1
|
Gowen E, Earley L, Waheed A, Poliakoff E. From "one big clumsy mess" to "a fundamental part of my character." Autistic adults' experiences of motor coordination. PLoS One 2023; 18:e0286753. [PMID: 37267374 DOI: 10.1371/journal.pone.0286753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Altered motor coordination is common in autistic individuals affecting a range of movements such as manual dexterity, eye-hand coordination, balance and gait. However, motor coordination is not routinely assessed leading to undiagnosed and untreated motor coordination difficulties, particularly in adults. Few studies have investigated motor coordination difficulties and their impact from the viewpoint of autistic people. Therefore, the current study used FGs and thematic analysis to document the experience of motor coordination difficulties from the viewpoint of 17 autistic adults. Four main themes were identified. First, motor coordination difficulties were pervasive and variable, being present life-long and within multiple movements and affecting many aspects of life. Furthermore, the nature of the difficulties was variable within and between participants along with differing awareness of coordination ability. Second, participants described motor coordination as an active process, requiring concentration for most actions and at a level seemingly greater than other people. Third, motor coordination difficulties impacted upon social and emotional wellbeing by placing strain on relationships, prompting bullying and exclusion, putting safety at risk and causing a range of negative emotions. Fourth, in the absence of any support, participants described multiple learning and coping strategies. Findings highlight how it is essential to address the current lack of support for motor coordination considering the significant social and emotional consequences described by our participants. Further investigation of motor learning and interactions between sensory and motor performance in autistic adults is also warranted.
Collapse
Affiliation(s)
- Emma Gowen
- Division of Psychology, Communication and Human Neuroscience, School of Health Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louis Earley
- Division of Psychology, Communication and Human Neuroscience, School of Health Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adeeba Waheed
- Division of Psychology, Communication and Human Neuroscience, School of Health Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ellen Poliakoff
- Division of Psychology, Communication and Human Neuroscience, School of Health Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
2
|
Moraes ÍAP, Lima JA, Silva NM, Simcsik AO, Silveira AC, Menezes LDC, Araújo LV, Crocetta TB, Voos MC, Tonks J, Silva TD, Dawes H, Monteiro CBM. Effect of Longitudinal Practice in Real and Virtual Environments on Motor Performance, Physical Activity and Enjoyment in People with Autism Spectrum Disorder: A Prospective Randomized Crossover Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14668. [PMID: 36429386 PMCID: PMC9690405 DOI: 10.3390/ijerph192214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: People with ASD commonly present difficulty performing motor skills and a decline in physical activity (PA) level and low enjoyment of PA. We aimed to evaluate whether longitudinal practice of an activity in virtual and real environments improves motor performance and whether this improvement is transferred to a subsequent practice when changing the environment, promoting PA and providing enjoyment; (2) Methods: People with ASD, aged between 10 and 16 years, were included and distributed randomly into two opposite sequences. The participants performed a 10 session protocol, with five sessions practicing in each environment (virtual or real). Heart rate measurement was carried out and an enjoyment scale was applied; (3) Results: 22 participants concluded the protocol. Sequence A (virtual first) presented an improvement in accuracy and precision and transferred this when changing environment; they also had a greater change in heart rate reserve. The majority of participants reported "fun" and "great fun" levels for enjoyment; (4) Conclusions: The virtual reality activity presented a higher level of difficulty, with greater gains in terms of transference to the real environment. Considering PA, our task provided very light to light activity and the majority of participants enjoyed the task.
