1
|
Jeong HC, Lee HJ, Maruoka K. Chemoselective Approach to Versatile Acyl Fluorides by Photoinduced Activation of p-Methoxybenzyl Esters. Org Lett 2024; 26:7956-7960. [PMID: 39259958 DOI: 10.1021/acs.orglett.4c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A new strategy for the metal-free photoinduced activation of p-methoxybenzyl esters is developed using Selectfluor and benzil for the generation of acyl fluoride intermediates that enable various transformations. The highlight of this activation method is its high chemoselectivity in the presence of other functionalities, such as esters, amides, and ketones. A synthetic application for the preparation of peptide mimetics that possess two different amide units is also described.
Collapse
Affiliation(s)
- Hee-Chan Jeong
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyo-Jun Lee
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
2
|
Li Q, Yuan D, Liu C, Herington F, Yang K, Ge H. Selective Oxidation of Benzo[ d]isothiazol-3(2 H)-Ones Enabled by Selectfluor. Molecules 2024; 29:3899. [PMID: 39202979 PMCID: PMC11357611 DOI: 10.3390/molecules29163899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
A metal-free and Selectfluor-mediated selective oxidation reaction of benzo[d]isothiazol-3(2H)-ones in aqueous media is presented. This novel strategy provides a facile, green, and efficient approach to access important benzo[d]isothiazol-3(2H)-one-1-oxides with excellent yields and high tolerance to various functional groups. Furthermore, the purification of benzoisothiazol-3-one-1-oxides does not rely on column chromatography. Moreover, the preparation of saccharine derivatives has been achieved through sequential, double oxidation reactions in a one-pot aqueous media.
Collapse
Affiliation(s)
- Qin Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Dan Yuan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| | - Faith Herington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| |
Collapse
|
3
|
Dağalan Z, Çelikoğlu MH, Çelik S, Koçak R, Nişancı B. Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner-Meerwein rearrangement. Beilstein J Org Chem 2024; 20:1462-1467. [PMID: 38978745 PMCID: PMC11228819 DOI: 10.3762/bjoc.20.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Herein, we report the first environmentally friendly systematic fluoroalkoxylation reactions in bicyclic systems. New oxyfluorination products were obtained with excellent yields (up to 98%) via Wagner-Meerwein rearrangement using benzonorbornadiene and the chiral natural compound (+)-camphene as bicyclic alkenes, selectfluor as an electrophilic fluorine source, and water and various alcohols as nucleophile sources. The structure of bicyclic oxy- and alkoxyfluorine compounds was determined by NMR and QTOF-MS analyses.
Collapse
Affiliation(s)
- Ziya Dağalan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, Edirne, Turkey
| | - Ramazan Koçak
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Ying L, Song X, Tang J, Hu Z, Zhao Q, Song Z. Metal-Free Radical [3 + 2] Annulation of Tetraalkylthiuram Disulfide with Alkynes/Alkenes: An Approach of Synthesizing 1,3-Dithiole and 1,3-Ditholane Derivatives. Org Lett 2024; 26:3230-3234. [PMID: 38563564 DOI: 10.1021/acs.orglett.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A novel and metal-free [3 + 2] annulation of tetraalkylthiuram disulfide with alkynes/alkenes has been developed using Selectfluor at room temperature. The formed 1,3-dithiol-2-ylium/1,3-dithiolan-2-ylium salts can be easily transformed into the corresponding 1,3-dithiol-2-ylidenes/1,3-ditholan-2-ylidenes by one-pot subsequent condensation with malononitrile. The present protocol features the use of easily accessible starting materials, mild reaction conditions, good tolerance with diverse functional groups, easy scale-up, and a wide substrate scope, affording the desired products in good yields. Importantly, this method is suitable for the late-stage modification of bioactive molecules. Furthermore, 1,3-dithiol-2-ylium salt can also be easily converted into various 1,3-dithiole derivatives by condensation, reduction, or hydrolysis. Mechanism studies show that this transformation involves radical annulation. Of note, this method presented a novel example using tetraalkylthiuram disulfide as a sulfur synthon in annulation, which greatly enriches the application of tetraalkylthiuram disulfides in organic synthesis. Biological evaluation indicates that these prepared compounds are promising candidates in terms of their antitumor activity.
