1
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
2
|
Short WD, Steen E, Kaul A, Wang X, Olutoye OO, Vangapandu HV, Templeman N, Blum AJ, Moles CM, Narmoneva DA, Crombleholme TM, Butte MJ, Bollyky PL, Keswani SG, Balaji S. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3. FASEB J 2022; 36:e22298. [PMID: 35670763 PMCID: PMC9796147 DOI: 10.1096/fj.201901024rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.
Collapse
Affiliation(s)
- Walker D. Short
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Emily Steen
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Aditya Kaul
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Xinyi Wang
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Oluyinka O. Olutoye
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Hima V. Vangapandu
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Natalie Templeman
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Alexander J. Blum
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Chad M. Moles
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Daria A. Narmoneva
- Biomedical EngineeringDepartment of Biomedical, Chemical and Environmental EngineeringCollege of Engineering and Applied SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Timothy M. Crombleholme
- Division of Pediatric General Thoracic and Fetal SurgeryConnecticut Children’s HospitalUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA,Fetal Care Center DallasDallasTexasUSA
| | - Manish J. Butte
- Division of ImmunologyAllergy, and RheumatologyDepartments of Pediatrics and Microbiology, Immunology, and Molecular GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul L. Bollyky
- Division of Infectious DiseasesDepartment of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Sundeep G. Keswani
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Swathi Balaji
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Patil P, Russo KA, McCune JT, Pollins AC, Cottam MA, Dollinger BR, DeJulius CR, Gupta MK, D'Arcy R, Colazo JM, Yu F, Bezold MG, Martin JR, Cardwell NL, Davidson JM, Thompson CM, Barbul A, Hasty AH, Guelcher SA, Duvall CL. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022; 14:eabm6586. [PMID: 35442705 PMCID: PMC10165619 DOI: 10.1126/scitranslmed.abm6586] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine A Russo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Callie M Thompson
- Vanderbilt Burn Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Surgery, Veterans Administration Medical Center, Nashville, TN 37212, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Wang J, Sun Y, Tian X. The Inhibitory Effect of Icariin Nanoparticles on Angiogenesis in Pulmonary Fibrosis. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5429-5435. [PMID: 33980352 DOI: 10.1166/jnn.2021.19316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated icariin (ICA) nanoparticles on angiogenesis in rats with pulmonary fibrosis and its mechanism. First, icariin solid nanoliposomes (ICA-SLN) were prepared. The in vitrorelease of icariin nanoparticles was determined using a UV-Vis spectrophotometer, after which the plasma concentration of icariin nanoparticles in rats was determined. The bioavailability of icariin nanoparticles was investigated, and the effect of icariin on angiogenesis of pulmonary fibrosis rats was re-observed. The results showed that the bioavailability of icariin in vivo was enhanced after nanomodification, which indicated that icariin solid nanoliposome was a good choice for oral sustained-release nanocarrier materials. in vivo experiments showed that icariin could significantly inhibit angiogenesis in rats with pulmonary fibrosis, and the inhibitory effect was related to the dose and time of action. Most importantly, this study provides the possibility of icariin as a targeted agent for future-targeted therapy.
