1
|
Dagenais P, Jahanbakhsh E, Capitan A, Jammes H, Reynaud K, De Juan Romero C, Borrell V, Milinkovitch MC. Mechanical positional information guides the self-organized development of a polygonal network of creases in the skin of mammalian noses. Curr Biol 2024:S0960-9822(24)01296-X. [PMID: 39442518 DOI: 10.1016/j.cub.2024.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/05/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
The glabrous skin of the rhinarium (naked nose) of many mammalian species exhibits a polygonal pattern of grooves that retain physiological fluid, thereby keeping their nose wet and, among other effects, facilitating the collection of chemosensory molecules. Here, we perform volumetric imaging of whole-mount rhinaria from sequences of embryonic and juvenile cows, dogs, and ferrets. We demonstrate that rhinarial polygonal domains are not placode-derived skin appendages but arise through a self-organized mechanical process consisting of the constrained growth and buckling of the epidermal basal layer, followed by the formation of sharp epidermal creases exactly facing an underlying network of stiff blood vessels. Our numerical simulations show that the mechanical stress generated by excessive epidermal growth concentrates at the positions of vessels that form rigid base points, causing the epidermal layers to move outward and shape domes-akin to arches rising against stiff pillars. Remarkably, this gives rise to a larger length scale (the distance between the vessels) in the surface folding pattern than would otherwise occur in the absence of vessels. These results hint at a concept of "mechanical positional information" by which material properties of anatomical elements can impose local constraints on an otherwise globally self-organized mechanical pattern. In addition, our analyses of the rhinarial patterns in cow clones highlight a substantial level of stochasticity in the pre-pattern of vessels, while our numerical simulations also recapitulate the disruption of the folding pattern in cows affected by a hereditary disorder that causes hyperextensibility of the skin.
Collapse
Affiliation(s)
- Paule Dagenais
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Ebrahim Jahanbakhsh
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Hélène Jammes
- BREED INRAE, UVSQ, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Karine Reynaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; École Nationale Vétérinaire d'Alfort, EnvA, 94700 Maisons-Alfort, France
| | | | - Victor Borrell
- Instituto de Neurociencias, CSIC-UMH, 03540 San Juan de Alicante, Spain
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Sakai K, Hayashi T, Sakai Y, Mada J, Tonami K, Uchijima Y, Kurihara H, Tokihiro T. A three-dimensional model with two-body interactions for endothelial cells in angiogenesis. Sci Rep 2023; 13:20549. [PMID: 37996513 PMCID: PMC10667370 DOI: 10.1038/s41598-023-47911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels form from existing ones. It has been the subject of numerous theoretical models. These models have successfully replicated various aspects of angiogenesis. Recent studies using particle-based models have highlighted the significant influence of cell shape on network formation, with elongated cells contributing to the formation of branching structures. While most mathematical models are two-dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-body interactions. Numerical simulations demonstrate that our model reproduces the patterns of elongation and branching observed in the early stages of angiogenesis. We show that the pattern formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in sprouts.
Collapse
Affiliation(s)
- Kazuma Sakai
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan
| | - Tatsuya Hayashi
- Faculty of Science and Engineering, Yamato University, 2-5-1, Katayama-cho, Suita, Osaka, 564-0082, Japan.
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Yusuke Sakai
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Mada
- College of Industrial Technology, Nihon University, 1-2-1, Izumi-cho, Narashino, Chiba, 275-8575, Japan
| | - Kazuo Tonami
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunobu Uchijima
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kurihara
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Tokihiro
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan.
- Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo, 135-8181, Japan.