Collapse
Affiliation(s)
- Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhengcan Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
5
|
Ruskin J, Sachs RK, Wang M, Dekeyser R, Lew Z, Williams P, Hwang H, Majumdar A, Dudding T, Lectka T. Metal Ion-Induced Large Fragment Deactivation: A Different Strategy for Site-Selectivity in a Complex Molecule. Angew Chem Int Ed Engl 2024; 63:e202317070. [PMID: 38063469 DOI: 10.1002/anie.202317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.
Collapse
Affiliation(s)
- Jonah Ruskin
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roseann K Sachs
- Department of Chemistry and Biochemistry, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roxanne Dekeyser
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Zachary Lew
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Phoebe Williams
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Habin Hwang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Hooson JF, Tran HN, Bian KJ, West JG. Simple, catalytic C(sp 3)-H azidation using the C-H donor as the limiting reagent. Chem Commun (Camb) 2024. [PMID: 38477139 DOI: 10.1039/d3cc04728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
C-N bonds play a critical role in pharmaceutical, agrochemical, and materials sciences, necessitating ever-better methods to forge this linkage. Here we report a simple procedure for direct C(sp3)-H azidation using iron or manganese catalysis and a nucleophilic azide source. All reagents are commercially available, the experimental procedure is simple, and we can use the C-H donor substrate as the limiting reagent, a challenge for many C-H azidation methods. Preliminary experiments are consistent with a hydrogen atom transfer (HAT)/radical ligand transfer (RLT) radical cascade mechanism and a wide variety of substrates can be azidated in moderate to high yields.
Collapse
Affiliation(s)
- James F Hooson
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Hai N Tran
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| |
Collapse
|
7
|
Johari S, Johan MR, Khaligh NG. Organocatalytic Synthesis of (Hetero)arylidene Malononitriles Using a More Sustainable, Greener, and Scalable Strategy. Curr Org Synth 2024; 21:704-716. [PMID: 38231061 DOI: 10.2174/0115701794268766231108110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
AIM AND OBJECTIVE The establishment of a green and sustainable Knoevenagel condensation reaction in organic chemistry is still crucial. This work aimed to provide a newly developed metal-free and halogen-free catalytic methodology for the synthesis of CS and (hetero-) arylidene malononitriles in the laboratory and industrial scale. The Knoevenagel condensation reaction of various carbonyl groups with malononitrile was investigated in ethanol, an ecofriendly medium, in the presence of seven nitrogen-based organocatalysts. MATERIALS AND METHODS A comparative study was conducted using two as-obtained and four commercially available nitrogen-based organocatalysts in Knoevenagel condensation reactions. The synthesis of CS gas (2-chlorobenzylidene malononitrile) using a closed catalytic system was optimized based on their efficiency and greener approach. RESULTS The conversion of 100% and excellent yields were obtained in a short time. The products could be crystallized directly from the reaction mixture. After separating pure products, the residue solution was employed directly in the next run without any concentration, activation, purification, or separation. Furthermore, the synthesis of 2-chlorobenzylidenemahmonitrile (CS) was carried out on a large scale using imidazole as a selected nitrogen-based catalyst, afforded crystalline products with 95 ± 2% yield in five consecutive runs. CONCLUSION Energy efficiency, cost saving, greener conditions, using only 5 mol% of organocatalyst, high recyclability of catalyst, prevention of waste, recycling extractant by a rotary evaporator for non-crystallized products, demonstrated the potential commercial production of CS using imidazole in ethanol as an efficient and highly recyclable catalytic system.
Collapse
Affiliation(s)
- Suzaimi Johari
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wang ZY, Freas DJ, Fu GC. Phosphine Catalysis of the Fluorination of Unactivated Tertiary Alkyl Chlorides under Mild and Convenient Conditions. J Am Chem Soc 2023; 145:25093-25097. [PMID: 37939003 PMCID: PMC10942731 DOI: 10.1021/jacs.3c11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Due to the significance of organofluorine compounds in disciplines ranging from medicine to agriculture to materials science, the invention of new methods for the creation of carbon-fluorine bonds is an important objective. Among the underdeveloped dimensions in this area are the fluorination of hindered alkyl halides (particularly chlorides) and the discovery of catalysts for such fluorination processes. Herein, we report a mild method for the fluorination of unactivated tertiary alkyl chlorides (and bromides), catalyzed by inexpensive PPh3. This straightforward process is compatible with a range of hindered electrophiles and a variety of functional groups.
