1
|
Meza-Menchaca T, Albores-Medina A, Heredia-Mendez AJ, Ruíz-May E, Ricaño-Rodríguez J, Gallegos-García V, Esquivel A, Vettoretti-Maldonado G, Campos-Parra AD. Revisiting Epigenetics Fundamentals and Its Biomedical Implications. Int J Mol Sci 2024; 25:7927. [PMID: 39063168 PMCID: PMC11276703 DOI: 10.3390/ijms25147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Alma Jaqueline Heredia-Mendez
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Cluster BioMimic®, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Mexico;
| | - Jorge Ricaño-Rodríguez
- Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Zona Universitaria, Xalapa 91090, Mexico;
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Adriana Esquivel
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Giancarlo Vettoretti-Maldonado
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | | |
Collapse
|
2
|
Cuyvers B, Ein-Dor T, Houbrechts M, Freson K, Goossens L, Van Den Noortgate W, van Leeuwen K, Bijttebier P, Claes S, Turner J, Chubar V, Bakermans-Kranenburg MJ, Bosmans G. Exploring the role of OXTR gene methylation in attachment development: A longitudinal study. Dev Psychobiol 2024; 66:e22496. [PMID: 38689124 DOI: 10.1002/dev.22496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The current study explored longitudinally whether oxytocin receptor gene methylation (OXTRm) changes moderated the association between parental sensitivity changes and children's attachment changes over three waves. Six hundred six Flemish children (10-12 years, 42.8%-44.8% boys) completed attachment measures and provided salivary OXTRm data on seven CpG sites. Their parents reported their sensitive parenting. Results suggest that OXTRm changes hardly link to attachment (in)security changes after the age of 10. Some support was found for interaction effects between parental sensitivity changes and OXTRm changes on attachment changes over time. Effects suggest that for children with increased OXTRm in the promotor region and decreased methylation in the inhibitor region over time, increased parental sensitivity was associated with increased secure attachment and decreased insecure attachment over time.
Collapse
Affiliation(s)
- Bien Cuyvers
- Clinical Psychology, KU Leuven University, Leuven, Belgium
| | - Tsachi Ein-Dor
- Social Sciences, School of Psychology, Reichman University Herzliya, Herzliya, Israel
| | | | - Kathleen Freson
- Centre for Molecular and Vascular Biology, KU Leuven University, Leuven, Belgium
| | - Luc Goossens
- School Psychology and Development in Context, KU Leuven University, Leuven, Belgium
| | | | - Karla van Leeuwen
- Family and Educational Sciences, KU Leuven University, Leuven, Belgium
| | - Patricia Bijttebier
- School Psychology and Development in Context, KU Leuven University, Leuven, Belgium
| | - Stephan Claes
- Research Group Psychiatry, UZ Leuven-KU Leuven University, Leuven, Belgium
| | - Jonathan Turner
- Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg, Luxembourg
| | - Viktoria Chubar
- Research Group Psychiatry, UZ Leuven-KU Leuven University, Leuven, Belgium
| | - Marian J Bakermans-Kranenburg
- William James Center for Research, ISPA University Institute of sychological, Social and Life Sciences, Lisbon, Portugal
- Centre for Attachment Research, the New School for Social Research, New York, USA
| | - Guy Bosmans
- Clinical Psychology, KU Leuven University, Leuven, Belgium
| |
Collapse
|
3
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Li Z, Liu D, Wang G, Zheng Y, Chen L, Cheng Z, Zhang Z, Cai Q, Ge F, Fan Y, Guan X. METH exposure alters sperm DNA methylation in F0 mice and mPFC transcriptome in male F1 mice. Psychopharmacology (Berl) 2024; 241:897-911. [PMID: 38092953 DOI: 10.1007/s00213-023-06516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
RATIONALE Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear. OBJECTIVES The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1). METHODS METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR. RESULTS METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC. CONCLUSIONS Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.
Collapse
Affiliation(s)
- Zhaosu Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Zheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen Cheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Lafond J, Angers B. Maternal ploidy shapes reproductive pathways in the triploid hybrid Chrosomus eos × eos-neogaeus. Mol Ecol 2024; 33:e17264. [PMID: 38205506 DOI: 10.1111/mec.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Elements transferred from a mother to her eggs may strongly influence the phenotype of her offspring. Such maternal effects depend on the genotype of the mother, and while multiple ploidy levels occur naturally in some vertebrate species, studies evaluating the impact of maternal ploidy on offspring are scarce. This paper aimed to test whether maternal ploidy is responsible for the two reproductive phenotypes observed in the triploid fish Chrosomus eos × eos-neogaeus. Indeed, these hybrids have two different maternal origins (diploid or triploid) and display two reproductive phenotypes, ameiotic and meiotic hybridogenesis, resulting in diploid and haploid eggs, respectively. To this end, we first conducted a genomic survey to identify epigenetic variations in triploid larvae reared under common garden conditions, concordantly with their maternal origin. The results revealed that the polymorphic epigenetic loci of the larvae clustered into two highly distinct groups consistently with the ploidy of their mother. Diagnostic epigenetic loci were then tested in triploid adult females whose reproductive pathways were already known, to infer their own maternal origin. Altogether, the results suggest that triploid larvae from diploid and triploid mothers will develop the ameiotic and meiotic hybridogenesis pathway, respectively. This confirms that the development of a given reproductive pathway in triploid females results from the ploidy of their mother. Overall, this study supports a strong maternal effect, introducing maternal ploidy and reproductive pathways as additional cause and effect of maternal effects, respectively.
Collapse
Affiliation(s)
- Joëlle Lafond
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Green ES, Chan HY, Frost E, Griffiths M, Hutchison J, Martin JH, Mihalas BP, Newman T, Dunleavy JEM. Recent advances in reproductive research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2022. Reprod Fertil Dev 2024; 36:RD23213. [PMID: 38346692 DOI: 10.1071/rd23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
In 2022, the Society for Reproductive Biology came together in Christchurch New Zealand (NZ), for its first face-to-face meeting since the global COVID-19 pandemic. The meeting showcased recent advancements in reproductive research across a diverse range of themes relevant to human health and fertility, exotic species conservation, and agricultural breeding practices. Here, we highlight the key advances presented across the main themes of the meeting, including advances in addressing opportunities and challenges in reproductive health related to First Nations people in Australia and NZ; increasing conservation success of exotic species, including ethical management of invasive species; improvements in our understanding of developmental biology, specifically seminal fluid signalling, ovarian development and effects of environmental impacts such as endocrine-disrupting chemicals; and leveraging scientific breakthroughs in reproductive engineering to drive solutions for fertility, including in assisted reproductive technologies in humans and agricultural industries, and for regenerative medicine.
