1
|
Xu J, Li X, Xi C, Weir MH. Development of a machine learning model to support low cost real-time Legionella monitoring in premise plumbing systems. WATER RESEARCH 2024; 267:122510. [PMID: 39366327 DOI: 10.1016/j.watres.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/12/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium primarily known for causing Legionnaires' Disease which is known for high mortality rates, particularly in the elderly. With caseloads continuing to increase, further research is needed to improve our understanding of optimized sampling schema and safe limits of L. pneumophila, in part to target improved treatment options and realistic population-level risk modeling. Particularly in healthcare and other high-risk locations these become crucial and time sensitive needs. Therefore, we conceptualized this research as a means of incorporating easily measured physiochemical water quality parameters and generalization of the unique ecology of building water systems to build a computational model that can allow for more rapid and accurate decision making. This research uses the specific machine learning (ML) method called statistical learning theory to incorporate concentration of host cells, such as native amoeba, and physiochemical water quality parameters to estimate the probability of observing ranges of Legionella gene copy concentrations. Using data from previously published research on Legionella prevalence in a large building, our ML method trains the model on the relative impacts of physiochemical parameters on likely amoeba host cell occurrences. The model is expanded to estimate host cell concentrations using correlations and regressions operated through LASSO algorithms. After categorization variables from these results are then used to inform a logistic regression to provide an estimate of the probability of Legionella gene copy concentration ranges. In summary, conventional results generated by logistic regression and multiple linear regression quantified the associations among ecological conditions in the water and ability to predict a likely range of Legionella concentration in a management focused way. Further, two ML methods, PCA and LASSO, demonstrated feasibility in accurate real-time monitoring of Legionella through physiochemical indicators as evidenced with good accuracy of predictions based for validation results. Furthermore results demonstrate the vital need to account for the impact of water quality on building on host cells, and via their quantified water microbial ecology, not just Legionella concentrations.
Collapse
Affiliation(s)
- Juan Xu
- Environmental Sciences Graduate Program, The Ohio State University, United States of America
| | - Xin Li
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, United States of America
| | - ChuanWu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, United States of America
| | - Mark H Weir
- Sustainability Institute, The Ohio State University, United States of America; Environmental Health Sciences, College of Public Health, The Ohio State University, United States of America.
| |
Collapse
|
2
|
Burlingame GA, Bartrand TA. Laying the groundwork for a Legionella pneumophila risk management program for public drinking water systems. JOURNAL OF WATER AND HEALTH 2024; 22:2385-2397. [PMID: 39733363 DOI: 10.2166/wh.2024.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/31/2024]
Abstract
Legionella pneumophila is different from traditional drinking water contaminants because it presents a latent public health risk for public and private drinking water systems and for the building water systems they supply. This paper reviews information on the likelihood of occurrence of L. pneumophila in public water systems to lay a foundation for public water systems, as a stakeholder in public health risk management, to better manage L. pneumophila. Important to this approach is a literature review to identify conditions that could potentially promote L. pneumophila being present in drinking water systems at either an elevated abundance or at an increased frequency of occurrence, and/or water quality and supply conditions that would contribute to its amplification. The literature review allows the development of an inventory of hazardous conditions that a public water system could experience and, therefore, can be used by water systems to develop control and monitoring strategies. However, effective L. pneumophila risk management programs are hampered by significant data and knowledge gaps. Priority research to advance public water system's risk assessments and management of L. pneumophila is proposed.