| |
Collapse
|
3
|
Crawshaw JR, Flegg JA, Bernabeu MO, Osborne JM. Mathematical models of developmental vascular remodelling: A review. PLoS Comput Biol 2023; 19:e1011130. [PMID: 37535698 PMCID: PMC10399886 DOI: 10.1371/journal.pcbi.1011130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Over the past 40 years, there has been a strong focus on the development of mathematical models of angiogenesis, while developmental remodelling has received little such attention from the mathematical community. Sprouting angiogenesis can be seen as a very crude way of laying out a primitive vessel network (the raw material), while remodelling (understood as pruning of redundant vessels, diameter control, and the establishment of vessel identity and hierarchy) is the key to turning that primitive network into a functional network. This multiscale problem is of prime importance in the development of a functional vasculature. In addition, defective remodelling (either during developmental remodelling or due to a reactivation of the remodelling programme caused by an injury) is associated with a significant number of diseases. In this review, we discuss existing mathematical models of developmental remodelling and explore the important contributions that these models have made to the field of vascular development. These mathematical models are effectively used to investigate and predict vascular development and are able to reproduce experimentally observable results. Moreover, these models provide a useful means of hypothesis generation and can explain the underlying mechanisms driving the observed structural and functional network development. However, developmental vascular remodelling is still a relatively new area in mathematical biology, and many biological questions remain unanswered. In this review, we present the existing modelling paradigms and define the key challenges for the field.
Collapse
Affiliation(s)
- Jessica R. Crawshaw
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Osborne
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
5
|
Abdalrahman T, Checa S. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches. Biomech Model Mechanobiol 2022; 21:1623-1640. [PMID: 36394779 PMCID: PMC9700567 DOI: 10.1007/s10237-022-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Sprouting angiogenesis, the formation of new vessels from preexisting vasculature, is an essential process in the regeneration of new tissues as well as in the development of some diseases like cancer. Although early studies identified chemical signaling as the main driver of this process, many recent studies have shown a strong role of mechanical signals in the formation of new capillaries. Different types of mechanical signals (e.g., external forces, cell traction forces, and blood flow-induced shear forces) have been shown to play distinct roles in the process; however, their interplay remains still largely unknown. During the last decades, mathematical and computational modeling approaches have been developed to investigate and better understand the mechanisms behind mechanically driven angiogenesis. In this manuscript, we review computational models of angiogenesis with a focus on models investigating the role of mechanics on the process. Our aim is not to provide a detailed review on model methodology but to describe what we have learnt from these models. We classify models according to the mechanical signals being investigated and describe how models have looked into their role on the angiogenic process. We show that a better understanding of the mechanobiology of the angiogenic process will require the development of computer models that incorporate the interactions between the multiple mechanical signals and their effect on cellular responses, since they all seem to play a key in sprout patterning. In the end, we describe some of the remaining challenges of computational modeling of angiogenesis and discuss potential avenues for future research.
Collapse
|
6
|
ComŞa Ş, CeauȘu AR, Popescu R, SÂrb S, CÎmpean AM, Raica M. The MSC-MCF-7 Duet Playing Tumor Vasculogenesis and Angiogenesis onto the Chick Embryo Chorioallantoic Membrane. In Vivo 2020; 34:3315-3325. [PMID: 33144439 PMCID: PMC7811630 DOI: 10.21873/invivo.12170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Human mesenchymal stem cells (hMSC) represent a versatile cell population, able to modulate the tumor microenvironment. Our aim was to recreate an open scene for the in vivo interaction between hMSC and the MCF-7 breast cancer cells (MCF-7), in order to enlighten the intimate involvement of hMSC in tumor vasculogenesis and angiogenesis. MATERIALS AND METHODS hMSC and MCF-7 were seeded onto the chick embryo chorioallantoic membrane (CAM) and incubated for 7 days. Consecutively, the morphology and the immunohistochemical profile of CAM were assessed. RESULTS Following this complex interaction, MCF-7 acquired a more aggressive phenotype, hMSC switched to a vascular precursor phenotype, while CAM underwent a major reset to an earlier stage, with hotspots of angiogenesis, vasculogenesis and hematopoiesis. CONCLUSION The hallmark of this study was the establishment of a veritable in vivo experimental model of MSC involvement in tumor vasculogenesis and angiogenesis, allowing further analysis in the field.
Collapse
Affiliation(s)
- Şerban ComŞa
- Department of Microscopic Morphology/Histology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
- Angiogenesis Research Center, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia-Raluca CeauȘu
- Department of Microscopic Morphology/Histology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
- Angiogenesis Research Center, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology/Cell and Molecular Biology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Simona SÂrb
- Department of Microscopic Morphology/Histology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Anca-Maria CÎmpean
- Department of Microscopic Morphology/Histology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
- Angiogenesis Research Center, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
- Angiogenesis Research Center, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
7
|
Abstract
Guided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.