Collapse
Affiliation(s)
- Ella S Green
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Hon Y Chan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Emily Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Meaghan Griffiths
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Vic., Australia; and Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic., Australia
| | - Jennifer Hutchison
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia; and Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton Vic., Australia; and Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; and Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bettina P Mihalas
- The Oocyte Biology Research Unit, Discipline of Women's Health, School of Clinical Medicine, Faculty of Medicine and Health, The University of NSW Sydney, Randwick, NSW, Australia
| | - Trent Newman
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| | - Jessica E M Dunleavy
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
7
|
Legault LM, Breton-Larrivée M, Langford-Avelar A, Lemieux A, McGraw S. Sex-based disparities in DNA methylation and gene expression in late-gestation mouse placentas. Biol Sex Differ 2024; 15:2. [PMID: 38183126 PMCID: PMC10770955 DOI: 10.1186/s13293-023-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown. METHODS We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation. RESULTS Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development. CONCLUSION Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Anthony Lemieux
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Serge McGraw
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Tennenbaum SR, Bortner R, Lynch C, Santymire R, Crosier A, Santiestevan J, Marinari P, Pukazhenthi BS, Comizzoli P, Hawkins MTR, Maldonado JE, Koepfli K, vonHoldt BM, DeCandia AL. Epigenetic changes to gene pathways linked to male fertility in ex situ black-footed ferrets. Evol Appl 2024; 17:e13634. [PMID: 38283602 PMCID: PMC10818088 DOI: 10.1111/eva.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.
Collapse
Affiliation(s)
| | - Robyn Bortner
- U.S. Fish & Wildlife Service National Black‐Footed Ferret Conservation CenterCarrColoradoUSA
| | | | - Rachel Santymire
- Biology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Adrienne Crosier
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenny Santiestevan
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Paul Marinari
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Budhan S. Pukazhenthi
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Pierre Comizzoli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate ZoologyNational Museum of Natural HistoryWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | | | - Alexandra L. DeCandia
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
- BiologyGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
9
|
Vargas AO, Botelho JF, Mpodozis J. The evolutionary consequences of epigenesis and neutral change: A conceptual approach at the organismal level. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:531-540. [PMID: 33382199 DOI: 10.1002/jez.b.23023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Living beings are autopoietic systems with highly context-dependent structural dynamics and interactions, that determine whether a disturbance in the genotype or environment will lead or not to phenotypic change. The concept of epigenesis entails how a change in the phenotype may not correspond to a change in the structure of an earlier developmental stage, including the genome. Disturbances of embryonic structure may fail to change the phenotype, as in regulated development, or when different genotypes are associated to a single phenotype. Likewise, the same genotype or early embryonic structure may develop different phenotypes, as in phenotypic plasticity. Disturbances that fail to trigger phenotypic change are considered neutral, but even so, they can alter unexpressed developmental potential. Here, we present conceptual diagrams of the "epigenic field": similar to Waddington's epigenetic landscapes, but including the ontogenic niche (organism/environment interactional dynamics during ontogeny) as a factor in defining epigenic fields, rather than just selecting among possible pathways. Our diagrams illustrate transgenerational changes of genotype, ontogenic niche, and their correspondence (or lack thereof) with changes of phenotype. Epigenic fields provide a simple way to understand developmental constraints on evolution, for instance: how constraints evolve as a result of developmental system drift; how neutral changes can be involved in genetic assimilation and de-assimilation; and how constraints can evolve as a result of neutral changes in the ontogenic niche (not only the genotype). We argue that evolutionary thinking can benefit from a framework for evolution with conceptual foundations at the organismal level.
Collapse
Affiliation(s)
- Alexander O Vargas
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joao F Botelho
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Ramazi S, Daddzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Meadeh Daddzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Zheng Y, Liu D, Guo H, Chen W, Liu Z, Li Z, Hu T, Zhang Y, Li X, Zhao Z, Cai Q, Ge F, Fan Y, Guan X. Paternal methamphetamine exposure induces higher sensitivity to methamphetamine in male offspring through driving ADRB1 on CaMKII-positive neurons in mPFC. Transl Psychiatry 2023; 13:324. [PMID: 37857642 PMCID: PMC10587075 DOI: 10.1038/s41398-023-02624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Paternal abuse of drugs, such as methamphetamine (METH), elevates the risk of developing addiction in subsequent generations, however, its underlying molecular mechanism remains poorly understood. Male adult mice (F0) were exposed to METH for 30 days, followed by mating with naïve female mice to create the first-generation mice (F1). When growing to adulthood, F1 were subjected to conditioned place preference (CPP) test. Subthreshold dose of METH (sd-METH), insufficient to induce CPP normally, were used in F1. Selective antagonist (betaxolol) for β1-adrenergic receptor (ADRB1) or its knocking-down virus were administrated into mPFC to regulate ADRB1 function and expression on CaMKII-positive neurons. METH-sired male F1 acquired sd-METH-induced CPP, indicating that paternal METH exposure induce higher sensitivity to METH in male F1. Compared with saline (SAL)-sired male F1, CaMKII-positive neuronal activity was normal without sd-METH, but strongly evoked after sd-METH treatment in METH-sired male F1 during adulthood. METH-sired male F1 had higher ADRB1 levels without sd-METH, which was kept at higher levels after sd-METH treatment in mPFC. Either inhibiting ADRB1 function with betaxolol, or knocking-down ADRB1 level on CaMKII-positive neurons (ADRB1CaMKII) with virus transfection efficiently suppressed sd-METH -evoked mPFC activation, and ultimately blocked sd-METH-induced CPP in METH-sired male F1. In the process, the p-ERK1/2 and ΔFosB may be potential subsequent signals of mPFC ADRB1CaMKII. The mPFC ADRB1CaMKII mediates paternal METH exposure-induced higher sensitivity to drug addiction in male offspring, raising a promising pharmacological target for predicting or treating transgenerational addiction.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Guo
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenwen Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhaoyu Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhaosu Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziheng Zhao
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
13
|
Hawkins-Hooker A, Visonà G, Narendra T, Rojas-Carulla M, Schölkopf B, Schweikert G. Getting personal with epigenetics: towards individual-specific epigenomic imputation with machine learning. Nat Commun 2023; 14:4750. [PMID: 37550323 PMCID: PMC10406842 DOI: 10.1038/s41467-023-40211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
Epigenetic modifications are dynamic mechanisms involved in the regulation of gene expression. Unlike the DNA sequence, epigenetic patterns vary not only between individuals, but also between different cell types within an individual. Environmental factors, somatic mutations and ageing contribute to epigenetic changes that may constitute early hallmarks or causal factors of disease. Epigenetic modifications are reversible and thus promising therapeutic targets for precision medicine. However, mapping efforts to determine an individual's cell-type-specific epigenome are constrained by experimental costs and tissue accessibility. To address these challenges, we developed eDICE, an attention-based deep learning model that is trained to impute missing epigenomic tracks by conditioning on observed tracks. Using a recently published set of epigenomes from four individual donors, we show that transfer learning across individuals allows eDICE to successfully predict individual-specific epigenetic variation even in tissues that are unmapped in a given donor. These results highlight the potential of machine learning-based imputation methods to advance personalized epigenomics.
