1
|
Vöröslakos M, Yaghmazadeh O, Alon L, Sodickson DK, Buzsáki G. Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks. Bioelectromagnetics 2024; 45:139-155. [PMID: 37876116 PMCID: PMC10947979 DOI: 10.1002/bem.22489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Omid Yaghmazadeh
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Leeor Alon
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
2
|
Canovi A, Orlacchio R, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Lagroye I, Garenne A, Percherancier Y, Lewis N. In vitro exposure of neuronal networks to the 5G-3.5 GHz signal. Front Public Health 2023; 11:1231360. [PMID: 37608978 PMCID: PMC10441122 DOI: 10.3389/fpubh.2023.1231360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.8 GHz signals at specific absorption rates (SAR) well above the guidelines. The present study aimed to assess the effects of RF fields at 3.5 GHz, one of the frequencies related to 5G, on neuronal activity in-vitro. Potential differences in the effects elicited by continuous-wave (CW) and 5G-modulated signals were also investigated. Methods Spontaneous activity of neuronal cultures from embryonic cortices was recorded using 60-electrode multi-electrode arrays (MEAs) between 17 and 27 days in vitro. The neuronal cultures were subjected to 15 min RF exposures at SAR of 1, 3, and 28 W/kg. Results At SAR close to the guidelines (1 and 3 W/kg), we found no conclusive evidence that 3.5 GHz RF exposure impacts the activity of neurons in vitro. On the contrary, CW and 5G-modulated signals elicited a clear decrease in bursting and total firing rates during RF exposure at high SAR levels (28 W/kg). Our experimental findings extend our previous results, showing that RF, at 1.8 to 3.5 GHz, inhibits the electrical activity of neurons in vitro at levels above environmental standards.
Collapse
Affiliation(s)
- Anne Canovi
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Rosa Orlacchio
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- Paris Sciences et Lettres Research University, École Pratique des Hautes Études (EPHE), Paris, France
| | | | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Institut Universitaire de France (IUF), Paris, France
| | - Isabelle Lagroye
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- Paris Sciences et Lettres Research University, École Pratique des Hautes Études (EPHE), Paris, France
| | - André Garenne
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | | | - Noëlle Lewis
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| |
Collapse
|
3
|
Lemercier CE, Garenne A, Poulletier de Gannes F, El Khoueiry C, Arnaud-Cormos D, Levêque P, Lagroye I, Percherancier Y, Lewis N. Comparative study between radiofrequency-induced and muscimol-induced inhibition of cultured networks of cortical neuron. PLoS One 2022; 17:e0268605. [PMID: 36044461 PMCID: PMC9432733 DOI: 10.1371/journal.pone.0268605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.6 W/kg and co-occurred with an elevation of the culture medium temperature of ~1°C. Exposure to RF fields preferentially inhibits bursting over spiking activity and exerts fewer constraints on neural network bursting synchrony, differentiating it from a pharmacological inhibition with MU. Network rebound excitation, a phenomenon relying on the intrinsic properties of cortical neurons, was observed following the removal of tonic hyperpolarization after washout of MU but not in response to cessation of RF exposure. This implies that hyperpolarization is not the main driving force mediating the inhibitory effects of RF fields. At the level of single neurons, network inhibition induced by MU and RF fields occurred with reduced action potential (AP) half-width. As changes in AP waveform strongly influence efficacy of synaptic transmission, the narrowing effect on AP seen under RF exposure might contribute to reducing network bursting activity. By pointing only to a partial overlap between the inhibitory hallmarks of these two forms of inhibition, our data suggest that the inhibitory mechanisms of the action of RF fields differ from the ones mediated by the activation of GABAA receptors.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Faculty of Medicine, Institute of Physiology, Department of Systems Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail: (CEL); (NL)
| | - André Garenne
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | | | - Corinne El Khoueiry
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Isabelle Lagroye
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Paris “Sciences et Lettres” Research University, Paris, France
| | - Yann Percherancier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Noëlle Lewis
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- * E-mail: (CEL); (NL)
| |
Collapse
|
4
|
Yaghmazadeh O, Vöröslakos M, Alon L, Carluccio G, Collins C, Sodickson DK, Buzsáki G. Neuronal activity under transcranial radio-frequency stimulation in metal-free rodent brains in-vivo. COMMUNICATIONS ENGINEERING 2022; 1:15. [PMID: 38125336 PMCID: PMC10732550 DOI: 10.1038/s44172-022-00014-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2023]
Abstract
As the use of Radio Frequency (RF) technologies increases, the impact of RF radiation on neurological function continues to receive attention. Whether RF radiation can modulate ongoing neuronal activity by non-thermal mechanisms has been debated for decades. However, the interactions between radiated energy and metal-based neural probes during experimentation could impact neural activity, making interpretation of the results difficult. To address this problem, we modified a miniature 1-photon Ca2+ imaging device to record interference-free neural activity and compared the results to those acquired using metal-containing silicon probes. We monitored the neuronal activity of awake rodent-brains under RF energy exposure (at 950 MHz) and in sham control paradigms. Spiking activity was reliably affected by RF energy in metal containing systems. However, we did not observe neuronal responses using metal-free optical recordings at induced local electric field strengths up to 230 V/m. Our results suggest that RF exposure higher than levels that are allowed by regulatory limits in real-life scenarios do not affect neuronal activity.