Collapse
Affiliation(s)
- Zhuo-Yan Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dylan J Freas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Yang K, Luo Y, Hu Q, Song M, Liu J, Li Z, Li B, Sun X. Selective C(sp 3)-S Bond Cleavage of Thioethers to Build Up Unsymmetrical Disulfides. J Org Chem 2023; 88:13699-13711. [PMID: 37747962 DOI: 10.1021/acs.joc.3c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
10
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
11
|
Fu D, Xi C, Xu J. Demethyl oxidative halogenation of diacyl dimethylsulfonium methylides. Org Biomol Chem 2023; 21:3991-3996. [PMID: 37114954 DOI: 10.1039/d3ob00499f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
α-Halo-α-methylthio-β-ketosulfones containing a quaternary halocarbon stereocenter were prepared via selective demethyl oxidative halogenations of diacyl dimethylsulfonium methylides in moderate to excellent yields (39 examples; up to 98%). The current protocols directly and efficiently introduce a halogen atom into organic compounds with high functional group tolerance under metal-free conditions.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Changmeng Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Chen B, Huang Z, Hu Z, Liu X, Weng J. Visible Light Induced C2 Alkylation of 2
H
‐Benzoxazoles with Cycloalkanes and Ethers
via
Selectfluor‐Mediated Oxidation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Bo Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhen Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhi‐Gang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Jian‐Quan Weng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
13
|
Belladona AL, Cardoso Dilelio M, Cargnelutti R, Barcellos T, Cruz Silveira C, Schumacher RF. Direct and Regioselective C−H Selenylation of 4‐Aminocoumarin Derivatives Mediated by Selectfluor®. ChemistrySelect 2023. [DOI: 10.1002/slct.202300377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Andrei Lucca Belladona
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Marina Cardoso Dilelio
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Roberta Cargnelutti
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products University of Caxias do Sul (UCS) 95070 560 Caxias do Sul RS Brazil
| | - Claudio Cruz Silveira
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | | |
Collapse
|
14
|
Chen Y, Yang B, Li QY, Lin YM, Gong L. Selectfluor®-enabled photochemical selective C(sp 3)-H(sulfonyl)amidation. Chem Commun (Camb) 2022; 59:118-121. [PMID: 36477311 DOI: 10.1039/d2cc05569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal- and photosensitizer-free C(sp3)-H (sulfonyl)amidation reactions have been realized by employing Selectfluor® as a versatile reagent, functioning as a photoactive component, a HAT precursor and an oxidant. Various toluene derivatives, cycloalkanes, natural products and bioactive molecules can be converted into N-containing products under mild conditions in good yield and with high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yuehua Chen
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Boxuan Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
15
|
Yakubov S, Stockerl WJ, Tian X, Shahin A, Mandigma MJP, Gschwind RM, Barham JP. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp 3)-H fluorinations. Chem Sci 2022; 13:14041-14051. [PMID: 36540818 PMCID: PMC9728569 DOI: 10.1039/d2sc05735b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2023] Open
Abstract
Of the methods for direct fluorination of unactivated C(sp3)-H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp3)-H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp3)-H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate 'assembly' of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other EnT photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Willibald J Stockerl
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ruth M Gschwind
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
16
|
Direct substitution of the hydroxy group of alcohols with N-nucleophiles mediated by the substoichiometric amount of Selectfluor F-TEDA-BF as a precatalyst under mild reaction conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Dağalan Z, Koçak R, Daştan A, Nişancı B. Selectfluor and TBAX (Cl, Br) Mediated Oxidative Chlorination and Bromination of Olefins. Org Lett 2022; 24:8261-8264. [PMID: 36129307 PMCID: PMC9680025 DOI: 10.1021/acs.orglett.2c02627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Herein, we report the first metal-free and molecular halogen reagent-free dihomohalogenation methodology by using Selectfluor as an oxidant and tetrabutylammonium bromide/chloride salts as a halogen source. This effective strategy provides various fluorine-free halogenated products easily in quantitative yields from alkenes, alkynes, and natural products.