Collapse
Affiliation(s)
- Alex Hawkins-Hooker
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
- Empirical Inference Department, Max-Planck Institute for Intelligent Systems, Max-Planck-Ring 4, Tübingen, 72076, Germany.
- Centre for Artificial Intelligence, University College London, London, UK.
| | - Giovanni Visonà
- Empirical Inference Department, Max-Planck Institute for Intelligent Systems, Max-Planck-Ring 4, Tübingen, 72076, Germany
| | - Tanmayee Narendra
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Interfaculty Institute for Biomedical Informatics, University of Tübingen, Sand 13, Tübingen, 72076, Germany
| | - Mateo Rojas-Carulla
- Empirical Inference Department, Max-Planck Institute for Intelligent Systems, Max-Planck-Ring 4, Tübingen, 72076, Germany
| | - Bernhard Schölkopf
- Empirical Inference Department, Max-Planck Institute for Intelligent Systems, Max-Planck-Ring 4, Tübingen, 72076, Germany
| | - Gabriele Schweikert
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
- Interfaculty Institute for Biomedical Informatics, University of Tübingen, Sand 13, Tübingen, 72076, Germany.
| |
Collapse
|
14
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
16
|
Mallette JH, Crudup BF, Alexander BT. Growth Restriction in Preeclampsia: Lessons from Animal Models. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100647. [PMID: 36968132 PMCID: PMC10035651 DOI: 10.1016/j.cophys.2023.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Preeclampsia remains a major health concern for mother and child. Yet, treatment options remain limited to early delivery. Placental dysfunction in preeclampsia occurs in response to an increase in oxidative stress and inflammatory cytokines with vasoactive and anti-angiogenic factors contributing to impaired maternal and fetal health. Moreover, recent studies indicate a potential role for epigenetic mediators in the pathophysiology of placental ischemia. Numerous animal models are utilized to explore the pathogenesis of preeclampsia and fetal growth restriction. This review provides a brief overview of recent progress in preclinical studies regarding potential therapeutic targets for the treatment and prevention of preeclampsia with an emphasis on fetal growth restriction and the fetal programming of increased cardiovascular risk.
Collapse
Affiliation(s)
- Jordan H. Mallette
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Breland F. Crudup
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| |
Collapse
|
17
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
18
|
Ashraf UM, Hall DL, Campbell N, Waller JP, Rawls AZ, Solise D, Cockrell K, Bidwell GL, Romero DG, Ojeda NB, LaMarca B, Alexander BT. Inhibition of the AT 1R agonistic autoantibody in a rat model of preeclampsia improves fetal growth in late gestation. Am J Physiol Regul Integr Comp Physiol 2022; 323:R670-R681. [PMID: 36121142 PMCID: PMC9602704 DOI: 10.1152/ajpregu.00122.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kathy Cockrell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
19
|
Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-Drugs in Heart Failure. Front Cardiovasc Med 2022; 9:923014. [PMID: 35911511 PMCID: PMC9326055 DOI: 10.3389/fcvm.2022.923014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Unveiling the secrets of genome's flexibility does not only foster new research in the field, but also gives rise to the exploration and development of novel epigenetic-based therapies as an approach to alleviate disease phenotypes. A better understanding of chromatin biology (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic drugs able to modulate transcriptional programs implicated in cardiovascular diseases. This particularly applies to heart failure, where epigenetic networks have shown to underpin several pathological features, such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis and microvascular dysfunction. Targeting epigenetic signals might represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where prognosis remains poor and breakthrough therapies have yet to be approved. In this setting, epigenetics can be employed for the development of customized therapeutic approaches thus paving the way for personalized medicine. Even though the beneficial effects of epi-drugs are gaining attention, the number of epigenetic compounds used in the clinical practice remains low suggesting that more selective epi-drugs are needed. From DNA-methylation changes to non-coding RNAs, we can establish brand-new regulations for drug targets with the aim of restoring healthy epigenomes and transcriptional programs in the failing heart. In the present review, we bring the timeline of epi-drug discovery and development, thus highlighting the emerging role of epigenetic therapies in heart failure.
Collapse
Affiliation(s)
- Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Shafeeq A. Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Reale A, Tagliatesta S, Zardo G, Zampieri M. Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mech Ageing Dev 2022; 206:111695. [PMID: 35760211 DOI: 10.1016/j.mad.2022.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation (DNAm) overwrites information about multiple extrinsic factors on the genome. Age is one of these factors. Age causes characteristic DNAm changes that are thought to be not only major drivers of normal ageing but also precursors to diseases, cancer being one of these. Although there is still much to learn about the relationship between ageing, age-related diseases and DNAm, we now know how to interpret some of the effects caused by age in the form of changes in methylation marks at specific loci. In fact, these changes form the basis of the so called "epigenetic clocks", which translate the genomic methylation profile into an "epigenetic age". Epigenetic age does not only estimate chronological age but can also predict the risk of chronic diseases and mortality. Epigenetic age is believed to be one of the most accurate metrics of biological age. Initial evidence has recently been gathered pointing to the possibility that the rate of epigenetic ageing can be slowed down or even reversed. In this review, we discuss some of the most relevant advances in this field. Expected outcome is that this approach can provide insights into how to preserve health and reduce the impact of ageing diseases in humans.