Collapse
Affiliation(s)
- Jiahao Wang
- Linyi Traditional Chinese Medicine Hospital, Liny 276000, Shandong, PR China
| | - Yuying Sun
- Linyi Agriculture and Rural Affairs Bureau, Linyi 276000, Shandong, PR China
| | - Xiangtong Tian
- Linyi Traditional Chinese Medicine Hospital, Liny! 276000, Shandong, PR China
| |
Collapse
|
6
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
7
|
Xu HH, Li SM, Fang L, Xia CJ, Zhang P, Xu R, Shi ZY, Zou Z, Ge QW, Wang P, Tong PJ, Jin HT. Platelet-rich plasma promotes bone formation, restrains adipogenesis and accelerates vascularization to relieve steroids-induced osteonecrosis of the femoral head. Platelets 2020; 32:950-959. [PMID: 32835568 DOI: 10.1080/09537104.2020.1810221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Steroid-associated necrosis of the femoral head (SANFH) is one of the most common and refractory chronic diseases with increasing incidence. The typical pathological changes of SANFH include decreased osteogenic differentiation, enhanced intramedullary adipocytes deposition and impaired osseous circulation. In this study, we investigated the effects and potential mechanisms of Platelet-rich plasma (PRP) on SANFH. Sixty Sprague-Dawley rats were randomly divided into the control, PRP donor, model, and PRP groups. Compared to the model group, PRP treatment significantly increased the hemorheological indexes and serum levels of bone gla-protein (BGP) and vascular endothelial growth factor (VEGF), while decreased the levels of triglyceride (TG) and total cholesterol (TC). Meanwhile, Micro-CT and histopathological stain (Hematoxylin-eosin and Alcian blue-hematoxylin/orange G staining) were performed on the femoral head for morphological and histopathological evaluation, indicating that bone trabecular microstructure and bone mineral density (BMD) were significantly improved after PRP treatment. Immunohistochemical analysis revealed that PRP remarkably up-regulated the expression of osteogenic markers including β-catenin and alkaline phosphatase (ALP), angiogenic markers containing VEGF and platelet endothelial cell adhesion molecule-1 (CD31), while down-regulated adipogenic markers involving fatty acid-binding protein (FABP-4), and peroxisome proliferator-activated receptor gamma (PPAR-γ) in SANFH rat models. In summary, for the first time, PRP was demonstrated to prevent the development of SANFH through stimulating bone formation and vascularization as well as retarding adipogenesis.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Suo-Mi Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liang Fang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chen-Jie Xia
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen-Yu Shi
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Zou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qin-Wen Ge
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Pinger Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Pei-Jian Tong
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hong-Ting Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Yu H, Liu P, Zuo W, Sun X, Liu H, Lu F, Guo W, Zhang Q. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord 2020; 21:277. [PMID: 32349721 PMCID: PMC7191720 DOI: 10.1186/s12891-020-03225-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Glucocorticoid-induced osteonecrosis of the femoral head (ONFH) is closely associated with the dysfunction of the bone microvascular endothelial cells (BMECs). The present study investigated the angiogenic and apoptotic activity of the BMECs in glucocorticoid-induced ONFH. Methods This study enrolled a total of 12 patients, six of whom were assigned to the ONFH group whereas the other six served as the control group. The ONFH group was composed of patients with glucocorticoid-induced ONFH while the control group had femoral neck fractures. BMECs were isolated from the subchondral region of the femoral head. Cell proliferation, cell viability, tube formation assay, Transwell assay, TUNEL assay, and Western blot analysis were performed. Results BMECs of the two groups were successfully isolated and identified. No significant differences were noticed in BMECs proliferation between the two groups. However, compared to the control, cell viability, tube formation, and migration of BMECs were significantly decreased and the number of TUNEL positive cells was markedly increased in the ONFH group. In the ONFH group, it was also noted that the amount of Bax and cleaved-caspase3 was elevated while that of Bcl-2 was reduced. Conclusion The findings of our study revealed that BMECs obtained from the glucocorticoid-induced ONFH patients had decreased angiogenic and increased apoptotic activities, which could explain the pathogenesis and progression of glucocorticoid-induced ONFH.
Collapse
Affiliation(s)
- Huachen Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Pei Liu
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zuo
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking University China-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Xiaowei Sun
- Graduate School of Peking Union Medical College, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Hongzhi Liu
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Feifan Lu
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking University China-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Wanshou Guo
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| | - Qidong Zhang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
9
|
Yu H, Yue J, Wang W, Liu P, Zuo W, Guo W, Zhang Q. Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J Cell Mol Med 2019; 23:7320-7330. [PMID: 31507078 PMCID: PMC6815836 DOI: 10.1111/jcmm.14589] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022] Open
Abstract
The injury and dysfunction of the femoral head microvascular endothelial cells are associated with the pathogenesis of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). Reports indicate that icariin (ICA) can enhance vascular roles and also inhibit endothelial cell dysfunction. However, it still remains unclear whether ICA can promote angiogenesis in glucocorticoid-induced ONFH. In this study, we investigate this hypothesis through in vitro and in vivo experiments. Results showed that 0.1 mg/mL hydrocortisone significantly suppressed bone microvascular endothelial cells (BMECs) proliferation while ICA at 10-5 mol/L reversed this inhibition. ICA significantly promoted BMECs migration, tube formation, the angiogenesis-related cytokines expression and the activation of Akt. Furthermore, ICA enhanced Bcl-2 expression but diminished Bax expression. According to in vivo results, rats with ICA treatment exhibited a lower ratio of empty lacunae, higher volume of blood vessels and more CD31-positive cells. This study revealed that ICA promotes angiogenesis of BMECs in vitro and improves femoral head blood vessel volume of rats treated with glucocorticoid, suggesting the efficacy of ICA in the prevention of glucocorticoid-induced ONFH.