Collapse
Affiliation(s)
- Ziya Dağalan
- Department of Chemistry,
Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Ramazan Koçak
- Department of Chemistry,
Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Arif Daştan
- Department of Chemistry,
Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Bilal Nişancı
- Department of Chemistry,
Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
18
|
Selectfluor-promoted α-methylenation of aromatic ketones to terminal olefins using acetonitrile as one carbon source. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
20
|
Guo S, Li Y, Fan W, Liu Z, Huang D. Copper(II)-Catalyzed Selective CAr-H Bond Formylation: Synthesis of Dialdehyde Aniline. Front Chem 2022; 10:891858. [PMID: 35685349 PMCID: PMC9171048 DOI: 10.3389/fchem.2022.891858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
A simple and efficient method for the synthesis of dialdehyde aniline in good yields (up to 83%) is explored using Cu(OTf)2 as the catalyst, Selectfluor as the radical initiator, and DMSO as both the carbon and oxygen sources. Experimental studies indicate that the reaction is achieved by the formylation of two CAr-H bonds, first at the para-position and then at the ortho-position. A possible mechanism is proposed, including the thermal homolysis of Selectfluor, the Cu(II)-facilitated formylation of the CAr-H bonds, and the hydrolysis of the amide under alkaline conditions in air atmosphere.
Collapse
Affiliation(s)
- Shiwei Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- *Correspondence: Deguang Huang,
| |
Collapse
|
21
|
Garia A, Kumar S, Jain N. SelectfluorTM Mediated Tandem Fluorination and 1,3‐Carbonyl Migration in ortho‐Carbonyl Anilines: Charge Transfer Enabled ortho‐Selectivity. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alankrita Garia
- Indian Institute of Technology Delhi Chemistry Hauz Khas Delhi INDIA
| | - Sharvan Kumar
- Indian Institute of Technology Delhi Chemistry Hauz Khas Delhi INDIA
| | - Nidhi Jain
- Indian Institute of Technology Chemistry Hauz Khas 110016 Delhi INDIA
| |
Collapse
|
22
|
Guo X, Sun X, Zhao Y, Jiang M. Switchable Synthesis of Sulfoxides, Sulfones and Thiosulfonates through Selectfluor-Promoted Oxidation with H2O as O-Source. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-6700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA practical and efficient protocol for the switchable synthesis of sulfoxides, sulfones, and thiosulfonates via Selectfluor-mediated oxidation of sulfides and thiols, respectively, at ambient temperature has been developed. All these organosulfur compounds can be prepared with nearly quantitative yields by applying eco-friendly H2O as O-source. The formation of sulfoxides and thiosulfonates takes only a few minutes (3–20 min). As suggested by the control experiments, the oxidation procedure might proceed through the fluorination of sulfide, nucleophilic addition with H2O, and elimination of hydrogen fluoride.
Collapse
|
23
|
Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules 2022; 27:1643. [PMID: 35268744 PMCID: PMC8912053 DOI: 10.3390/molecules27051643] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy; (L.B.); (O.R.); (F.M.); (L.S.)
| | | | | | | | | | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy; (L.B.); (O.R.); (F.M.); (L.S.)
| |
Collapse
|
24
|
Zhang Y, Liu Z, Zhu T, Huang Y, Fan W, Huang D. Synthesis of methylene-bridged α,β-unsaturated ketones: α-C sp3-H methylenation of aromatic ketones using Selectfluor as a mild oxidant. Org Biomol Chem 2022; 20:415-419. [PMID: 34908092 DOI: 10.1039/d1ob02043a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A three starting material four component reaction (3SM-4CR) is developed for the synthesis of α,β-unsaturated ketones and β-amino ketones in good yields. The reaction employs tetramethylethylenediamine (TMEDA) as a methylene and terminal olefin source, and Selectfluor as a mild oxidant. TMEDA worked as a dual synthon to provide two carbons in this metal-free transformation process. The scope and versatility of the methods have been demonstrated with 23 examples. A Selectfluor-promoted oxidative reaction mechanism is proposed based on the results of the experimental studies.