Collapse
Affiliation(s)
- Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Stefano Tagliatesta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
21
|
Ryznar RJ, Phibbs L, Onat E, Van Winkle LJ. Epigenetic Regulation of Development, Cellular Differentiation, and Disease Progression/Protection in Adults. Cells 2022; 11:cells11121907. [PMID: 35741035 PMCID: PMC9221476 DOI: 10.3390/cells11121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca J. Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA
- Correspondence:
| | - Lacie Phibbs
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA; (L.P.); (E.O.)
| | - Erin Onat
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA; (L.P.); (E.O.)
| | - Lon J. Van Winkle
- Department of Medical Humanities, Rocky Vista University, 8401 S. Chambers Road, Parker, CO 80112, USA;
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
22
|
Tocantins C, Diniz MS, Grilo LF, Pereira SP. The birth of cardiac disease: Mechanisms linking gestational diabetes mellitus and early onset of cardiovascular disease in offspring. WIREs Mech Dis 2022; 14:e1555. [PMID: 35304833 DOI: 10.1002/wsbm.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer worldwide, composing a major economic burden for health care systems. Obesity and diabetes are dual epidemics on the rise and major risk factors predisposing for CVD. Increased obesity- and diabetes-related incidence is now observed among children, adolescents, and young adults. Gestational diabetes mellitus (GDM) is the most common metabolic pregnancy disorder, and its prevalence is rapidly increasing. During pregnancies complicated by GDM, the offspring are exposed to a compromised intrauterine environment characterized by hyperglycemic periods. Unfavorable in utero conditions at critical periods of fetal cardiac development can produce developmental adaptations that remodel the cardiovascular system in a way that can contribute to adult-onset of heart disease due to the programming during fetal life. Epidemiological studies have reported increased cardiovascular complications among GDM-descendants, highlighting the urgent need to investigate and understand the mechanisms modulated during fetal development of in utero GDM-exposed offspring that predispose an individual to increased CVD during life. In this manuscript, we overview previous studies in this area and gather evidence linking GDM and CVD development in the offspring, providing new insights on novel mechanisms contributing to offspring CVD programming by GDM, from the role of maternal-fetal interactions to their impact on fetal cardiovascular development, how the perpetuation of cardiac programming is maintained in postnatal life, and advance the intergenerational implications contributing to increased CVD premature origin. Understanding the perpetuation of CVD can be the first step to manage and reverse this leading cause of morbidity and mortality. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology Metabolic Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
McCarthy DM, Zhang L, Wilkes BJ, Vaillancourt DE, Biederman J, Bhide PG. Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav 2022; 214:173355. [PMID: 35176350 PMCID: PMC9063417 DOI: 10.1016/j.pbb.2022.173355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure. Using these models the significance of heritability of behavioral phenotypes from the nicotine-exposed pregnant female or adult male to multiple generations of descendants has been demonstrated. Finally, research using the preclinical models has demonstrated synergistic interactions between developmental nicotine exposure and repetitive mild traumatic brain injury that contribute to "worse" outcomes from the injury in individuals with attention deficit hyperactivity disorder associated with developmental nicotine exposure.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Lin Zhang
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - Joseph Biederman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
24
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
25
|
Raja GL, Subhashree KD, Kantayya KE. In utero exposure to endocrine disruptors and developmental neurotoxicity: Implications for behavioural and neurological disorders in adult life. ENVIRONMENTAL RESEARCH 2022; 203:111829. [PMID: 34358505 DOI: 10.1016/j.envres.2021.111829] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a class of environmental toxicants that interfere with the endocrine system, resulting in developmental malformations, reproductive disorders, and alterations to immune and nervous system function. The emergence of screening studies identifying these chemicals in fetal developmental matrices such as maternal blood, placenta and amniotic fluid has steered research focus towards elucidation of in utero effects of exposure to these chemicals, as their capacity to cross the placenta and reach the fetus was established. The presence of EDCs, a majority of which are estrogen mimics, in the fetal environment during early development could potentially affect neurodevelopment, with implications for behavioural and neurological disorders in adult life. This review summarizes studies in animal models and human cohorts that aim to elucidate mechanisms of action of EDCs in the context of neurodevelopment and disease risk in adult life. This is a significant area of study as early brain development is heavily mediated by estrogen and could be particularly sensitive to EDC exposure. A network analysis presented using genes summarized in this review, further show a significant association with disorders such as major depressive disorder, alcoholic disorder, psychotic disorders and autism spectrum disorder. Functional outcomes such as alterations in memory, behaviour, cognition, learning memory, feeding behaviour and regulation of ion transport are also highlighted. Interactions between genes, receptors and signaling pathways like NMDA glutamate receptor activity, 5-hydroxytryptamine receptor activity, Ras-activated Ca2+ influx and Grin2A interactions, provide further potential mechanisms of action of EDCs in mediating brain function. Taken together with the growing pool of human and animal studies, this review summarizes current status of EDC neurotoxicity research, limitations and future directions of study for researchers.
Collapse
Affiliation(s)
- Glancis Luzeena Raja
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55902, USA.
| | - K Divya Subhashree
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603203, India
| | | |
Collapse
|
26
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
27
|
Laporta J, Dado-Senn B, Skibiel AL. Late gestation hyperthermia: epigenetic programming of daughter's mammary development and function. Domest Anim Endocrinol 2022; 78:106681. [PMID: 34600221 DOI: 10.1016/j.domaniend.2021.106681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to stressors during early developmental windows, such as prenatally (i.e., in utero), can have life-long implications for an animal's health and productivity. The mammary gland starts developing in utero and, like other developing tissues and organs, may undergo fetal programming. Previous research has implicated factors, such as prenatal exposure to endocrine disruptors or alterations in maternal diet (e.g., maternal over or undernutrition), that can influence the developmental trajectory of the offspring mammary gland in postnatal life. However, the direct links between prenatal insults and future productive outcomes are less documented in livestock species. Research on in utero hyperthermia effects on early-life mammary development is scarce. This review will provide an overview of key developmental milestones taking place in the bovine mammary gland during the pre- and postnatal stages. We will showcase how intrauterine hyperthermia, experienced by the developing fetus during the last trimester of gestation, derails postnatal mammary gland development and impairs its synthetic capacity later in life. We will provide insights into the underlying histological, cellular, and molecular mechanisms taking place at key postnatal developmental life stages, including birth, weaning and the first lactation, that might explain permanent detriments in productivity long after the initial exposure to hyperthermia. Collectively, our studies indicate that prenatal hyperthermia jeopardizes the normal developmental trajectory of the mammary gland from fetal development to lactation. Further, in utero hyperthermia epigenetically programs the udder, and possibly other organs critical to lactation, yielding a less resilient and less productive cow for multiple lactations.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA.