Collapse
Affiliation(s)
- Íbis A. P. Moraes
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
| | - Joyce A. Lima
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Nadja M. Silva
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Amanda O. Simcsik
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
| | - Ana C. Silveira
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Lilian D. C. Menezes
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Luciano V. Araújo
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Tânia B. Crocetta
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Mariana C. Voos
- Faculty of Humanities and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo 05014-901, Brazil
| | - James Tonks
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
| | - Talita D. Silva
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
- Faculty of Medicine, University City of São Paulo (UNICID), São Paulo 03071-000, Brazil
| | - Helen Dawes
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Carlos B. M. Monteiro
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| |
Collapse
|
3
|
Isenstein EL, Waz T, LoPrete A, Hernandez Y, Knight EJ, Busza A, Tadin D. Rapid assessment of hand reaching using virtual reality and application in cerebellar stroke. PLoS One 2022; 17:e0275220. [PMID: 36174027 PMCID: PMC9522266 DOI: 10.1371/journal.pone.0275220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
The acquisition of sensory information about the world is a dynamic and interactive experience, yet the majority of sensory research focuses on perception without action and is conducted with participants who are passive observers with very limited control over their environment. This approach allows for highly controlled, repeatable experiments and has led to major advances in our understanding of basic sensory processing. Typical human perceptual experiences, however, are far more complex than conventional action-perception experiments and often involve bi-directional interactions between perception and action. Innovations in virtual reality (VR) technology offer an approach to close this notable disconnect between perceptual experiences and experiments. VR experiments can be conducted with a high level of empirical control while also allowing for movement and agency as well as controlled naturalistic environments. New VR technology also permits tracking of fine hand movements, allowing for seamless empirical integration of perception and action. Here, we used VR to assess how multisensory information and cognitive demands affect hand movements while reaching for virtual targets. First, we manipulated the visibility of the reaching hand to uncouple vision and proprioception in a task measuring accuracy while reaching toward a virtual target (n = 20, healthy young adults). The results, which as expected revealed multisensory facilitation, provided a rapid and a highly sensitive measure of isolated proprioceptive accuracy. In the second experiment, we presented the virtual target only briefly and showed that VR can be used as an efficient and robust measurement of spatial memory (n = 18, healthy young adults). Finally, to assess the feasibility of using VR to study perception and action in populations with physical disabilities, we showed that the results from the visual-proprioceptive task generalize to two patients with recent cerebellar stroke. Overall, we show that VR coupled with hand-tracking offers an efficient and adaptable way to study human perception and action.
Collapse
Affiliation(s)
- E. L. Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
| | - T. Waz
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
| | - A. LoPrete
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Y. Hernandez
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- The City College of New York, CUNY, New York, NY, United States of America
| | - E. J. Knight
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - A. Busza
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - D. Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
4
|
Chua YW, Lu S, Anzulewicz A, Sobota K, Tachtatzis C, Andonovic I, Rowe P, Delafield‐Butt J. Developmental differences in the prospective organisation of goal-directed movement between children with autism and typically developing children: A smart tablet serious game study. Dev Sci 2022; 25:e13195. [PMID: 34800316 PMCID: PMC9287065 DOI: 10.1111/desc.13195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Movement is prospective. It structures self-generated engagement with objects and social partners and is fundamental to children's learning and development. In autistic children, previous reports of differences in movement kinematics compared to neurotypical peers suggest that its prospective organisation might be disrupted. Here, we employed a smart tablet serious game paradigm to assess differences in the feedforward and feedback mechanisms of prospective action organisation, between autistic and neurotypical preschool children. We analysed 3926 goal-directed finger movements made during smart-tablet ecological gameplay, from 28 children with Childhood Autism (ICD-10; ASD) and 43 neurotypical children (TD), aged 3-6 years old. Using linear and generalised linear mixed-effect models, we found the ASD group executed movements with longer movement time (MT) and time to peak velocity (TTPV), lower peak velocity (PV), with PV less likely to occur in the first movement unit (MU) and with a greater number of movement units after peak velocity (MU-APV). Interestingly, compared to the TD group, the ASD group showed smaller increases in PV, TTPV and MT with an increase in age (ASD × age interaction), together with a smaller reduction in MU-APV and an increase in MU-APV at shorter target distances (ASD × Dist interaction). Our results are the first to highlight different developmental trends in anticipatory feedforward and compensatory feedback mechanisms of control, contributing to differences in movement kinematics observed between autistic and neurotypical children. These findings point to differences in integration of prospective perceptuomotor information, with implications for embodied cognition and learning from self-generated action in autism.