Collapse
Affiliation(s)
- Daniel D Lee
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | - Margaret A Schwarz
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
8
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
9
|
Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018; 69:42-62. [PMID: 29371132 PMCID: PMC5831518 DOI: 10.1016/j.actbio.2018.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. STATEMENT OF SIGNIFICANCE Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community.
Collapse
Affiliation(s)
- Rajeev J Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Alves AP, Mesquita ON, Gómez-Gardeñes J, Agero U. Graph analysis of cell clusters forming vascular networks. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171592. [PMID: 29657767 PMCID: PMC5882691 DOI: 10.1098/rsos.171592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 05/07/2023]
Abstract
This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin®), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.
Collapse
Affiliation(s)
- A. P. Alves
- Departamento de Física, Universidade Federal de Minas Gerais- 31270-901 Belo Horizonte, MG, Brazil
- Author for correspondence: A. P. Alves e-mail:
| | - O. N. Mesquita
- Departamento de Física, Universidade Federal de Minas Gerais- 31270-901 Belo Horizonte, MG, Brazil
| | - J. Gómez-Gardeñes
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain
| | - U. Agero
- Departamento de Física, Universidade Federal de Minas Gerais- 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Cabrerizo J, Urcola JH, Vecino E. Changes in Surface Tension of Aqueous Humor in Anterior Segment Ocular Pathologies. Vision (Basel) 2016; 1:vision1010006. [PMID: 31740631 PMCID: PMC6849022 DOI: 10.3390/vision1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to identify and determine differences in surface tension (ST) of aqueous humor (AH) in patients with cataract, glaucoma and Fuchs endothelial dystrophy (FED). Two hundred and two samples of AH were analyzed (control n = 22; cataract n = 56; glaucoma n = 81; and n = FED 43). Patients with previous history of anterior segment surgery, anterior segment pathology or intraocular injections were excluded from the study. Different types of glaucoma were identified, cataracts were graded using total phaco time data during surgery and clinical severity of FED was assessed by clinical examination. Around 150 microliters AH were obtained during the first step of a surgical procedure, lensectomy, phacoemulsification, nonpenetrating deep sclerotomy (NPDE) and Descemet membrane endothelial keratoplasty (DMEK). A pendant drop-based optical goniometer OCA-15 (Dataphysics, Filderstadt, Germany) was used to measure surface tension. Mean ST was 65.74 ± 3.76 mN/m, 63.59 ± 5.50 mN/m, 64.35 ± 6.99 mN/m, and 60.89 ± 3.73 mN/m in control, cataract, glaucoma and FED patients respectively. Statistically significant differences between FED and control group were found (p < 0.001). Lens condition, cataract maturity, age, and gender did not show influence in ST. ST of AH is significantly decreased in FED patients independently from age and lens condition. These findings may aid to the understanding of the physiopathology of the disease.
Collapse
Affiliation(s)
- Javier Cabrerizo
- Department of Ophthalmology, Rigshospitalet/Glostrup, University of Copenhagen, Nordre Ringvej 57, 2600 Glostrup, Denmark
- Correspondence: ; Tel.: +45-60-599-717
| | - J. Haritz Urcola
- Department of Ophthalmology, University Hospital of Alava, 01009 Vitoria-Gasteiz, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
12
|
Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Bénazéraf B, Little CD. Extracellular matrix motion and early morphogenesis. Development 2016; 143:2056-65. [PMID: 27302396 PMCID: PMC4920166 DOI: 10.1242/dev.127886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher M Smith
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA Department of Biological Physics, Eotvos University, Budapest 1117, Hungary
| | - Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
de Souza Lins Borba FK, Felix GLQ, Costa EVL, Silva L, Dias PF, de Albuquerque Nogueira R. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates. Microvasc Res 2016; 105:114-8. [DOI: 10.1016/j.mvr.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
|
14
|
Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device. PLoS One 2015; 10:e0139515. [PMID: 26444904 PMCID: PMC4596573 DOI: 10.1371/journal.pone.0139515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
We report the first application of a microfluidic device to observe chemotactic migration in multicellular spheroids. A microfluidic device was designed comprising a central microchamber and two lateral channels through which reagents can be introduced. Multicellular spheroids were embedded in collagen and introduced to the microchamber. A gradient of fetal bovine serum (FBS) was established across the central chamber by addition of growth media containing serum into one of the lateral channels. We observe that spheroids of oral squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of FBS. This invasion is more directional and aggressive than that observed for individual cells in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant wave engulfs the spheroid before diffusing through it.