| | - B Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Idaho, USA
| |
Collapse
|
28
|
Cao M, Wang L, Xu D, Bi X, Guo S, Xu Z, Chen L, Zheng D, Li P, Xu J, Zheng S, Wang H, Wang B, Lu J, Li K. The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines. Comput Struct Biotechnol J 2022; 20:5028-5039. [PMID: 36187922 PMCID: PMC9483781 DOI: 10.1016/j.csbj.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022] Open
|
29
|
Dunislawska A, Pietrzak E, Wishna Kadawarage R, Beldowska A, Siwek M. Pre-hatching and post-hatching environmental factors related to epigenetic mechanisms in poultry. J Anim Sci 2021; 100:6473202. [PMID: 34932113 DOI: 10.1093/jas/skab370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications are phenotypic changes unrelated to the modification of the DNA sequence. These modifications are essential for regulating cellular differentiation and organism development. In this case, epigenetics controls how the animal's genetic potential is used. The main epigenetic mechanisms are microRNA activity, DNA methylation and histone modification. The literature has repeatedly shown that environmental modulation has a significant influence on the regulation of epigenetic mechanisms in poultry. The aim of this review is to give an overview of the current state of the knowledge in poultry epigenetics in terms of issues relevant to overall poultry production and the improvement of the health status in chickens and other poultry species. One of the main differences between birds and mammals is the stage of embryonic development. The bird's embryo develops outside its mother, so an optimal environment of egg incubation before hatching is crucial for development. It is also the moment when many factors influence the activation of epigenetic mechanisms, i.e., incubation temperature, humidity, light, as well as in ovo treatments. Epigenome of the adult birds, might be modulated by: nutrition, supplementation and treatment, as well as modification of the intestinal microbiota. In addition, the activation of epigenetic mechanisms is influenced by pathogens (i.e., pathogenic bacteria, toxins, viruses and fungi) as well as, the maintenance conditions. Farm animal epigenetics is still a big challenge for scientists. This is a research area with many open questions. Modern methods of epigenetic analysis can serve both in the analysis of biological mechanisms and in the research and applied to production system, poultry health and welfare.
Collapse
Affiliation(s)
- A Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - E Pietrzak
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - R Wishna Kadawarage
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - A Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - M Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| |
Collapse
|
30
|
Bägli DJ. An Imperative for Discovery Advances in Congenital Anomalies of the External Genitalia. Urology 2021; 161:1-3. [PMID: 34843747 DOI: 10.1016/j.urology.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Darius J Bägli
- Departments of Surgery (Urology) & Physiology, University of Toronto, and The Hospital For Sick Children & Research Institute, Divisions of Urology & Developmental and Stem cell Biology, Toronto, Ontario, Canada..
| |
Collapse
|
31
|
Quilaqueo N, Villegas JV. Endocrine disruptor chemicals. A review of their effects on male reproduction and antioxidants as a strategy to counter it. Andrologia 2021; 54:e14302. [PMID: 34761829 DOI: 10.1111/and.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Endocrine disruptor chemicals are exogenous molecules that generate adverse effects on human health by destabilizing the homeostasis of endocrine system and affecting directly human reproductive system by inhibiting or activating oestrogenic or androgenic receptors. Endocrine disruptor chemicals generate transgenerational epigenetic problems, besides being associated with male infertility. Epidemiological data indicate that the increase in reproductive problems in males in the last 50 years is correlated with the increase of endocrine disrupting chemicals in the environment, being associated with a decrease in semen quality and direct effects on spermatozoa, such as alterations in motility, viability and acrosomal reaction, due to the generation of oxidative stress, and have also been postulated as a possible cause of testicular dysgenesis syndrome. Diverse antioxidants, such as C and E vitamins, N-acetylcysteine, selenium and natural vegetable extracts, are among the alternatives under study to counter the effects of endocrine disruptor chemicals. In some cases, the usage of them has given positive results and the opposite in others. In this review, we summarize the recent information about the effects of endocrine disruptor chemicals on male reproduction, on sperm cells, and the results of studies that have tested antioxidants as a strategy to diminish their harmful effects.
Collapse
Affiliation(s)
- Nelson Quilaqueo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco, Chile
| |
Collapse
|
32
|
Dey A, Uppal S, Giri J, Misra HS. Emerging roles of bromodomain protein 4 in regulation of stem cell identity. Stem Cells 2021; 39:1615-1624. [PMID: 34520583 DOI: 10.1002/stem.3454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Understanding the mechanism of fate decision and lineage commitment is the key step for developing novel stem cell applications in therapeutics. This process is coordinately regulated through systematic epigenetic reprogramming and concomitant changes in the transcriptional landscape of the stem cells. One of the bromo- and extra-terminal domain (BET) family member proteins, bromodomain protein 4 (BRD4), performs the role of epigenetic reader and modulates gene expression by recruiting other transcription factors and directly regulating RNA polymerase II elongation. Controlled gene regulation is the critical step in maintenance of stem cell potency and dysregulation may lead to tumor formation. As a key transcriptional factor and epigenetic regulator, BRD4 contributes to stem cell maintenance in several ways. Being a druggable target, BRD4 is an attractive candidate for exploiting its potential in stem cell therapeutics. Therefore, it is crucial to elucidate how BRD4, through its interplay with pluripotency transcriptional regulators, control lineage commitment in stem cells. Here, we systemically review the role of BRD4 in complex gene regulatory network during three specific states of stem cell transitions: cell differentiation, cell reprogramming and transdifferentiation. A thorough understanding of BRD4 mediated epigenetic regulation in the maintenance of stem cell potency will be helpful to strategically control stem cell fates in regenerative medicine.
Collapse
Affiliation(s)
- Anusree Dey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Uppal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Jayeeta Giri
- TIFR Complex, 605 Raman, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
33
|
Eshghifar N, Dehghan BK, Do AA, Koukhaloo SZ, Habibi M, Pouresmaeili F. Infertility cell therapy and epigenetic insights. Hum Antibodies 2021; 29:17-26. [PMID: 33554898 DOI: 10.3233/hab-200438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in assisted reproductive technology (ART) have allowed couples with severe infertility to conceive, but the methods are not effective for all cases. Stem cells as undifferentiated cells which are found in different stages of embryonic, fetal and adult life are known to be capable of forming different cell types, tissues, and organs. Due to their unlimited resources and the incredible power of differentiation are considered as potential new therapeutic biological tools for treatment of infertility. For reproductive medicine, stem cells are stimulated in vitro to develop various specialized functional cells including male and female gametes. The epigenetic patterns can be modified in the genome under certain drugs exposure or lifestyle alterations. Therefore, epigenetics-related disorders may be treated if the nature of the modifications is completely admissible. It is proved that our understanding of epigenetic processes and its association with infertility would help us not only to understand the etiological factors but also to treat some type of male infertilities. Exploration of both genetic and epigenetic variations in the disease development could help in the identification of the interaction patterns between these two phenomena and possible improvement of therapeutic methods.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Kamali Dehghan
- Department of Medical Genetics, National Institute of Medical Engineering and Biotechnology (NIGEB), Tehran, Iran.,Medical Genetics, Jiroft University of Medical Sciences and Health Services, Jiroft, Kerman, Iran.,Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atieh Abedin Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | - Mohsen Habibi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Klomp MJ, Dalm SU, de Jong M, Feelders RA, Hofland J, Hofland LJ. Epigenetic regulation of somatostatin and somatostatin receptors in neuroendocrine tumors and other types of cancer. Rev Endocr Metab Disord 2021; 22:495-510. [PMID: 33085037 PMCID: PMC8346415 DOI: 10.1007/s11154-020-09607-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Both somatostatin (SST) and somatostatin receptors (SSTRs) are proteins with important functions in both physiological tissue and in tumors, particularly in neuroendocrine tumors (NETs). NETs are frequently characterized by high SSTRs expression levels. SST analogues (SSAs) that bind and activate SSTR have anti-proliferative and anti-secretory activity, thereby reducing both the growth as well as the hormonal symptoms of NETs. Moreover, the high expression levels of SSTR type-2 (SSTR2) in NETs is a powerful target for therapy with radiolabeled SSAs. Due to the important role of both SST and SSTRs, it is of great importance to elucidate the mechanisms involved in regulating their expression in NETs, as well as in other types of tumors. The field of epigenetics recently gained interest in NET research, highlighting the importance of this process in regulating the expression of gene and protein expression. In this review we will discuss the role of the epigenetic machinery in controlling the expression of both SSTRs and the neuropeptide SST. Particular attention will be given to the epigenetic regulation of these proteins in NETs, whereas the involvement of the epigenetic machinery in other types of cancer will be discussed as well. In addition, we will discuss the possibility to target enzymes involved in the epigenetic machinery to modify the expression of the SST-system, thereby possibly improving therapeutic options.