Collapse
Affiliation(s)
- Yu Wei Chua
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Faculty of Humanities and Social SciencesUniversity of StrathclydeGlasgowScotlandUK
| | - Szu‐Ching Lu
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Faculty of Humanities and Social SciencesUniversity of StrathclydeGlasgowScotlandUK
| | | | | | - Christos Tachtatzis
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowScotlandUK
| | - Ivan Andonovic
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowScotlandUK
| | - Philip Rowe
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowScotlandUK
| | - Jonathan Delafield‐Butt
- Laboratory for Innovation in AutismUniversity of StrathclydeGlasgowScotlandUK
- Faculty of Humanities and Social SciencesUniversity of StrathclydeGlasgowScotlandUK
| |
Collapse
|
5
|
Implicit and Explicit Memory in Youths with High-Functioning Autism Spectrum Disorder: A Case-Control Study. J Clin Med 2021; 10:jcm10184283. [PMID: 34575393 PMCID: PMC8464918 DOI: 10.3390/jcm10184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) usually manifest heterogeneous impairments in their higher cognitive functions, including their implicit memory (IM) and explicit memory (EM). However, the findings on IM and EM in youths with ASD remain debated. The aim of this study was to clarify such conflicting results by examining IM and EM using two comparable versions of the Serial Reaction Time Task (SRTT) in the same group of children and adolescents with ASD. Twenty-five youths with high-functioning ASD and 29 age-matched and IQ-matched typically developing youths undertook both tasks. The ability to implicitly learn the temporal sequence of events across the blocks in the SRTT was intact in the youths with ASD. When they were tested for EM, the participants with ASD did not experience a significant reduction in their reaction times during the blocks with the previously learned sequence, suggesting an impairment in EM. Moreover, the participants with ASD were less accurate and made more omissions than the controls in the EM task. The implications of these findings for the establishment of tailored educational programs for children with high-functioning ASD are discussed.
Collapse
|
6
|
Yao B, Rolfs M, McLaughlin C, Isenstein EL, Guillory SB, Grosman H, Kashy DA, Foss-Feig JH, Thakkar KN. Oculomotor corollary discharge signaling is related to repetitive behavior in children with autism spectrum disorder. J Vis 2021; 21:9. [PMID: 34351395 PMCID: PMC8354038 DOI: 10.1167/jov.21.8.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Corollary discharge (CD) signals are "copies" of motor signals sent to sensory regions that allow animals to adjust sensory consequences of self-generated actions. Autism spectrum disorder (ASD) is characterized by sensory and motor deficits, which may be underpinned by altered CD signaling. We evaluated oculomotor CD using the blanking task, which measures the influence of saccades on visual perception, in 30 children with ASD and 35 typically developing (TD) children. Participants were instructed to make a saccade to a visual target. Upon saccade initiation, the presaccadic target disappeared and reappeared to the left or right of the original position. Participants indicated the direction of the jump. With intact CD, participants can make accurate perceptual judgements. Otherwise, participants may use saccade landing site as a proxy of the presaccadic target and use it to inform perception. We used multilevel modeling to examine the influence of saccade landing site on trans-saccadic perceptual judgements. We found that, compared with TD participants, children with ASD were more sensitive to target displacement and less reliant on saccade landing site when spatial uncertainty of the post-saccadic target was high. This pattern was driven by ASD participants with less severe restricted and repetitive behaviors. These results suggest a relationship between altered CD signaling and core ASD symptoms.
Collapse
Affiliation(s)
- Beier Yao
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Christopher McLaughlin
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Emily L Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Sylvia B Guillory
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Hannah Grosman
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Deborah A Kashy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
7
|
Jannati A, Ryan MA, Block G, Kayarian FB, Oberman LM, Rotenberg A, Pascual-Leone A. Modulation of motor cortical excitability by continuous theta-burst stimulation in adults with autism spectrum disorder. Clin Neurophysiol 2021; 132:1647-1662. [PMID: 34030059 PMCID: PMC8197744 DOI: 10.1016/j.clinph.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test whether change in motor evoked potential (ΔMEP) induced by continuous theta-burst stimulation (cTBS) of motor cortex (M1) distinguishes adults with autism spectrum disorder (ASD) from neurotypicals, and to explore the contribution of two common polymorphisms related to neuroplasticity. METHODS 44 adult neurotypical (NT) participants (age 21-65, 34 males) and 19 adults with ASD (age 21-58, 17 males) prospectively underwent M1 cTBS. Their data were combined with previously obtained results from 35 NT and 35 ASD adults. RESULTS ΔMEP at 15 minutes post-cTBS (T15) was a significant predictor of diagnosis (p = 0.04) in the present sample (n=63). T15 remained a significant predictor in a larger sample (n=91) and when partially imputed based on T10-T20 from a yet-greater sample (N=133). T15 also remained a significant predictor of diagnosis among brain-derived neurotrophic factor (BDNF) Met+ and apolipoprotein E (APOE) ε4- subjects (p's < 0.05), but not among Met- or ε4+ subjects (p's > 0.19). CONCLUSIONS ΔMEP at T15 post-cTBS is a significant biomarker for adults with ASD, and its utility is modulated by BDNF and APOE polymorphisms. SIGNIFICANCE M1 cTBS response is a physiologic biomarker for adults with ASD in large samples, and controlling for BDNF and APOE polymorphisms can improve its diagnostic utility.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary A Ryan