Collapse
Affiliation(s)
- Huachen Yu
- Graduate School of Peking Union Medical College, Beijing, China.,China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ju'an Yue
- Department of Orthopaedic, Aviation General Hospital of China Medical University, Beijing, China
| | - Weiguo Wang
- China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Pei Liu
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zuo
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking University China-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Wanshou Guo
- Graduate School of Peking Union Medical College, Beijing, China.,China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Qidong Zhang
- China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Park U, Lee MS, Jeon J, Lee S, Hwang MP, Wang Y, Yang HS, Kim K. Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomater 2019; 90:179-191. [PMID: 30936036 DOI: 10.1016/j.actbio.2019.03.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Although there are numerous medical applications to recover damaged skin tissue, scarless wound healing is being extensively investigated to provide a better therapeutic outcome. The exogenous delivery of therapeutic growth factors (GFs) is one of the engineering strategies for skin regeneration. This study presents an exogenous GF delivery platform developed using coacervates (Coa), a tertiary complex of poly(ethylene argininyl aspartate diglyceride) (PEAD) polycation, heparin, and cargo GFs (i.e., transforming growth factor beta 3 (TGF-β3) and interleukin 10 (IL-10)). Coa encompasses the advantage of high biocompatibility, facile preparation, protection of cargo GFs, and sustained GF release. We therefore speculated that coacervate-mediated dual delivery of TGF-β3/IL-10 would exhibit synergistic effects for the reduction of scar formation during physiological wound healing. Our results indicate that the exogenous administration of dual GF via Coa enhances the proliferation and migration of skin-related cells. Gene expression profiles using RT-PCR revealed up-regulation of ECM formation at early stage of wound healing and down-regulation of scar-related genes at later stages. Furthermore, direct injection of the dual GF Coa into the edges of damaged skin in a rat skin wound defect model demonstrated accelerated wound closure and skin regeneration after 3 weeks. Histological evaluation and immunohistochemical staining also revealed enhanced formation of the epidermal layer along with facilitated angiogenesis following dual GF Coa delivery. Based on these results, we conclude that polycation-mediated Coa fabrication and exogenous dual GF delivery via the Coa platform effectively augments both the quantity and quality of regenerated skin tissues without scar formation. STATEMENT OF SIGNIFICANCE: This study was conducted to develop a simple administration platform for scarless skin regeneration using polycation-based coacervates with dual GFs. Both in vitro and in vivo studies were performed to confirm the therapeutic efficacy of this platform toward scarless wound healing. Our results demonstrate that the platform developed by us enhances the proliferation and migration of skin-related cells. Sequential modulation in various gene expression profiles suggests a balanced collagen-remodeling process by dual GFs. Furthermore, in vivo histological evaluation demonstrates that our technique enhances clear epidermis formation with less scab and thicker woven structure of collagen bundle, similar to that of a normal tissue. We propose that simple administration of dual GFs with Coa has the potential to be applied as a clinical approach for fundamental scarless skin regeneration.
Collapse
Affiliation(s)
- Uiseon Park
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.
| | - Kyobum Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
11
|
Insights into Body Size Evolution: A Comparative Transcriptome Study on Three Species of Asian Sisoridae Catfish. Int J Mol Sci 2019; 20:ijms20040944. [PMID: 30795590 PMCID: PMC6412271 DOI: 10.3390/ijms20040944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Body size is one of the most important attributes of a species, but the basic question of why and how each species reaches a different "right size" is still largely unknown. Herein, three phylogenetically closely related catfishes from Sisoridae, including one extraordinarily large-sized Bagarius yarrelli and two average-sized Glyptothorax macromaculatus and Oreoglanis setiger, were comparatively studied using RNA-Seq. Approximately 17,000 protein-coding genes were annotated for each of the three fishes, and 9509 genes were identified as high-confidence orthologous gene pairs. Comparative expressions uncovered a similar functional cluster about ribosome biogenesis was enriched in different tissues of the upregulated genes of Bagarius yarrelli. Moreover, differentially expressed genes and positively selected genes revealed that the glycolysis/pyruvate metabolism and cell cycle pathways have also greatly enhanced in this large-sized species. In total, 20 size-related candidate genes (including two growth modulators: the serine/threonine-protein kinases 3 (AKT3) and adaptor protein 1 (SH2B1), and a crucial pyruvate kinase (PKM2A)) were identified by multiplying comparative analyses along with gene functional screening, which would play major roles in enabling the large body size associated with Bagarius yarrelli and provide new insights into body size evolution. In conjunction with field observations and morphological comparisons, we hypothesize that habitat preferences promote size divergence of sisorids.