Collapse
Affiliation(s)
- Yuan Zhang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhiqi Liu
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Tingyu Zhu
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ying Huang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
25
|
Dai S, Yang K, Luo Y, Xu Z, Li Z, Li Z, Li B, Sun X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse transformations of 2-alkylthiobenzamides have been established to synthesize 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles in the presence of Selectfluor.
Collapse
Affiliation(s)
- Shengfei Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ziyuan Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
26
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
Song M, Hu Q, Li ZY, Sun X, Yang K. NFSI-catalyzed S‒S bond exchange reaction for the synthesis of unsymmetrical disulfides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Prasanth K, Bhargava Reddy M, Anandhan R. Visible‐Light‐Induced Photocatalyst‐Free Oxidative Cyclization of Primary Alcohols by Selectfluor
via
HAT Process: Synthesis of Quinazolinones and Benzothiadiazines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kesavan Prasanth
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| | - Mandapati Bhargava Reddy
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| | - Ramasamy Anandhan
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| |
Collapse
|
29
|
Wang T, Vickery TP, Bachert D, Gangam R, Margelefsky E, Phillips EM, Dalby SM, Liu W, Peterman A, Zawatzky K, Cohen RD. An Investigation into the Unexpected Corrosion of Nickel Alloy Vessels with Selectfluor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Wang
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thomas P. Vickery
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Donald Bachert
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rekha Gangam
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric Margelefsky
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M. Phillips
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen M. Dalby
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wenjun Liu
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Amanda Peterman
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kerstin Zawatzky
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan D. Cohen
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
30
|
Zhao Y, Guo X, Li S, Fan Y, Sun X, Tian L. PhB(OH) 2-Promoted Electrochemical Sulfuration-Formyloxylation of Styrenes and Selectfluor-Mediated Oxidation-Olefination. Org Lett 2021; 23:9140-9145. [PMID: 34783249 DOI: 10.1021/acs.orglett.1c03461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a PhB(OH)2-promoted electrochemical sulfuration-formyloxylation reaction of styrenes employing commercially available thiophenols/thiols as thiolating agents. Specifically, metal catalysts and external chemical oxidants are not needed in the reaction for the formation of β-formyloxy sulfides, and these sulfides can be further converted to (E)-vinyl sulfones via the Selectfluor-mediated oxidation-olefination. Notably, on the basis of this electrochemical oxidation strategy, β-hydroxy sulfide, β-formyloxy sulfoxide, β-formyloxy sulfone, and (E)-vinyl sulfoxide can also be easily prepared.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuejun Sun
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
31
|
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| |
Collapse
|
32
|
|
33
|
Li Y, Hu Q, Zhang F, Li Z, Sun X, Yang K. Metal‐Free Selective C−S Bond Cleavage of Thioethers to Access β‐Alkoxy Carbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202101925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| | - Feiyang Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou Jiangsu 213164 China
| |
Collapse
|
34
|
Zhu B, Han H, Su WK, Yan B, Li Z, Yu C, Jiang X. Highly Stereoselective Intramolecular Carbofluorination of Internal α,β-Ynones Promoted by Selectfluor. Org Lett 2021; 23:4488-4492. [PMID: 34029477 DOI: 10.1021/acs.orglett.1c01441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a metal-free intramolecular carbofluorination protocol for the synthesis of tetrasubstituted monofluoroalkenes from internal α,β-ynones and Selectfluor with both high stereoselectivity and broad functional group tolerance. The chelation between tetrafluoroborate anion and the oxygen present in the aldehyde group rendered the reaction highly stereoselective, with the tetrafluoroborate serving as the direct fluorine source. Therefore, with addition of sodium tetrafluoroborate, Selectfluor could be reused several times without sacrificing reactivity.