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fae B Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttman Brain Health Institute, Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
8
|
Lidstone DE, Miah FZ, Poston B, Beasley JF, Mostofsky SH, Dufek JS. Children with Autism Spectrum Disorder Show Impairments During Dynamic Versus Static Grip-force Tracking. Autism Res 2020; 13:2177-2189. [PMID: 32830457 DOI: 10.1002/aur.2370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/07/2022]
Abstract
Impairments in visuomotor integration (VMI) may contribute to anomalous development of motor, as well as social-communicative, skills in children with autism spectrum disorder (ASD). However, it is relatively unknown whether VMI impairments are specific to children with ASD versus children with other neurodevelopmental disorders. As such, this study addressed the hypothesis that children with ASD, but not those in other clinical control groups, would show greater deficits in high-VMI dynamic grip-force tracking versus low-VMI static presentation. Seventy-nine children, aged 7-17 years, participated: 22 children with ASD, 17 children with fetal alcohol spectrum disorder (FASD), 18 children with Attention-Deficit Hyperactivity Disorder (ADHD), and 22 typically developing (TD) children. Two grip-force tracking conditions were examined: (1) a low-VMI condition (static visual target) and (2) a high-VMI condition (dynamic visual target). Low-frequency force oscillations <0.5 Hz during the visuomotor task were also examined. Two-way ANCOVAs were used to examine group x VMI and group x frequency effects (α = 0.05). Children with ASD showed a difficulty, above that seen in the ADHD/FASD groups, tracking dynamic, but not static, visual stimuli as compared to TD children. Low-frequency force oscillations <0.25 Hz were also significantly greater in the ASD versus the TD group. This study is the first to report VMI deficits during dynamic versus static grip-force tracking and increased proportion of force oscillations <0.25 Hz during visuomotor tracking in the ASD versus TD group. Dynamic VMI impairments may be a core psychophysiologic feature that could contribute to impaired development of motor and social-communicative skills in ASD. LAY SUMMARY: Children with autism spectrum disorder (ASD) show difficulties using dynamic visual stimuli to guide their own movements compared to their typically developing (TD) peers. It is unknown whether children without a diagnosis of ASD, but with other neurological disorders, show similar difficulties processing dynamic visual stimuli. In this study, we showed that children with ASD show a difficulty using dynamic, but not static, visual stimuli to guide movement that may explain atypical development of motor and social skills.
Collapse
Affiliation(s)
- Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Faria Z Miah
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Julie F Beasley
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
9
|
Guinchat V, Vlamynck E, Diaz L, Chambon C, Pouzenc J, Cravero C, Baeza-Velasco C, Hamonet C, Xavier J, Cohen D. Compressive Garments in Individuals with Autism and Severe Proprioceptive Dysfunction: A Retrospective Exploratory Case Series. CHILDREN-BASEL 2020; 7:children7070077. [PMID: 32668622 PMCID: PMC7401870 DOI: 10.3390/children7070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
(1) Background: Compression garments (CGs) are an adjuvant treatment for generalized joint hypermobility (GJH), including the Ehlers-Danlos syndrome/hypermobility types. The effects of CGs are likely to be related to better proprioceptive control. We aimed to explore the use of CGs in individuals with autism and severe proprioceptive dysfunction (SPD), including individuals with GJH, to control posture and challenging behaviors. (2) Methods: We retrospectively described 14 patients with autism and SPD, including seven with comorbid GJH, who were hospitalized for major challenging behaviors with remaining behavioral symptomatology after the implementation of multidisciplinary approaches, including medication, treatment of organic comorbidities, and behavioral restructuring. Each patient received a CG to wear for at least 1 h (but most often longer) per day for six weeks. We assessed challenging behaviors in these participants with the Aberrant Behavior Checklist (ABC), sensory integration with the Dunn questionnaire, and postural sway and motor performance using a self-designed motricity path at baseline, two weeks, and six weeks. (3) Results: We observed a significant effect on most ABC rating scores at two weeks, which persisted at six weeks (total score, p = 0.004; irritability, p = 0.007; hyperactivity, p = 0.001; lethargy, p = 0.001). Postural control in dorsal and profile positions was significantly improved between before and after wearing the CGs (p = 0.006 and 0.007, respectively). Motor performance was also significantly improved. However, we did not observe a significant change in Dunn sensory scores. During the six-week duration, the treatment was generally well-tolerated. A comorbid GJH diagnosis was not associated with a better outcome. (4) Conclusions: CGs appear to be a promising adjuvant treatment for both behavioral and postural impairments in individuals with autism and SPD.