Collapse
Affiliation(s)
- M J Klomp
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - S U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - R A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - L J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Yamada D, Nakamura M, Takao T, Takihira S, Yoshida A, Kawai S, Miura A, Ming L, Yoshitomi H, Gozu M, Okamoto K, Hojo H, Kusaka N, Iwai R, Nakata E, Ozaki T, Toguchida J, Takarada T. Induction and expansion of human PRRX1 + limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 2021; 5:926-940. [PMID: 34373601 DOI: 10.1038/s41551-021-00778-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Current protocols for the differentiation of human pluripotent stem cells (hPSCs) into chondrocytes do not allow for the expansion of intermediate progenitors so as to prospectively assess their chondrogenic potential. Here we report a protocol that leverages PRRX1-tdTomato reporter hPSCs for the selective induction of expandable and ontogenetically defined PRRX1+ limb-bud-like mesenchymal cells under defined xeno-free conditions, and the prospective assessment of the cells' chondrogenic potential via the cell-surface markers CD90, CD140B and CD82. The cells, which proliferated stably and exhibited the potential to undergo chondrogenic differentiation, formed hyaline cartilaginous-like tissue commensurate to their PRRX1-expression levels. Moreover, we show that limb-bud-like mesenchymal cells derived from patient-derived induced hPSCs can be used to identify therapeutic candidates for type II collagenopathy and we developed a method to generate uniformly sized hyaline cartilaginous-like particles by plating the cells on culture dishes coated with spots of a zwitterionic polymer. PRRX1+ limb-bud-like mesenchymal cells could facilitate the mass production of chondrocytes and cartilaginous tissues for applications in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kawai
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Lu Ming
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mai Gozu
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kumi Okamoto
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kusaka
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
36
|
Bednarczyk M, Dunislawska A, Stadnicka K, Grochowska E. Chicken embryo as a model in epigenetic research. Poult Sci 2021; 100:101164. [PMID: 34058565 PMCID: PMC8170499 DOI: 10.1016/j.psj.2021.101164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Epigenetics is defined as the study of changes in gene function that are mitotically or meiotically heritable and do not lead to a change in DNA sequence. Epigenetic modifications are important mechanisms that fine tune the expression of genes in response to extracellular signals and environmental changes. In vertebrates, crucial epigenetic reprogramming events occur during early embryogenesis and germ cell development. Chicken embryo, which develops external to the mother's body, can be easily manipulated in vivo and in vitro, and hence, it is an excellent model for performing epigenetic studies. Environmental factors such as temperature can affect the development of an embryo into the phenotype of an adult. A better understanding of the environmental impact on embryo development can be achieved by analyzing the direct effects of epigenetic modifications as well as their molecular background and their intergenerational and transgenerational inheritance. In this overview, the current possibility of epigenetic changes during chicken embryonic development and their effects on long-term postembryonic development are discussed.
Collapse
Affiliation(s)
- Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
37
|
Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22094693. [PMID: 33946662 PMCID: PMC8124363 DOI: 10.3390/ijms22094693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) remains a significant clinical and public health issue due to its increasing prevalence and the possibility for numerous short- and long-term complications. The growing incidence of GDM seems to coincide with the widespread use of endocrine disrupting chemicals (EDCs). The extensive production and common use of these substances in everyday life has resulted in constant exposure to harmful substances from the environment. That may result in epigenetic changes, which may manifest themselves also after many years and be passed on to future generations. It is important to consider the possible link between environmental exposure to endocrine disrupting chemicals (EDCs) during pregnancy, epigenetic mechanisms and an increased risk for developing gestational diabetes mellitus (GDM). This manuscript attempts to summarize data on epigenetic changes in pregnant women suffering from gestational diabetes in association with EDCs. There is a chance that epigenetic marks may serve as a tool for diagnostic, prognostic, and therapeutic measures.
Collapse
|
38
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
39
|
Jangjoo M, Goodman SJ, Choufani S, Trost B, Scherer SW, Kelley E, Ayub M, Nicolson R, Georgiades S, Crosbie J, Schachar R, Anagnostou E, Grunebaum E, Weksberg R. An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Front Neurol 2021; 12:612817. [PMID: 33935932 PMCID: PMC8085304 DOI: 10.3389/fneur.2021.612817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves impaired cognition, communication difficulties and restrictive, repetitive behaviors. ASD is extremely heterogeneous both clinically and etiologically, which represents one of the greatest challenges in studying the molecular underpinnings of ASD. While hundreds of ASD-associated genes have been identified that confer varying degrees of risk, no single gene variant accounts for >1% of ASD cases. Notably, a large number of ASD-risk genes function as epigenetic regulators, indicating potential epigenetic dysregulation in ASD. As such, we compared genome-wide DNA methylation (DNAm) in the blood of children with ASD (n = 265) to samples from age- and sex-matched, neurotypical controls (n = 122) using the Illumina Infinium HumanMethylation450 arrays. Results: While DNAm patterns did not distinctly separate ASD cases from controls, our analysis identified an epigenetically unique subset of ASD cases (n = 32); these individuals exhibited significant differential methylation from both controls than the remaining ASD cases. The CpG sites at which this subset was differentially methylated mapped to known ASD risk genes that encode proteins of the nervous and immune systems. Moreover, the observed DNAm differences were attributable to altered blood cell composition, i.e., lower granulocyte proportion and granulocyte-to-lymphocyte ratio in the ASD subset, as compared to the remaining ASD cases and controls. This ASD subset did not differ from the rest of the ASD cases in the frequency or type of high-risk genomic variants. Conclusion: Within our ASD cohort, we identified a subset of individuals that exhibit differential methylation from both controls and the remaining ASD group tightly associated with shifts in immune cell type proportions. This is an important feature that should be assessed in all epigenetic studies of blood cells in ASD. This finding also builds on past reports of changes in the immune systems of children with ASD, supporting the potential role of altered immunological mechanisms in the complex pathophysiology of ASD. The discovery of significant molecular and immunological features in subgroups of individuals with ASD may allow clinicians to better stratify patients, facilitating personalized interventions and improved outcomes.