Collapse
|
12
|
Xu XY, Wei XW, Ma W, Gu H, Liu D, Yuan ZW. Genome-Wide Screening of Aberrant Methylation Loci for Nonsyndromic Cleft Lip. Chin Med J (Engl) 2018; 131:2055-2062. [PMID: 30127215 PMCID: PMC6111694 DOI: 10.4103/0366-6999.239305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The pathogenicity of cleft lip (CL) is pretty complicated since it is influenced by the interaction of environment and genetic factors. The purpose of this study was to conduct a genome-wide screening of aberrant methylation loci in partial lesion tissues of patients with nonsyndromic CL (NSCL) and preliminarily validate candidate dysmethylated genes associated with NSCL. Methods: Fifteen healthy and sixteen NSCL fetal lip tissue samples were collected. The Infinium HumanMethylation450 BeadChip was used to screen aberrant methylation loci in three NSCL and three healthy lip tissues. The differential methylation sites and functions of the annotated genes between NSCL and healthy lip tissues were analyzed using minfi package of R software, cluster analysis, Gene Ontology (GO) annotation, and metabolic pathway annotation. Gene expression was assessed in nine differentially methylated genes by real-time polymerase chain reaction (PCR). The transcriptions mRNA levels of three out of nine candidate genes were downregulated remarkably in NSCL lip tissues, and these three genes’ abnormal methylation loci were validated by pyrosequencing in 16 NSCL cases and 15 healthy cases. Results: In total, 4879 sites in the genes of NSCL odinopoeia fetuses showed aberrant methylation when compared with normal lip tissue genome. Among these, 3661 sites were hypermethylated and 1218 sites were hypomethylated as compared to methylation levels in healthy specimens. These aberrant methylation sites involved 2849 genes and were widely distributed among the chromosomes. Most differentially methylated sites were located in cytosine-phosphoric acid-guanine islands. Based on GO analysis, aberrantly methylated genes were involved in 11 cellular components, 13 molecular functions, and a variety of biological processes. Notably, the transcription of DAB1, REELIN, and FYN was significantly downregulated in lesion tissues of NSCL fetus (P < 0.05). Pyrosequencing results validated that there were two loci in DAB1 with high methylation status in patient tissues (P < 0.05). Conclusions: We detected numerous aberrantly methylated loci in lesion tissues of NSCL fetus. Aberrant gene expression in the REELIN signaling pathway might be related with NSCL. Decreased transcription of DAB1, a member of REELIN signal pathway, resulted from its abnormal high methylation, which might be one of the factors underlying the occurrence of NSCL.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiao-Wei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Zheng-Wei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
13
|
Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Beth Humphrey M, James JA, Sawalha AH. Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Subchondral Bone and Similarity to Overlying Cartilage. Arthritis Rheumatol 2017; 68:1403-14. [PMID: 26713865 DOI: 10.1002/art.39555] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To perform a genome-wide DNA methylation study to identify differential DNA methylation patterns in subchondral bone underlying eroded and intact cartilage from patients with hip osteoarthritis (OA) and to compare these with DNA methylation patterns in overlying cartilage. METHODS Genome-wide DNA methylation profiling using Illumina HumanMethylation 450 arrays was performed on eroded and intact cartilage and subchondral bone from within the same joint of 12 patients undergoing hip arthroplasty. Genes with differentially methylated CpG sites were analyzed to identify shared pathways, upstream regulators, and overrepresented gene ontologies, and these patterns were compared with those of the overlying cartilage. Histopathology was graded by modified Mankin score and assessed for correlation with DNA methylation. RESULTS We identified 7,316 differentially methylated CpG sites in subchondral bone underlying eroded cartilage, most of which (∼75%) were hypomethylated, and 1,397 sites in overlying eroded cartilage, 126 of which were shared. Samples clustered into 3 groups with distinct histopathologic scores. We observed differential DNA methylation of genes including the RNA interference-processing gene AGO2, the growth factor TGFB3, the OA suppressor NFATC1, and the epigenetic effector HDAC4. Among known susceptibility genes in OA, 32 were differentially methylated in subchondral bone, 8 were differentially methylated in cartilage, and 5 were shared. Upstream regulator analysis using differentially methylated genes in OA subchondral bone showed a strong transforming growth factor β1 signature (P = 1 × 10(-40) ) and a tumor necrosis factor family signature (P = 3.2 × 10(-28) ), among others. CONCLUSION Our data suggest the presence of an epigenetic phenotype associated with eroded OA subchondral bone that is similar to that of overlying eroded OA cartilage.