Collapse
Affiliation(s)
- Gary A Burlingame
- Environmental Science, Policy and Research Institute, 3427 Decatur Street, Philadelphia, PA 19136, USA E-mail:
| | - Timothy A Bartrand
- Environmental Science, Policy and Research Institute, 144 Narberth Ave, Box 407, Narberth, PA 19072, USA
| |
Collapse
|
3
|
Dörrie B, Nogueira R. Lessons learned from a one-year study of Legionella spp. cultivation from activated sludge samples. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122266. [PMID: 39216355 DOI: 10.1016/j.jenvman.2024.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Risk assessment and management of Legionella spp. contamination in activated sludge in wastewater treatment plants is carried out using the culture method. Underestimation of Legionella spp. is frequently reported in the literature, but a comprehensive long-term study of the performance of the method under comparable conditions is still lacking. The aim of this study is to evaluate the recovery rate and limit of detection of the culture method for Legionella spp. from activated sludge samples collected during the different seasons of the year. Activated sludge samples spiked with Legionella pneumophila subsp. pneumophila strain Philadelphia-1 (mean concentration 5.2 ± 0.35 logCFU/mL) were analysed monthly for one year using the culture method. Three different sample pre-treatments were compared, namely filtration, acid treatment and thermal treatment, and the recovery rate and limit of detection were assessed for each. The recovery rate of the culture method for Legionella spp. depended on the type of sample pre-treatment and the season of activated sludge sampling, while the limit of detection depended only on the sample pre-treatment. The best performance of the culture method, defined as the combination of the highest recovery rate and lowest limit of detection, was obtained for the filtered acid pre-treated samples (recovery rate: 89 ± 4 %; limit of detection: 1.3 logCFU/mL in 83 % of the samples). The lowest limit of detection was observed for the filtered thermally pre-treated samples (1.0 logCFU/mL in 93 % of the samples). Simultaneously, both thermally pre-treated samples showed up to a third lower recovery rates than the other pre-treatments in winter, while untreated and acid pre-treated samples showed consistently high recovery rates (>80%, logCFU/mL). The recovery rates of the unfiltered and filtered thermally pre-treated samples showed significant weak to strong positive correlations with the organic and phosphorus load in the influent as well as with the water and atmospheric temperatures, indicating that the recovery rate depends on the seasonal variation of the wastewater composition. This study presents new insights into the detection and quantification of Legionella spp. in activated sludge samples and considers seasonal dependencies in analytical results.
Collapse
Affiliation(s)
- Beatriz Dörrie
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167, Hannover, Germany.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167, Hannover, Germany.
| |
Collapse
|
4
|
Grimard-Conea M, Bédard E, Prévost M. Can free chlorine residuals entering building plumbing systems really be maintained to prevent microbial growth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173651. [PMID: 38821274 DOI: 10.1016/j.scitotenv.2024.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Secondary disinfection aims to prevent microbial regrowth during distribution by maintaining disinfectant residuals in water systems. However, multi-factorial interactions contribute to free chlorine decay in distribution systems, and even more so in building plumbing. Assembling 1737 samples from nine large institutional buildings, a meta-analysis was conducted to determine whether building managers can actively rely on incoming free chlorine residuals to prevent in-building microbial amplification. Findings showed that free chlorine concentrations in first draws met the 0.2 mg/L common guide level in respectively 26 %, 6 % and 2 % of cold, tepid and hot water samples, whereas flushing for 2-60 min only significantly increased this ratio in cold water (83 %), without reaching background levels found in service lines. Free chlorine was significantly but weakly (R≤ 0.2) correlated to adenosine triphosphate, heterotrophic plate count and total and intact cell counts, thus evidencing that residuals contributed to decreased culturable and viable biomass. Detection of culturable Legionella pneumophila spanning over a 4-log distribution solely occurred when free chlorine levels were below 0.2 mg/L, but no such trend could be distinguished clearly for culturable Pseudomonas aeruginosa. Water temperatures below 20 °C and >60 °C also completely prevented L. pneumophila detection. Overall, the majority of elevated microbial counts were measured in distal sites and in tepid and hot water, where free chlorine is less likely to be present due to stagnation and increased temperature. Therefore, building managers cannot solely rely on this chemical barrier to mitigate bacterial growth in bulk water.