Collapse
Affiliation(s)
- Maryam Jangjoo
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J. Goodman
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W. Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eyal Grunebaum
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
40
|
Shafique S, Winn LM. Gestational valproic acid exposure induces epigenetic modifications in murine decidua. Placenta 2021; 107:31-40. [PMID: 33735658 DOI: 10.1016/j.placenta.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Valproic acid (VPA), a widely prescribed antiepileptic drug and an effective treatment for bipolar disorder and neuropathic pain, results in multiple developmental defects following in utero exposure. Uterine decidua provides nutritional and physical support during implantation and early embryonic development. Perturbations in the molecular mechanisms within decidual tissue during early pregnancy might affect early embryonic growth, result in early pregnancy loss or cause complications in the later gestational stage. VPA is a known histone deacetylase inhibitor and epigenetic changes such as histone hyperacetylation and methylation have been proposed as a mechanism of VPA-induced teratogenesis. METHODS This study investigated the effects of in utero VPA exposure on histone modifications in murine decidual tissue. Pregnant CD-1 mice were exposed to 400 mg/kg VPA or saline on GD9 via subcutaneous injection. Decidual tissue from each gestational sac was harvested at 1, 3 and 6 h following exposure. Levels of acetylated histones H3, H4 and H3K56, as well as methylated histones H3K9 and H3K27 were acid extracted and assessed by western blotting followed by acid histone extraction. RESULTS VPA exposure induced a significant increase (p < 0.05) in the levels of acetylated H3 at 1, 3 h; acetylated H4 at 1, 3 and 6 h and trimethylated H3K9 at 6 h. In contrast, no significant perturbations were noted in the levels of monomethylated H3K9, trimethylated H3K27 and acetylated H3K56. DISCUSSION The results from this study suggest that VPA-induced decidual histone modifications might play an important role as a mechanism of VPA-induced teratogenesis during early embryonic growth.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
41
|
Turner N, Abeysinghe P, Sadowski P, Mitchell MD. Exosomal Cargo May Hold the Key to Improving Reproductive Outcomes in Dairy Cows. Int J Mol Sci 2021; 22:ijms22042024. [PMID: 33670752 PMCID: PMC7922264 DOI: 10.3390/ijms22042024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
The reproductive status of dairy cows remains a challenge for dairy farmers worldwide, with impaired fertility linked to a significant reduction in herd profitability, due in part to impaired immunity, increased metabolic pressure, and longer postpartum anestrous interval (PPAI). Exosomes are nanovesicles released from a variety of cell types and end up in circulation, and carry proteins, bioactive peptides, lipids, and nucleic acids specific to the place of origin. As such, their role in health and disease has been investigated in humans and animals. This review discusses research into exosomes in the context of reproduction in dairy herds and introduces recent advances in mass-spectrometry (MS) based proteomics that have a potential to advance quantitative profiling of exosomal protein cargo in a search for early biomarkers of cattle fertility.
Collapse
Affiliation(s)
- Natalie Turner
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pevindu Abeysinghe
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pawel Sadowski
- Central Analytical Research Facility—Queensland University of Technology, Gardens Point, Brisbane, QLD 4000, Australia;
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
- Correspondence: ; Tel.: +61-7-3069-7438
| |
Collapse
|
42
|
Pyziak K, Sroka-Porada A, Rzymski T, Dulak J, Łoboda A. Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation. Drug Dev Res 2021; 82:730-753. [PMID: 33565092 DOI: 10.1002/ddr.21796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.
Collapse
Affiliation(s)
- Karolina Pyziak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Biology R&D, Ryvu Therapeutics S.A., Kraków, Poland
| | | | | | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
43
|
Salmanzadeh H, Ahmadi-Soleimani SM, Azadi M, Halliwell RF, Azizi H. Adolescent Substance Abuse, Transgenerational Consequences and Epigenetics. Curr Neuropharmacol 2021; 19:1560-1569. [PMID: 33655865 PMCID: PMC8762180 DOI: 10.2174/1570159x19666210303121519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control. Determining how substance abuse during this critical period might cause longterm neurobiological changes in cognition and behavior is therefore critically important. The present work aims to provide an evaluation of the transgenerational and multi-generational phenotypes derived from parent animals exposed to drugs of abuse only during their adolescence. Specifically, we will consider changes found following the administration of cannabinoids, nicotine, alcohol and opiates. In addition, epigenetic modifications of the genome following drug exposure will be discussed as emerging evidence of the underlying adverse transgenerational effects. Notwithstanding, much of the new data discussed here is from animal models, indicating that future clinical studies are much needed to better understand the neurobiological consequences and mechanisms of drug actions on the human brains' development and maturation.
Collapse
Affiliation(s)
| | | | | | - Robert F. Halliwell
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| | - Hossein Azizi
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| |
Collapse
|
44
|
|
45
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
46
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
47
|
Bicho RC, Scott-Fordsmand JJ, Amorim MJB. Developing an epigenetics model species - From blastula to mature adult, life cycle methylation profile of Enchytraeus crypticus (Oligochaete). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139079. [PMID: 32428769 DOI: 10.1016/j.scitotenv.2020.139079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an epigenetic mechanism of particular importance in developmental biology, but methylation also varies along organisms' life cycle. Recent studies have deliberated copper (Cu) exposure induced epigenetic changes in Enchytraeus crypticus, a standard species belonging to one of the most common and important genera of soil invertebrates in many ecosystems. There is however no information on how DNA methylation levels change within the life cycle of this species. We here investigate the global DNA methylation profile along the life cycle of E. crypticus and compare this to the expression of target genes involved in methylation. Results showed that after the lowest DNA methylation level at day 3 (early embryonic stage, blastula) there was an increase by day 7 (organogenesis) after which levels were maintained at days 11, 18 and 25. DNA methyltransferase associated protein 1 (DMPA1) and Methyl Binding Domain 2 (MBD2) gene expression was highest during embryo stages (3 to 7 days), then decreasing (11, 18 days) and finally unregulated in adults (25 days). Hence, we here show that DNA methylation in E. crypticus changes among the different life stages, from cocoons to adults. Such information is a key knowledge to use this endpoint and tool in an ecotoxicology context. This means that it is almost implicit that gene expression levels are age specific for a given stressor. It seems logic to recommend to always compare individuals with the same age between treatments, and to be careful when extrapolating results among life stages. Once, we understand more of these effects we may even be able to predict which life stage is more sensitive to specific stressors. An experimental design that aims to cover epigenetics of stressors in a multigenerational exposure, including transgenerational effects, should ensure the synchronous age of organisms for sampling analysis purposes.