Collapse
Affiliation(s)
- Vincent Guinchat
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
- Psychiatric Section of Mental Development, Psychiatric University Clinic, Lausanne University Hospital (CHUV), Prilly, 1011 Lausanne, Switzerland
| | | | - Lautaro Diaz
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
- Psychiatric Section of Mental Development, Psychiatric University Clinic, Lausanne University Hospital (CHUV), Prilly, 1011 Lausanne, Switzerland
| | - Coralie Chambon
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
| | - Justine Pouzenc
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
| | - Cora Cravero
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
- Interdepartmental Mobile Unit for Complex Situations in Autism, Elan Retrouvé Foundation, 75009 Paris, France
| | - Carolina Baeza-Velasco
- Laboratory of Psychopathology and Health Processes (EA 4057), Université Paris Descartes, Sorbonne Paris Cité, 92100 Boulogne-Billancourt, France;
- INSERM U1061, Neuropsychiatry: Epidemiological and Clinical Research, Department of Emergency Psychiatry and Acute Care, CHU de Montpellier, 34295 Montpellier, France
| | - Claude Hamonet
- Department of Physical Reeducation, University Paris-Est Créteil, 94000 Créteil, France;
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, 86000 Poitiers, France
- CNRS UMR 7295, Cognitive Learning Research Centre, Poitiers University, 86073 Poitiers, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France; (V.G.); (L.D.); (C.C.); (J.P.); (C.C.); (J.X.)
- CNRS UMR 7222, Institute for Intelligent Systems and Robotics, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-(0)1-4216-2351
| |
Collapse
|
10
|
Valori I, Bayramova R, McKenna-Plumley PE, Farroni T. Sensorimotor Research Utilising Immersive Virtual Reality: A Pilot Study with Children and Adults with Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10050259. [PMID: 32365509 PMCID: PMC7288174 DOI: 10.3390/brainsci10050259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
When learning and interacting with the world, people with Autism Spectrum Disorders (ASD) show compromised use of vision and enhanced reliance on body-based information. As this atypical profile is associated with motor and social difficulties, interventions could aim to reduce the potentially isolating reliance on the body and foster the use of visual information. To this end, head-mounted displays (HMDs) have unique features that enable the design of Immersive Virtual Realities (IVR) for manipulating and training sensorimotor processing. The present study assesses feasibility and offers some early insights from a new paradigm for exploring how children and adults with ASD interact with Reality and IVR when vision and proprioception are manipulated. Seven participants (five adults, two children) performed a self-turn task in two environments (Reality and IVR) for each of three sensory conditions (Only Proprioception, Only Vision, Vision + Proprioception) in a purpose-designed testing room and an HMD-simulated environment. The pilot indicates good feasibility of the paradigm. Preliminary data visualisation suggests the importance of considering inter-individual variability. The participants in this study who performed worse with Only Vision and better with Only Proprioception seemed to benefit from the use of IVR. Those who performed better with Only Vision and worse with Only Proprioception seemed to benefit from Reality. Therefore, we invite researchers and clinicians to consider that IVR may facilitate or impair individuals depending on their profiles.