Collapse
Affiliation(s)
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
5
|
Furst KE, Graham KE, Weisman RJ, Adusei KB. It's getting hot in here: Effects of heat on temperature, disinfection, and opportunistic pathogens in drinking water distribution systems. WATER RESEARCH 2024; 260:121913. [PMID: 38901309 DOI: 10.1016/j.watres.2024.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
As global temperatures rise with climate change, the negative effects of heat on drinking water distribution systems (DWDS) are of increasing concern. High DWDS temperatures are associated with degradation of water quality through physical, chemical and microbial mechanisms. Perhaps the most pressing concern is proliferation of thermotolerant opportunistic pathogens (OPs) like Legionella pneumophila and Naegleria Fowleri. Many OPs can be controlled in DWDS by residual disinfectants such as chlorine or chloramine, but maintaining protective residuals can be challenging at high temperatures. This critical review evaluates the literature on DWDS temperature, residual disinfectant decay, and OP survival and growth with respect to high temperatures. The findings are synthesized to determine the state of knowledge and future research priorities regarding OP proliferation and control at high DWDS temperatures. Temperatures above 40 °C were reported from multiple DWDS, with a maximum of 52 °C. Substantial diurnal temperature swings from ∼30-50 °C occurred in one DWDS. Many OPs can survive or even replicate at these temperatures. However, most studies focused on just a few OP species, and substantial knowledge gaps remain regarding persistence, infectivity, and shifts in microbial community structure at high temperatures relative to lower water temperatures. Chlorine decay rates substantially increase with temperature in some waters but not in others, for reasons that are not well understood. Decay rates within real DWDS are difficult to accurately characterize, presenting practical limitations for application of temperature-dependent decay models at full scale. Chloramine decay is slower than chlorine except in the presence of nitrifiers, which are especially known to grow in DWDS in warmer seasons and climates, though the high temperature range for nitrification is unknown. Lack of knowledge about DWDS nitrifier communities may hinder development of solutions. Fundamental knowledge gaps remain which prevent understanding even the occurrence of high temperatures in DWDS, much less the overall effect on exposure risk. Potential solutions to minimize DWDS temperatures or mitigate the impacts of heat were identified, many which could be aided by proven models for predicting DWDS temperature. Industry leadership and collaboration is needed to generate practical knowledge for protecting DWDS water quality as temperatures rise.
Collapse
Affiliation(s)
- Kirin E Furst
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States.
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Richard J Weisman
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| | - Kadmiel B Adusei
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| |
Collapse
|
6
|
Zhang C, Sienkiewicz N, Struewing I, Mistry JH, Buse H, Hu Z, Lu J. Reconsider the burn: The transient effect of a chlorine burn on controlling opportunistic pathogens in a full-scale chloraminated engineered water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172690. [PMID: 38670361 DOI: 10.1016/j.scitotenv.2024.172690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Nitrification is a serious water-quality issue in chloraminated engineered water systems (EWSs). Nitrification is often remediated by a chlorine burn (i.e., a free‑chlorine conversion), a short-term switch from chloramination to chlorination in EWSs. Opportunistic pathogens (OPs) are the dominant infectious agents in EWSs. However, the responses of OPs to a chlorine burn are unknown. This study for the first time assessed how a chlorine burn affected OPs in a full-scale EWS. We determined the impact of a 1.5-month chlorine burn on four dominant OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in a representative full-scale chloraminated EWS in the United States. Legionella and Mycobacterium were the most abundant OPs. In the water main, the summed concentration of the four OPs during the chlorine burn [3.27 ± 1.58 log10(GCN·L-1); GCN: genome or gene copy number] was lower (p ≤ 0.001) than before the burn [4.83 ± 0.50 log10(GCN·L-1)]. After the burn, the summed concentration increased to 4.27 ± 0.68 log10(GCN·L-1), comparable to before the burn (p > 0.05), indicating a transient effect of the chlorine burn in the water main. At the residential sites, the summed concentrations of the four OPs were comparable (p > 0.05) at 5.50 ± 0.84, 5.27 ± 1.44, and 5.08 ± 0.71 log10(GCN·L-1) before, during, and after the chlorine burn, respectively. Therefore, the chlorine burn was less effective in suppressing OP (re)growth in the premise plumbing. The low effectiveness might be due to more significant water stagnation and disinfectant residual decay in the premise plumbing. Indeed, for the entire sampling period, the total chlorine residual concentration in the premise plumbing (1.8 mg Cl2·L-1) was lower than in the water main (2.4 mg Cl2·L-1). Consequently, for the entire sampling period, the summed concentration of the four OPs in the premise plumbing [5.26 ± 1.08 log10(GCN·L-1)] was significantly higher (p < 0.001) than in the water main [4.04 ± 1.25 log10(GCN·L-1)]. In addition, the chlorine burn substantially increased the levels of disinfection by-products (DBPs) in the water main. Altogether, a chlorine burn is transient or even ineffective in suppressing OP (re)growth but raises DBP concentrations in chloraminated EWSs. Therefore, the practice of chlorine burns to control nitrification should be optimized, reconsidered, or even replaced.