Collapse
Affiliation(s)
- Matlock A Jeffries
- University of Oklahoma Health Sciences Center and Oklahoma Medical Research Foundation, Oklahoma City
| | | | | | | | - Anand C Annan
- University of Oklahoma Health Sciences Center, Oklahoma City
| | - Mary Beth Humphrey
- MPH: University of Oklahoma Medical Research Center and Veterans Affairs Medical Center, Oklahoma City
| | - Judith A James
- University of Oklahoma Health Sciences Center and Oklahoma Medical Research Foundation, Oklahoma City
| | | |
Collapse
|
14
|
Lee MS, Ahmad T, Lee J, Awada HK, Wang Y, Kim K, Shin H, Yang HS. Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials 2017; 124:65-77. [DOI: 10.1016/j.biomaterials.2017.01.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/25/2016] [Accepted: 01/27/2017] [Indexed: 10/24/2022]
|
15
|
Zhang Y, Yin J, Ding H, Zhang C, Gao YS. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model. Int J Biol Sci 2016; 12:776-85. [PMID: 27313492 PMCID: PMC4910597 DOI: 10.7150/ijbs.15248] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2016] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.
Collapse
Affiliation(s)
- Yuelei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
17
|
ZHAO JINGJIE, LIU XIAOCHENG, KONG FENG, QI TONGGANG, CHENG GUANGHUI, WANG JUE, SUN CHAO, LUAN YUN. Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction. Mol Med Rep 2014; 10:1448-54. [DOI: 10.3892/mmr.2014.2378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 11/05/2022] Open
|
18
|
Walshe TE, dela Paz NG, D'Amore PA. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arterioscler Thromb Vasc Biol 2013; 33:2608-17. [PMID: 23968981 DOI: 10.1161/atvbaha.113.302161] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) are continuously exposed to blood flow that contributes to the maintenance of vessel structure and function; however, the effect of hemodynamic forces on transforming growth factor-β (TGF-β) signaling in the endothelium is poorly described. We examined the potential role of TGF-β signaling in mediating the protective effects of shear stress on ECs. APPROACH AND RESULTS Human umbilical vein ECs (HUVECs) exposed to shear stress were compared with cells grown under static conditions. Signaling through the TGF-β receptor ALK5 was inhibited with SB525334. Cells were examined for morphological changes and harvested for analysis by real-time polymerase chain reaction, Western blot analysis, apoptosis, proliferation, and immunocytochemistry. Shear stress resulted in ALK5-dependent alignment of HUVECs as well as attenuation of apoptosis and proliferation compared with static controls. Shear stress led to an ALK5-dependent increase in TGF-β3 and Krüppel-like factor 2, phosphorylation of endothelial NO synthase, and NO release. Addition of the NO donor S-nitroso-N-acetylpenicillamine rescued the cells from apoptosis attributable to ALK5 inhibition under shear stress. Knockdown of TGF-β3, but not TGF-β1, disrupted the HUVEC monolayer and prevented the induction of Krüppel-like factor 2 by shear. CONCLUSIONS Shear stress of HUVECs induces TGF-β3 signaling and subsequent activation of Krüppel-like factor 2 and NO, and represents a novel role for TGF-β3 in the maintenance of HUVEC homeostasis in a hemodynamic environment.