Collapse
Affiliation(s)
- Rita C Bicho
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Prats-Puig A, García-Retortillo S, Puig-Parnau M, Vasileva F, Font-Lladó R, Xargay-Torrent S, Carreras-Badosa G, Mas-Parés B, Bassols J, López-Bermejo A. DNA Methylation Reorganization of Skeletal Muscle-Specific Genes in Response to Gestational Obesity. Front Physiol 2020; 11:938. [PMID: 32848869 PMCID: PMC7412435 DOI: 10.3389/fphys.2020.00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant's variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant's fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
Collapse
Affiliation(s)
- Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sergi García-Retortillo
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Complex Systems in Sport, National Institute of Physical Education and Sport of Catalonia (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Puig-Parnau
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Fidanka Vasileva
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Berta Mas-Parés
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Judit Bassols
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
49
|
Zhang XY, Rajagopalan D, Chung TH, Hooi L, Toh TB, Tian JS, Rashid MBMA, Sahib NRBM, Gu M, Lim JJ, Wang W, Chng WJ, Jha S, Chow EKH. Frequent upregulation of G9a promotes RelB-dependent proliferation and survival in multiple myeloma. Exp Hematol Oncol 2020; 9:8. [PMID: 32477831 PMCID: PMC7243326 DOI: 10.1186/s40164-020-00164-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Multiple myeloma is an incurable hematological malignancy characterized by a heterogeneous genetic and epigenetic landscape. Although a number of genetic aberrations associated with myeloma pathogenesis, progression and prognosis have been well characterized, the role of many epigenetic aberrations in multiple myeloma remain elusive. G9a, a histone methyltransferase, has been found to promote disease progression, proliferation and metastasis via diverse mechanisms in several cancers. A role for G9a in multiple myeloma, however, has not been previously explored. Methods Expression levels of G9a/EHMT2 of multiple myeloma cell lines and control cells Peripheral Blood Mononuclear Cells (PBMCs) were analyzed. Correlation of G9a expression and overall survival of multiple myeloma patients were analyzed using patient sample database. To further study the function of G9a in multiple myeloma, G9a depleted multiple myeloma cells were built by lentiviral transduction, of which proliferation, colony formation assays as well as tumorigenesis were measured. RNA-seq of G9a depleted multiple myeloma with controls were performed to explore the downstream mechanism of G9a regulation in multiple myeloma. Results G9a is upregulated in a range of multiple myeloma cell lines. G9a expression portends poorer survival outcomes in a cohort of multiple myeloma patients. Depletion of G9a inhibited proliferation and tumorigenesis in multiple myeloma. RelB was significantly downregulated by G9a depletion or small molecule inhibition of G9a/GLP inhibitor UNC0642, inducing transcription of proapoptotic genes Bim and BMF. Rescuing RelB eliminated the inhibition in proliferation and tumorigenesis by G9a depletion. Conclusions In this study, we demonstrated that G9a is upregulated in most multiple myeloma cell lines. Furthermore, G9a loss-of-function analysis provided evidence that G9a contributes to multiple myeloma cell survival and proliferation. This study found that G9a interacts with NF-κB pathway as a key regulator of RelB in multiple myeloma and regulates RelB-dependent multiple myeloma survival. G9a therefore is a promising therapeutic target for multiple myeloma.
Collapse
Affiliation(s)
- Xi Yun Zhang
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
| | - Deepa Rajagopalan
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tae-Hoon Chung
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Lissa Hooi
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tan Boon Toh
- 3The N.1 Institute for Health (N.1), National University of Singapore, Center for Life Sciences, 28 Medical Drive, Singapore, 117456 Singapore
| | - Johann Shane Tian
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | | | - Noor Rashidha Bte Meera Sahib
- 5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Mengjie Gu
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jhin Jieh Lim
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Wilson Wang
- 6Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore, 119074 Singapore
| | - Wee Joo Chng
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore.,7National University Cancer Institute, National University Health System, Singapore, 119228 Singapore
| | - Sudhakar Jha
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,8Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| |
Collapse
|
50
|
Drago G, Ruggieri S, Bianchi F, Sampino S, Cibella F. Birth Cohorts in Highly Contaminated Sites: A Tool for Monitoring the Relationships Between Environmental Pollutants and Children's Health. Front Public Health 2020; 8:125. [PMID: 32411642 PMCID: PMC7198735 DOI: 10.3389/fpubh.2020.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Industrial areas are characterized by the dispersion of environmental stressors that could possibly have long-term detrimental effects on both human health and the environment. Environmental contamination has been indicated to be one of the major risks for reproductive health. In this context, the effects of environmental pollution on pregnant women living in heavily polluted areas is of special interest. In fact, fetal development is a crucial phase due to the dynamic interaction between the maternal/external environments and the developing organs and tissues. Moreover, following Barker's postulate of the intrauterine origin of health and disease, the events occurring in this time window could affect future health. Birth cohorts provide the most suitable design for assessing the association between early-life and possible long-term health outcomes in highly contaminated sites. By providing an assessment of the early life environment throughout the collection of biological samples, birth cohorts offer the opportunity to study in-depth several possible confounders and outcomes by means of questionnaires and follow-ups based on clinical evaluations and bio-specimen samplings. The exposome comprises the totality of exposures from conception onwards; the birth cohort approach allows the integration of the exposures as a whole, including those related to socioeconomic status, with "omics" data from biological samples collected at birth and throughout life. In the characterization of the "fetal exposome," the placenta represents a highly informative and scarcely considered organ. For this purpose, the "Neonatal Environment and Health Outcomes" (NEHO) birth cohort has been established by enrolling pregnant women residing in contaminated sites and in surrounding areas.
Collapse
Affiliation(s)
- Gaspare Drago
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Silvia Ruggieri
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Fabrizio Bianchi
- National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Fabio Cibella
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| |
Collapse
|