Collapse
Affiliation(s)
- Irene Valori
- Department of Developmental Psychology and Socialisation, University of Padova, 35131 Padova, Via Venezia 8, Italy;
| | - Rena Bayramova
- Department of General Psychology, University of Padova, 35131 Padova, Via Venezia 8, Italy;
| | | | - Teresa Farroni
- Department of Developmental Psychology and Socialisation, University of Padova, 35131 Padova, Via Venezia 8, Italy;
- Correspondence: ; Tel.: +39-049-8276533
| |
Collapse
|
11
|
Are early visual behavior impairments involved in the onset of autism spectrum disorders? Insights for early diagnosis and intervention. Eur J Pediatr 2020; 179:225-234. [PMID: 31901981 DOI: 10.1007/s00431-019-03562-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
A correct use of the visual behavior (VB), and its integration with motor function, represents the earliest mean used by infants to explore and act on the social and non-social surrounding environment. The aim of this mini review is to present influential evidence of abnormalities in the VB domain in ASD individuals and to discuss the implication of these findings for early identification and intervention. We analyzed the possible anomalies in oculomotor abilities, visual attention, and visual-motor integration, as parts of a wider visual behavior defect, that could affect children with autism spectrum disorders (ASD) since the early stages of development.Conclusion: According to the literature, difficulties in these three areas have been often reported in children with ASD, and the visual-perception deficit could have cascading effects on learning processes and on social development. Despite this evidence of atypical VB in ASD, their investigation is not yet included into diagnostic processes, and they are not yet considered a specific treatment target.What is Known:•Atypical social use of visual behavior is one the first symptoms in children with autism spectrum disorders•Individuals with autism spectrum disorders often show unusual visual exploration of the surrounding environmentWhat is New:•It is possible to hypothesize that early visual behavior abnormalities may affect experiences that permit learning processes and social and communicative development in infants•An early assessment of visual behavior, as a core symptom of ASD, might improve the diagnostic processes and might help to developing more individualized treatments.
Collapse
|
12
|
Katz-Nave G, Adini Y, Hetzroni OE, Bonneh YS. Sequence Learning in Minimally Verbal Children With ASD and the Beneficial Effect of Vestibular Stimulation. Autism Res 2019; 13:320-337. [PMID: 31729171 DOI: 10.1002/aur.2237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022]
Abstract
People with autism spectrum disorder (ASD) and especially the minimally verbal, often fail to learn basic perceptual and motor skills. This deficit has been demonstrated in several studies, but the findings could have been due to the nonoptimal adaptation of the paradigms. In the current study, we sought to characterize the skill learning deficit in young minimally verbal children with ASD and explore ways for improvement. For this purpose, we used vestibular stimulation (VS) whose beneficial effects have been demonstrated in the typical population, but the data regarding ASD are limited. We trained 36 children ages 6-13 years, ASD (N = 18, 15 of them minimally verbal) and typical development (TD, N = 18), on a touch version of the visual-motor Serial-Reaction-Time sequence-learning task, in 10 short (few minutes) weekly practice sessions. A subgroup of children received VS prior to each training block. All the participants but two ASD children showed gradual median reaction time improvement with significant speed gains across the training period. The ASD children were overall slower (by ~250 msec). Importantly, those who received VS (n = 10) showed speed gains comparable to TD, which were larger (by ~100%) than the ASD controls, and partially sequence-specific. VS had no effect on the TD group. These results suggest that VS has a positive effect on learning in minimally verbal ASD children, which may have important therapeutic implications. Furthermore, contrary to some previous findings, minimally verbal children with ASD can acquire, in optimal conditions, procedural skills with few short training sessions, spread over weeks, and with a similar time course as non-ASD controls. Autism Res 2020, 13: 320-337. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Minimally verbal children with ASD who received specially adjusted learning conditions showed significant learning of a visual-motor sequence across 10 practice days. This learning was considerably improved with vestibular stimulation before each short learning session. This may have important practical implications in the education and treatment of ASD children.