Collapse
Affiliation(s)
- Chiqian Zhang
- Civil Engineering Program, College of Engineering & Computer Science, Arkansas State University, AR 72467, United States
| | - Nathan Sienkiewicz
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX 75270, United States
| | - Helen Buse
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States.
| |
Collapse
|
7
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
8
|
Lara de Larrea J, MacIsaac SA, Rauch KD, Stoddart AK, Gagnon GA. Comparison of Legionella pneumophila and Pseudomonas fluorescens Quantification Methods for Assessing UV LED Disinfection. ACS ES&T WATER 2023; 3:3667-3675. [PMID: 37970541 PMCID: PMC10644340 DOI: 10.1021/acsestwater.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
This study assesses the efficacy of ultraviolet light-emitting diodes (UV LEDs) for deactivating Legionella pneumophila (pure culture) and Pseudomonas fluorescens (pure culture and biofilms) on relevant drinking water distribution system surfaces (cast iron and stainless steel). UV LED treatment at 280 nm demonstrated superior performance compared to that at 365 nm, achieving a 4.8 log reduction value (LRV) for P. fluorescens pure cultures and, for biofilms, 4.02 LRV for stainless steel and 2.96 LRV for cast iron at 280 nm. Conversely, the results were less effective at 365 nm, with suspected photolytic reactions on cast iron. Quantification of L. pneumophila yielded varying results: 4 LRV using standard plate counts, 1.8 LRV with Legiolert, and 1 LRV with quantitative polymerase chain reaction at 280 nm, while the results were less than 1.5 LRV at 365 nm. This study provides insights into managing opportunistic pathogens and biofilms, emphasizing the need for improved quantification tools to better assess treatment efficacy.
Collapse
Affiliation(s)
- Jaser Lara de Larrea
- Centre for Water
Resources
Studies. Department of Civil & Resource Engineering, Dalhousie University, Halifax B3H 4R2, NS, Canada
| | - Sean A. MacIsaac
- Centre for Water
Resources
Studies. Department of Civil & Resource Engineering, Dalhousie University, Halifax B3H 4R2, NS, Canada
| | - Kyle D. Rauch
- Centre for Water
Resources
Studies. Department of Civil & Resource Engineering, Dalhousie University, Halifax B3H 4R2, NS, Canada
| | - Amina K. Stoddart
- Centre for Water
Resources
Studies. Department of Civil & Resource Engineering, Dalhousie University, Halifax B3H 4R2, NS, Canada
| | - Graham A. Gagnon
- Centre for Water
Resources
Studies. Department of Civil & Resource Engineering, Dalhousie University, Halifax B3H 4R2, NS, Canada
| |
Collapse
|
9
|
Kim T, Zhao X, LaPara TM, Hozalski RM. Flushing Temporarily Improves Microbiological Water Quality for Buildings Supplied with Chloraminated Surface Water but Has Little Effect for Groundwater Supplies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5453-5463. [PMID: 36952669 DOI: 10.1021/acs.est.2c08123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial communities in premise plumbing systems were investigated after more than 2 months of long-term stagnation, during a subsequent flushing event, and during post-flush stagnation. Water samples were collected from showers in buildings supplied with chlorinated groundwater, untreated groundwater, and chloraminated surface water. The building supplied with chlorinated groundwater generally had the lowest bacterial concentrations across all sites (ranging from below quantification limit to 5.2 log copies/L). For buildings supplied with untreated groundwater, bacterial concentrations (5.0 to 7.6 log copies/L) and microbial community diversity index (ACE) values were consistent throughout sampling. Nontuberculous mycobacteria (NTM) and Legionella pneumophila were not detected in any groundwater-supplied buildings. Total bacteria, Legionella spp., and NTM were abundant in the surface water-supplied buildings following long-term stagnation (up to 7.6, 6.2, and 7.6 log copies/L, respectively). Flushing decreased these concentrations by ∼1 to >4 log units and reduced microbial community diversity, but the communities largely recovered within a week of post-flush stagnation. The results suggest that buildings supplied with disinfected surface water are more likely than buildings supplied with treated or untreated groundwater to experience deleterious changes in microbiological water quality during stagnation and that the water quality improvements from flushing with chloraminated water, while substantial, are short-lived.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
10
|
