst, tetrabutylammonium iodide (TBAI), was able to convert a variety of epoxide substrates into their corresponding cyclic carbonates under atmospheric pressure and solvent-free conditions. The efficient catalytic activity of the material is attributed to the synergistic effect between α-Fe2O3 and the amine group of the PABA molecule present on the surface. Furthermore, the recyclability study and post-catalytic analysis revealed that the developed catalyst can be used for multiple catalytic cycles due to the stable and robust nature of the nanocatalyst. The choice of the PABA@α-Fe2O3 nanocatalyst is indeed a sustainable approach from the CO2 capture and utilization point of view.
Collapse
Affiliation(s)
- Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Tanmoy Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
11
|
Fang X, Liu C, Yang L, Yu T, Zhai D, Zhao W, Deng WQ. Bifunctional poly(ionic liquid) catalyst with dual-active-center for CO2 conversion: Synergistic effect of triazine and imidazolium motifs. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tudu G, Ghosh S, Biswas T, Mahalingam V. Gold incorporated hematite nanocatalyst for solvent-free CO 2 fixation under atmospheric pressure. NEW J CHEM 2020. [DOI: 10.1039/d0nj01377c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Au/α-Fe2O3 as a nanocatalyst for the conversion of epoxides to cyclic carbonates utilizing CO2 under 1 atm. pressure.
Collapse
Affiliation(s)
- Gouri Tudu
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM)
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| | - Sourav Ghosh
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM)
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| | - Tanmoy Biswas
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM)
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM)
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| |
Collapse
|