Collapse
Affiliation(s)
- Gili Katz-Nave
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel.,Learning-Competence - Center for Functional Advancement, Even Yehuda, Israel
| | - Yael Adini
- Independent scholar, Hameyasdim St., Beit-Oved, Israel
| | - Orit E Hetzroni
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Green RR, Bigler ED, Froehlich A, Prigge MBD, Zielinski BA, Travers BG, Anderson JS, Alexander A, Lange N, Lainhart JE. Beery VMI and Brain Volumetric Relations in Autism Spectrum Disorder. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2019; 5:77-84. [PMID: 32953403 PMCID: PMC7497806 DOI: 10.1007/s40817-019-00069-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3-23 years) and 27 typically developing (TD) participants (ages 5-26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.0 T magnetic resonance imaging (MRI) with image quantification (FreeSurfer software v5.3). The groups were statistically matched on age, handedness, and intracranial volume (ICV). ASD participants performed significantly lower on VMI and IQ measures compared with the TD group. VMI performance was significantly correlated with FSIQ and PIQ in the TD group only. No pre-defined neuroanatomical ROIs were significantly different between groups. Significant correlations were observed in the TD group between VMI and total precentral gyrus gray matter volume (r = .51, p = .006) and total frontal lobe gray matter volume (r = .46, p = .017). There were no significant ROI correlations with Beery VMI performance in ASD participants. At the group level, despite ASD participants exhibiting reduced visuomotor abilities, no systematic relation with motor or sensory-perceptual ROIs was observed. In the TD group, results were consistent with the putative role of the precentral gyrus in motor control along with frontal involvement in planning, organization, and execution monitoring, all essential for VMI performance. Given that similar associations between VMI and ROIs were not observed in those with ASD, neurodevelopment in ASD group participants may not follow homogenous patterns making correlations in these brain regions unlikely to be observed.
Collapse
Affiliation(s)
- Ryan R. Green
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA
| | - Erin D. Bigler
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Alyson Froehlich
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Brandon A. Zielinski
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Brittany G. Travers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Andrew Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas Lange
- Departments of Psychiatry and Biostatistics, Harvard University, Boston, MA, USA
- Neurostatistics Laboratory, McLean Hospital, Belmont, MA, USA
| | - Janet E. Lainhart
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Abstract
It is assumed that learning on the Serial Reaction Time (SRT) task is related to learning involved in social skill development affected in autism, but this assumption has hardly been investigated. We have therefore examined associations between SRT task learning and social impairment measured by the Social Responsiveness Scale in 72 autistic and non-autistic adults. Results revealed a positive correlation between deterministic sequence learning, putatively involving explicit learning, and social impairment in autistic adults but not in non-autistic adults. No correlations with probabilistic learning were found. These results suggest that the type of learning that helps autistic adults during a deterministic SRT task hinders them during social development, and call for further investigating the ecological validity of the SRT task.
Collapse
|
15
|
Infant motor skill predicts later expressive language and autism spectrum disorder diagnosis. Infant Behav Dev 2019; 54:37-47. [DOI: 10.1016/j.infbeh.2018.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022]
|
16
|
Zwart FS, Vissers CT, Kessels RP, Maes JH. Implicit learning seems to come naturally for children with autism, but not for children with specific language impairment: Evidence from behavioral and ERP data. Autism Res 2018; 11:1050-1061. [PMID: 29676529 PMCID: PMC6120494 DOI: 10.1002/aur.1954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/05/2018] [Accepted: 03/18/2018] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) and specific language impairment (SLI) are two neurodevelopmental disorders characterized by deficits in verbal and nonverbal communication skills. These skills are thought to develop largely through implicit-or automatic-learning mechanisms. The aim of the current paper was to investigate the role of implicit learning abilities in the atypical development of communication skills in ASD and SLI. In the current study, we investigated Response Times (RTs) and Event Related Potentials (ERPs) during implicit learning on a Serial Reaction Time (SRT) task in a group of typically developing (TD) children (n = 17), a group of autistic children (n = 16), and a group of children with SLI (n = 13). Findings suggest that learning in both ASD and SLI are similar to that in TD. However, electrophysiological findings suggest that autistic children seem to rely mainly on more automatic processes (as reflected by an N2b component), whereas the children with SLI seem to rely on more controlled processes (as reflected by a P3 component). The TD children appear to use a combination of both learning mechanisms. These findings suggest that clinical interventions should aim at compensating for an implicit learning deficit in children with SLI, but not in children with ASD. Future research should focus on developmental differences in implicit learning and related neural correlates in TD, ASD, and SLI. Autism Res 2018, 11: 1050-1061. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY Autism and Specific Language Impairment (SLI) are two disorders characterized by problems in social communication and language. Social communication and language are believed to be learned in an automatic way. This is called "implicit learning." We have found that implicit learning is intact in autism. However, in SLI there seems different brain activity during implicit learning. Maybe children with SLI learn differently, and maybe this different learning makes it more difficult for them to learn language.