Gleason JA, Newby R, Gaynor JJ, Lee LH, Chu T, Bliese AD, Taylor CW, Yoon P, DeLorenzo S, Pranitis D, Bella J. Legionella monitoring results by water quality characteristics in a large public water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55974-55988. [PMID: 36913019 DOI: 10.1007/s11356-023-26198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Legionella, the causative agent of Legionnaires' disease, is an emerging concern for water utilities. Passaic Valley Water Commission (PVWC) is a public drinking water supplier, which provides treated surface water to approximately 800,000 customers in New Jersey. To evaluate the occurrence of Legionella in the PVWC distribution system, swab, first draw, and flushed cold water samples were collected from total coliform sites (n = 58) during a summer and winter sampling event. Endpoint PCR detection methods were combined with culture for Legionella detection. Among 58 total coliform sites during the summer, 17.2% (10/58) of first draw samples were positive for 16S and mip Legionella DNA markers and 15.5% (9/58) in flushed samples. Across both summer and winter sampling, a total of four out of 58 sites had low-level culture detection of Legionella spp. (0.5-1.6 CFU/mL) among first draw samples. Only one site had both a first and flush draw detection (8.5 CFU/mL and 1.1 CFU/mL) for an estimated culture detection frequency of 0% in the summer and 1.7% in the winter among flushed draw samples. No L. pneumophila was detected by culture. Legionella DNA detection was significantly greater in the summer than in the winter, and detection was greater in samples collected from areas treated with phosphate. No statistical difference was found between first draw and flush sample detection. Total organic carbon, copper, and nitrate were significantly associated with Legionella DNA detection.
Collapse
Affiliation(s)
- Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 East State Street, P.O. Box 369, Trenton, NJ, 08625, USA.
| | - Robert Newby
- Division of Science, New Jersey Department of Environmental Protection, 428 East State Street, P.O. Box 420, Trenton, NJ, 08625, USA
| | - John J Gaynor
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Lee H Lee
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave, South Orange, NJ, 07076, USA
| | - Alorah D Bliese
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Calvin W Taylor
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Paul Yoon
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave, South Orange, NJ, 07076, USA
| | - Suzanne DeLorenzo
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| | - David Pranitis
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| | - Joe Bella
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| |
Collapse
|
11
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
12
|
Hu D, Hong H, Rong B, Wei Y, Zeng J, Zhu J, Bai L, Guo F, Yu X. A comprehensive investigation of the microbial risk of secondary water supply systems in residential neighborhoods in a large city. WATER RESEARCH 2021; 205:117690. [PMID: 34614460 DOI: 10.1016/j.watres.2021.117690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Secondary water supply systems (SWSSs) are characterized by long water stagnation and low levels of chlorine residuals, which may pose a high microbial risk to terminal users. In this study, the SWSSs of 12 residential neighborhoods in a metropolitan area of 5 million people in southeastern China were seasonally investigated to assess their microbial risks by determining more than 30 physicochemical and biological parameters. Although the microbiological quality of SWSS water met the requirements of the standards for drinking water quality of China, it did deteriorate in various aspects. The heterotrophic plate counts with R2A media were high (> 100 CFU/mL) in some SWSS tank and tap water samples. Propidium monoazide (PMA)-qPCR revealed a one magnitude higher abundance of viable bacteria in the tank and tap water samples (average 103.63±1.10 and 103.65±1.25 gene copies/mL, respectively) compared with the input water samples, and Enterococcus, Acanthamoeba, and Hartmannella vermiformis were only detected in the tanks. In particular, the high detection frequency of Legionella in 35% tank and 21% tap water samples suggested it is a supplementary microbial safety indicator in SWSSs. The microbial regrowth potential was more obvious in summer, and Illumina sequencing also demonstrated distinct seasonal changes in the relative abundance of bacterial gene sequences at the genus level. Turbidity and residual chlorine were closely connected with total bacterial biomass, and the latter seemed responsible for microbial community structure alteration. The extremely low chlorine residuals associated with a high abundance of total bacteria (as high as 106.48 gene copies/mL) and Legionella (as high as 106.71 gene copies/100 mL) in the closed valve tanks highlighted the high microbial risk increased by mishandling the operation of SWSSs. This study found that SWSSs possessed a higher microbial risk than the drinking water network, which suggested that the frequency and scope of monitoring the microbial risk of SWSSs in megacities should be strengthened for the purpose of waterborne epidemic disease prevention and control.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Hong