Collapse
Affiliation(s)
- Bingbin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hang Han
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Boan Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
35
|
Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yang K, Dai S, Li Z, Li Z, Sun X. Amide-assisted α-C(sp 3)–H acyloxyation of organic sulfides to access α-acyloxy sulfides. Org Chem Front 2021. [DOI: 10.1039/d1qo00774b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct acyloxyation of 2-(alkylthio)benzamide has been established via an amide-assisted α-C(sp3)–H functionalization in the presence of Selectfluor by using simple carboxylic acid and its corresponding salt as acyloxy sources.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shengfei Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
37
|
Chen W, Li HJ, Liu M, Gong PX, Wu YC. Synthesis of difluorinated 3-oxo- N,3-diarylpropanamides from 4-arylamino coumarins mediated by Selectfluor. Org Chem Front 2021. [DOI: 10.1039/d1qo01273h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expeditious approach to synthesize difluorinated 3-oxo-N,3-diarylpropanamides from 4-arylamino coumarins has been accomplished in the presence of Selectfluor, which plays the dual role of a mild oxidant and a source of fluorine.
Collapse
Affiliation(s)
- Weiqiang Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Mei Liu
- China Building Material Test & Certification Group Zibo Co., Ltd, Zibo 255000, P. R. China
| | - Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
38
|
Wang Z, Matsumoto A, Maruoka K. Efficient cleavage of tertiary amide bonds via radical-polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chem Sci 2020; 11:12323-12328. [PMID: 34094440 PMCID: PMC8163011 DOI: 10.1039/d0sc05137c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported. Based on the selective radical abstraction of a benzylic hydrogen atom by a CuBr2/Selectfluor hybrid system followed by a selective cleavage of an N-C bond, an acyl fluoride intermediate is formed. This intermediate may then be derivatized in a one-pot fashion. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to the tertiary amide moiety as well as to nitrogen, oxygen, and carbon nucleophiles for the subsequent derivatization. Mechanistic studies suggest that the present reaction proceeds via a radical-polar crossover process that involves benzylic carbon radicals generated by the selective radical abstraction of a benzylic hydrogen atom by the CuBr2/Selectfluor hybrid system. Furthermore, a synthetic application of this method for the selective cleavage of peptides is described.
Collapse
Affiliation(s)
- Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
39
|
Zhao J, Xiao Q, Chen J, Xu J. Metal‐Free Synthesis of Imidazo[2,1‐
b
]thiazoles from Thioimidazoles and Ketones Mediated by Selectfluor. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinwu Zhao
- School of Pharmacy Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
- Key Laboratory of Big Data Mining and Precision Drug Design Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
| | - Qiannan Xiao
- School of Pharmacy Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
- Key Laboratory of Big Data Mining and Precision Drug Design Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
| | - Jiaxi Chen
- School of Pharmacy Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
| | - Jingxiu Xu
- School of Pharmacy Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
- Key Laboratory of Big Data Mining and Precision Drug Design Guangdong Medical University No.1 Xincheng Blvd, Songshan Lake National High‐tech Industrial Development Zone 523808 Dongguan China
| |
Collapse
|
40
|
Abularrage NS, Levandowski BJ, Raines RT. Synthesis and Diels-Alder Reactivity of 4-Fluoro-4-Methyl-4 H-Pyrazoles. Int J Mol Sci 2020; 21:ijms21113964. [PMID: 32486503 PMCID: PMC7312747 DOI: 10.3390/ijms21113964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/01/2023] Open
Abstract
4H-Pyrazoles are emerging scaffolds for “click” chemistry. Late-stage fluorination with Selectfluor® is found to provide a reliable route to 4-fluoro-4-methyl-4H-pyrazoles. 4-Fluoro-4-methyl-3,5-diphenyl-4H-pyrazole (MFP) manifested 7-fold lower Diels–Alder reactivity than did 4,4-difluoro-3,5-diphenyl-4H-pyrazole (DFP), but higher stability in the presence of biological nucleophiles. Calculations indicate that a large decrease in the hyperconjugative antiaromaticity in MFP relative to DFP does not lead to a large loss in Diels–Alder reactivity because the ground-state structure of MFP avoids hyperconjugative antiaromaticity by distorting into an envelope-like conformation like that in the Diels–Alder transition state. This predistortion enhances the reactivity of MFP and offsets the decrease in reactivity from the diminished hyperconjugative antiaromaticity.
Collapse
|