Collapse
|
15
|
Abstract
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eötvös University, Budapest, Hungary.
| | | |
Collapse
|
16
|
Richardson MR, Robbins EP, Vemula S, Critser PJ, Whittington C, Voytik-Harbin SL, Yoder MC. Angiopoietin-like protein 2 regulates endothelial colony forming cell vasculogenesis. Angiogenesis 2014; 17:675-83. [PMID: 24563071 DOI: 10.1007/s10456-014-9423-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Abstract
Angiopoietin-like 2 (ANGPTL2) has been reported to induce sprouting angiogenesis; however, its role in vasculogenesis, the de novo lumenization of endothelial cells (EC), remains unexplored. We sought to investigate the potential role of ANGPTL2 in regulating human cord blood derived endothelial colony forming cell (ECFC) vasculogenesis through siRNA mediated inhibition of ANGPTL2 gene expression. We found that ECFCs in which ANGPTL2 was diminished displayed a threefold decrease in in vitro lumenal area whereas addition of exogenous ANGPTL2 protein domains to ECFCs lead to increased lumen formation within a 3 dimensional (3D) collagen assay of vasculogenesis. ECFC migration was attenuated by 36 % via ANGPTL2 knockdown (KD) although proliferation and apoptosis were not affected. We subsequently found that c-Jun NH2-terminal kinase (JNK), but not ERK1/2, phosphorylation was decreased upon ANGPTL2 KD, and expression of membrane type 1 matrix metalloproteinase (MT1-MMP), known to be regulated by JNK and a critical regulator of EC migration and 3D lumen formation, was decreased in lumenized structures in vitro derived from ANGPTL2 silenced ECFCs. Treatment of ECFCs in 3D collagen matrices with either a JNK inhibitor or exogenous rhTIMP-3 (an inhibitor of MT1-MMP activity) resulted in a similar phenotype of decreased vascular lumen formation as observed with ANGPTL2 KD, whereas stimulation of JNK activity increased vasculogenesis. Based on gene silencing, pharmacologic, cellular, and biochemical approaches, we conclude that ANGPTL2 positively regulates ECFC vascular lumen formation likely through its effects on migration and in part by activating JNK and increasing MT1-MMP expression.
Collapse
Affiliation(s)
- Matthew R Richardson
- Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-W125, Indianapolis, IN, 46202, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Whisler JA, Chen MB, Kamm RD. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods 2013; 20:543-52. [PMID: 24151838 DOI: 10.1089/ten.tec.2013.0370] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanical and biochemical microenvironment influences the morphological characteristics of microvascular networks (MVNs) formed by endothelial cells (ECs) undergoing the process of vasculogenesis. The objective of this study was to quantify the role of individual factors in determining key network parameters in an effort to construct a set of design principles for engineering vascular networks with prescribed morphologies. To achieve this goal, we developed a multiculture microfluidic platform enabling precise control over paracrine signaling, cell-seeding densities, and hydrogel mechanical properties. Human umbilical vein endothelial cells (HUVECs) were seeded in fibrin gels and cultured alongside human lung fibroblasts (HLFs). The engineered vessels formed in our device contained patent, perfusable lumens. Communication between the two cell types was found to be critical in avoiding network regression and maintaining stable morphology beyond 4 days. The number of branches, average branch length, percent vascularized area, and average vessel diameter were found to depend uniquely on several input parameters. Importantly, multiple inputs were found to control any given output network parameter. For example, the vessel diameter can be decreased either by applying angiogenic growth factors--vascular endothelial growth factor (VEGF) and sphingosine-1-phsophate (S1P)--or by increasing the fibrinogen concentration in the hydrogel. These findings introduce control into the design of MVNs with specified morphological properties for tissue-specific engineering applications.
Collapse
Affiliation(s)
- Jordan A Whisler
- 1 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | |
Collapse
|
18
|
Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA, Miura T. Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 2013; 10:066007. [DOI: 10.1088/1478-3975/10/6/066007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|