- Xiamen Center for Disease Control and Prevention, Xiamen 361021, China
| | - Biao Rong
- Xiamen Center for Disease Control and Prevention, Xiamen 361021, China
| | - Yating Wei
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Zhu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lijun Bai
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|
14
|
Roy S, Mosteller K, Mosteller M, Webber K, Webber V, Webber S, Reid L, Walters L, Edwards MA. Citizen science chlorine surveillance during the Flint, Michigan federal water emergency. WATER RESEARCH 2021; 201:117304. [PMID: 34107367 DOI: 10.1016/j.watres.2021.117304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 05/12/2023]
Abstract
Rising incidence of waterborne diseases including Legionellosis linked to low chlorine residuals in buildings and the availability of inexpensive testing options, create an opportunity for citizen science chorine monitoring to complement sampling done by water utilities. University researchers and Flint residents coordinated a citizen science chlorine surveillance campaign in Flint, Michigan in 2015-19, that helped expose the nature of two deadly Legionnaires Disease outbreaks in 2014-2015 during the Flint Water Crisis and progress of system recovery during the Federal emergency. Results obtained with an inexpensive color wheel were in agreement with a digital colorimeter (R2 =0.99; p = 2.81 × 10-21) at 15 sites geographically distributed across Flint. Blinded tests revealed good agreement between official (n = 2051) and citizen (n = 654) data in terms of determining whether regulatory guidelines for chlorine were met, but a discovery that the citizen data were statistically lower than the city's (p<0.00001) especially in warm summer months led to recommendations for increased flushing of service lines before measurements. This work suggests that expanded citizen surveillance of chlorine, site specific flushing advice, and guidance on decisions about water heater set point could help consumers reduce Legionella risks in their homes. Citizen science initiatives for chlorine monitoring offer a unique opportunity for mutually beneficial collaborations between consumers and utilities to reduce the main source of waterborne disease in developed countries.
Collapse
Affiliation(s)
- Siddhartha Roy
- Civil and Environmental Engineering, Virginia Tech, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
16
|
Lytle DA, Pfaller S, Muhlen C, Struewing I, Triantafyllidou S, White C, Hayes S, King D, Lu J. A comprehensive evaluation of monochloramine disinfection on water quality, Legionella and other important microorganisms in a hospital. WATER RESEARCH 2021; 189:116656. [PMID: 33249307 PMCID: PMC8133025 DOI: 10.1016/j.watres.2020.116656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 05/22/2023]
Abstract
Opportunistic pathogens such as Legionella are of significant public health concern in hospitals. Microbiological and water chemistry parameters in hot water throughout an Ohio hospital were monitored monthly before and after the installation of a monochloramine disinfection system over 16 months. Water samples from fifteen hot water sampling sites as well as the municipal water supply entering the hospital were analyzed using both culture and qPCR assays for specific microbial pathogens including Legionella, Pseudomonas spp., nontuberculous Mycobacteria [NTM], as well as for heterotrophic bacteria. Legionella culture assays decreased from 68% of all sites being positive prior to monochloramine addition to 6% positive after monochloramine addition, and these trends were parallel to qPCR results. Considering all samples, NTMs by culture were significantly reduced from 61% to 14% positivity (p<0.001) after monochloramine treatment. Mycobacterium genus-specific qPCR positivity was reduced from 92% to 65%, but the change was not significant. Heterotrophic bacteria (heterotrophic bacteria plate counts [HPCs]) exhibited large variability which skewed statistical results on a per room basis. However, when all samples were considered, a significant decrease in HPCs was observed after monochloramine addition. Lastly, Pseudomonas aeruginosa and Vermamoeba vermiformis demonstrated large and significant decrease of qPCR signals post-chloramination. General water chemistry parameters including monochloramine residual, nitrate, nitrite, pH, temperature, metals and total trihalomethanes (TTHMs) were also measured. Significant monochloramine residuals were consistently observed at all sampling sites with very little free ammonia present and no water quality indications of nitrification (e.g., pH decrease, elevated nitrite or nitrate). The addition of monochloramine had no obvious impact on metals (lead, copper and iron) and disinfection by-products.