Collapse
Affiliation(s)
- Fenny S. Zwart
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Constance Th.W.M. Vissers
- Behavioural Science InstituteNijmegenThe Netherlands
- Royal Dutch KentalisSint‐MichielsgestelThe Netherlands
| | - Roy P.C. Kessels
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
- Department of Medical PsychologyRadboud University Medical CenterNijmegenThe Netherlands
- Vincent van Gogh Institute for PsychiatryVenrayThe Netherlands
| | - Joseph H.R. Maes
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
17
|
Zwart FS, Vissers CTWM, Kessels RPC, Maes JHR. Procedural learning across the lifespan: A systematic review with implications for atypical development. J Neuropsychol 2017; 13:149-182. [DOI: 10.1111/jnp.12139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Fenny S. Zwart
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| | - Constance Th. W. M. Vissers
- Behavioural Science Institute; Nijmegen The Netherlands
- Royal Dutch Kentalis; Sint-Michielsgestel The Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
- Department of Medical Psychology; Radboud University Medical Center; Nijmegen The Netherlands
- Vincent van Gogh Institute for Psychiatry; Venray The Netherlands
| | - Joseph H. R. Maes
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| |
Collapse
|
18
|
Oberman LM, Ifert-Miller F, Najib U, Bashir S, Gonzalez-Heydrich J, Picker J, Rotenberg A, Pascual-Leone A. Abnormal Mechanisms of Plasticity and Metaplasticity in Autism Spectrum Disorders and Fragile X Syndrome. J Child Adolesc Psychopharmacol 2016; 26:617-24. [PMID: 27218148 PMCID: PMC5111832 DOI: 10.1089/cap.2015.0166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Multiple lines of evidence from genetic linkage studies to animal models implicate aberrant cortical plasticity and metaplasticity in the pathophysiology of autism spectrum disorder (ASD) and fragile X syndrome (FXS). However, direct experimental evidence of these alterations in humans with these disorders is scarce. Transcranial magnetic stimulation (TMS) is a noninvasive tool for probing mechanisms of plasticity and metaplasticity in vivo, in humans. The aim of the current study was to examine mechanisms of plasticity and metaplasticity in humans with ASD and FXS. We employed a repetitive TMS protocol developed specifically to probe cortical plasticity, namely continuous theta burst stimulation (cTBS). METHODS We applied a 40-second train of cTBS to primary motor cortex (M1) to healthy control participants and individuals with ASD or FXS, and we measured the cTBS-induced modulation in motor-evoked potentials (MEPs) in a contralateral intrinsic hand muscle. Each participant completed two sessions of the same protocol on two consecutive days. The degree of modulation in MEPs after cTBS on the first day was evaluated as a putative index of cortical plasticity. Examination of the changes in the effects of cTBS on the second day, as conditioned by the effects on the first day, provided an index of metaplasticity, or the propensity of a given cortical region to undergo plastic change based on its recent history. RESULTS After a 40-second cTBS train, individuals with ASD show a significantly longer duration of suppression in MEP amplitude as compared with healthy controls, whereas individuals with FXS show a significantly shorter duration. After a second train of cTBS, 24 hours later, the ASD group was indistinguishable from the control group, and while in the FXS group MEPs were paradoxically facilitated by cTBS. CONCLUSION These findings offer insights into the pathophysiology of ASD and FXS, specifically providing direct experimental evidence that humans with these disorders show distinct alterations in plasticity and metaplasticity, consistent with the findings in animal models. If confirmed in larger test-retest studies, repeated TMS measures of plasticity and metaplasticity may provide a valuable physiologic phenotype for ASD and FXS.
Collapse
Affiliation(s)
- Lindsay M. Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Fritz Ifert-Miller
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Umer Najib
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Shahid Bashir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Joseph Gonzalez-Heydrich
- Department of Child and Adolescent Psychiatry, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jonathan Picker
- Department of Child and Adolescent Psychiatry, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.,Division of Genetics, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Institut Universitari Guttmann, Badalona, Barcelona, Spain
| |
Collapse
|