Collapse
Affiliation(s)
- Tony E Walshe
- From the Departments of Ophthalmology (T.E.W., N.G.d.P., P.A.D.) and Pathology (P.A.D.), Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston; and La Jolla Bioengineering Institute, San Diego, CA (N.G.d.P.)
| | | | | |
Collapse
|
19
|
Liu XC, Zhao J, Wang Y, Liu TJ, Lü F, He GW. Heparin- and Basic Fibroblast Growth Factor-incorporated Stent: A New Promising Method for Myocardial Revascularization. J Surg Res 2010; 164:204-13. [DOI: 10.1016/j.jss.2009.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/14/2009] [Accepted: 05/01/2009] [Indexed: 11/24/2022]
|
20
|
Mid-term effect of stem cells combined with transmyocardial degradable stent on swine model of acute myocardial infarction. Coron Artery Dis 2010; 21:233-43. [DOI: 10.1097/mca.0b013e328338cc94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Our challenging to understand non-genetic effect in addition to genetic one on dento-craniofacial morphogenesis in spontaneous cleft lip/palate mouse model from the standing point of pediatric dentistry. JAPANESE DENTAL SCIENCE REVIEW 2009. [DOI: 10.1016/j.jdsr.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Suutre S, Toom A, Arend A, Selstam G. Bone tissue content of TGF-beta2 changes with time in human heterotopic ossification after total hip arthroplasty. Growth Factors 2009; 27:114-20. [PMID: 19180355 DOI: 10.1080/08977190802703976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transforming growth factor beta isoforms (TGF-beta(1), TGF-beta(2), and TGF-beta(3)) most likely play a role in bone physiology, but little is known about their relative importance in normal as well as in heterotopic bone. This study focused on possible differences in the localization and relative content of different TGF beta isoforms in heterotopic ossifications (HO) by comparing HOs, which have developed less than 17 months (immature HOs) with those developed 3-9 years (mature HOs). The HOs were harvested after total hip arthroplasty (THA) during revision surgery. The HO samples were decalcified, embedded in paraffin and sectioned. Azan staining was used to evaluate histological structure of the ossifications and immunohistochemical analysis was performed to estimate the localization of three TGF beta isoforms in the HOs. Comparison of different TGF beta isoforms in the immature and the mature ossifications showed that the content of TGF-beta(2) was decreased by almost three times in the mature HO as compared to the immature HO (p = 0.0064). The proportions of other isoforms in HOs did not differ significantly. This study shows that the relative importance of TGF betas change with HO development.
Collapse
Affiliation(s)
- Siim Suutre
- Department of Anatomy, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
23
|
Juriloff DM, Harris MJ. Mouse genetic models of cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2008; 82:63-77. [DOI: 10.1002/bdra.20430] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Massaro D, Alexander E, Reiland K, Hoffman EP, Massaro GD, Clerch LB. Rapid onset of gene expression in lung, supportive of formation of alveolar septa, induced by refeeding mice after calorie restriction. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1313-26. [PMID: 17237152 DOI: 10.1152/ajplung.00146.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar regenerative gene expression is unidentified partly because its onset, after a regenerative stimulus, is unknown. Toward addressing this void, we used a mouse model in which calorie restriction produces alveolar loss, and ad libitum access to food after calorie restriction induces alveolar regeneration. We selected four processes (cell replication, angiogenesis, extracellular matrix remodeling, and guided cell motion) that would be required to convert a flat segment of alveolar wall into a septum that increases gas-exchange surface area. Global gene expression supportive of processes required to form a septum was present within 3 h of allowing calorie-restricted mice food ad libitum. One hour after providing calorie-restricted mice food ad libitum, RNA-level expression supportive of cell replication was present with little evidence of expression supportive of angiogenesis, extracellular matrix remodeling, or guided cell motion. Cell replication was more directly assayed by measuring DNA synthesis in lung. This measurement was made 3 h after allowing calorie-restricted mice food ad libitum because translation may be delayed. Ad libitum food intake, following calorie restriction, elevated DNA synthesis. Thus RNA expression 1 h after allowing calorie-restricted mice food ad libitum supported increased cell replication; measurements at 3 h revealed increased DNA synthesis and RNA expression, supportive of the three other processes required to form a septum. These findings identify the first hour after providing calorie-restricted mice ad libitum access to food as the onset of gene expression in this model that supports processes needed for alveolar regeneration.
Collapse
Affiliation(s)
- Donald Massaro
- Lung Regeneration Laboratory, Department of 1Medicine, Georgetown University School of Medicine, Children's National Medical Center, Washington, District of Columbia 20057-1481, USA.
| | | | | | | | | | | |
Collapse
|