Collapse
Affiliation(s)
- Darren A Lytle
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States.
| | - Stacy Pfaller
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Christy Muhlen
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Ian Struewing
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Simoni Triantafyllidou
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Colin White
- Ohio Environmental Protection Agency, Emerging Contaminants Section, Division of Drinking and Ground Waters, 50 West Town Street, Suite 700 Columbus, OH 43215, United States
| | - Sam Hayes
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Dawn King
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Jingrang Lu
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|
17
|
Huang C, Shen Y, Smith RL, Dong S, Nguyen TH. Effect of disinfectant residuals on infection risks from Legionella pneumophila released by biofilms grown under simulated premise plumbing conditions. ENVIRONMENT INTERNATIONAL 2020; 137:105561. [PMID: 32088542 DOI: 10.1016/j.envint.2020.105561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The ubiquitous presence of biofilms in premise plumbing and stagnation, which commonly occurs in premise plumbing, can exacerbate the decay of chlorine residual in drinking water. Using biofilms grown in a simulated premise plumbing setup fed directly with freshly treated water at two full-scale water treatment plants, we previously determined the mass transfer coefficients for chlorine decay in premise plumbing. These coefficients coupled with inactivation kinetics of L. pneumophila released from biofilms reported previously were integrated into a Monte Carlo framework to estimate the infection risk of biofilm-derived L. pneumophila from 1 to 48 h of stagnation. The annual infection risk was significantly higher when water stayed stagnant for up to 48 h in pipes covered internally with biofilms, compared to clean pipes without biofilms. The decay of residual chlorine due to biofilms during 48-hour stagnation led to up to 6 times increase in the annual infection risk compared to the case where biofilms was absent. Global sensitivity analysis revealed that the rate of L. pneumophila detachment from biofilms and the decay of chlorine residual during stagnation are the two most important factors influencing the infection risks. Stagnation caused by water use patterns and water-saving devices in the premise plumbing can lead to increased infection risk by biofilm-derived L. pneumophila. Overall, this study's findings suggested that biofilms could induce chlorine decay and consequently increase L. pneumophila infection risk. Thus, reducing stagnation, maintaining residual chlorine, and suppressing biofilm growth could contribute to better management of L. pneumophila infection risk.
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering, The University of California, Riverside, Riverside, CA 92521, United States
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
18
|
Abstract
The early detection of Legionella in water reservoirs, and the prevention of their often fatal diseases, requires the development of rapid and reliable detection processes. A method for the magnetic separation (MS) of Legionella pneumophila by superparamagnetic iron oxide nanoparticles is developed, which represents the basis for future bacteria detection kits. The focus lies on the separation process and the simplicity of using magnetic nanomaterials. Iron oxide nanoparticles are functionalized with epoxy groups and Legionella-specific antibodies are immobilized. The resulting complexes are characterized with infrared spectroscopy and tested for the specific separation and enrichment of the selected microorganisms. The cell-particle complexes can be isolated in a magnetic field and detected with conventional methods such as fluorescence detection. A nonspecific enrichment of bacteria is also possible by using bare iron oxide nanoparticles (BIONs), which we used as a reference to the nanoparticles with immobilized antibodies. Furthermore, the immunomagnetic separation can be applied for the detection of multiple other microorganisms and thus might pave the way for simpler bacterial diagnosis.
Collapse
|