Collapse
Affiliation(s)
- Omid Yaghmazadeh
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- These authors contributed equally: Omid Yaghmazadeh, Mihály Vöröslakos
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- These authors contributed equally: Omid Yaghmazadeh, Mihály Vöröslakos
| | - Leeor Alon
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Giuseppe Carluccio
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Christopher Collins
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
5
|
Orlacchio R, Percherancier Y, Poulletier De Gannes F, Hurtier A, Lagroye I, Leveque P, Arnaud-Cormos D. In Vivo Functional Ultrasound (fUS) Real-Time Imaging and Dosimetry of Mice Brain Under Radiofrequency Exposure. Bioelectromagnetics 2022; 43:257-267. [PMID: 35485721 DOI: 10.1002/bem.22403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022]
Abstract
This study aims to analyze in real-time the potential modifications induced by low-level continuous-wave and Global System for Mobile Communications radiofrequency (RF) exposure at 1.8 GHz on brain activation in anesthetized mice. A specific in vivo experimental setup consisting of a dipole antenna for the local exposure of the brain was fully characterized. A unique neuroimaging technique based on a functional ultrasound (fUS) probe was used to observe the areas of mice brain activation simultaneously to the RF exposure with unprecedented spatial and temporal resolution (~100 μm, 1 ms) following manual whisker stimulation using a brush. Numerical and experimental dosimetry was carried out to characterize the exposure and to guarantee the validity of the biological results. Our results show that the fUS probe can be efficiently used during in vivo exposure without interference with the dipole. In addition, we conclude that exposure to brain-averaged specific absorption rate levels of 2 and 6 W/kg does not introduce significant changes in the time course of the evoked fUS response in the left barrel field cortex. The proposed technique represents a valuable instrument for providing new insights into the possible effects induced on brain activation under RF exposure. For the first time, brain activity under mobile phone exposure was evaluated in vivo with fUS imaging, paving the way for more realistic exposure configurations, i.e. awake mice and new signals such as the 5 G networks. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Rosa Orlacchio
- CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France
| | | | | | | | | | | | - Delia Arnaud-Cormos
- CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Sci Rep 2022; 12:4063. [PMID: 35260711 PMCID: PMC8902282 DOI: 10.1038/s41598-022-07923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.
Collapse
|
7
|
Wallace J, Yahia-Cherif L, Gitton C, Hugueville L, Lemaréchal JD, Selmaoui B. Modulation of magnetoencephalography alpha band activity by radiofrequency electromagnetic field depicted in sensor and source space. Sci Rep 2021; 11:23403. [PMID: 34862418 PMCID: PMC8642443 DOI: 10.1038/s41598-021-02560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023] Open
Abstract
Several studies reported changes in spontaneous electroencephalogram alpha band activity related to radiofrequency electromagnetic fields, but findings showed both an increase and a decrease of its spectral power or no effect. Here, we studied the alpha band modulation after 900 MHz mobile phone radiofrequency exposure and localized cortical regions involved in these changes, via a magnetoencephalography (MEG) protocol with healthy volunteers in a double-blind, randomized, counterbalanced crossover design. MEG was recorded during eyes open and eyes closed resting-state before and after radiofrequency exposure. Potential confounding factors, known to affect alpha band activity, were assessed as control parameters to limit bias. Entire alpha band, lower and upper alpha sub-bands MEG power spectral densities were estimated in sensor and source space. Biochemistry assays for salivary biomarkers of stress (cortisol, chromogranin-A, alpha amylase), heart rate variability analysis and high-performance liquid chromatography for salivary caffeine concentration were realized. Results in sensor and source space showed a significant modulation of MEG alpha band activity after the radiofrequency exposure, with different involved cortical regions in relation to the eyes condition, probably because of different attention level with open or closed eyes. None of the control parameters reported a statistically significant difference between experimental sessions.
Collapse
Affiliation(s)
- Jasmina Wallace
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Lydia Yahia-Cherif
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Christophe Gitton
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Laurent Hugueville
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Jean-Didier Lemaréchal
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Brahim Selmaoui
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
8
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
9
|
Wallace J, Selmaoui B. Effect of mobile phone radiofrequency signal on the alpha rhythm of human waking EEG: A review. ENVIRONMENTAL RESEARCH 2019; 175:274-286. [PMID: 31146099 DOI: 10.1016/j.envres.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/14/2023]
Abstract
In response to the exponential increase in mobile phone use and the resulting increase in exposure to radiofrequency electromagnetic fields (RF-EMF), there have been several studies to investigate via electroencephalography (EEG) whether RF-EMF exposure affects brain activity. Data in the literature have shown that exposure to radiofrequency signals modifies the waking EEG with the main effect on the alpha band frequency (8-13 Hz). However, some studies have reported an increase in alpha band power, while others have shown a decrease, and other studies showed no effect on EEG power. Given that changes in the alpha amplitude are associated with attention and some cognitive aspects of human behavior, researchers deemed necessary to look whether alpha rhythm was modulated under RF-EMF exposure. The present review aims at comparing and discussing the main findings obtained so far regarding RF-EMF effects on alpha rhythm of human waking spontaneous EEG, focusing on differences in protocols between studies, which might explain the observed discrepancies and inconclusive results.
Collapse
Affiliation(s)
- Jasmina Wallace
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| | - Brahim Selmaoui
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France.
| |
Collapse
|
10
|
El Khoueiry C, Moretti D, Renom R, Camera F, Orlacchio R, Garenne A, Poulletier De Gannes F, Poque-Haro E, Lagroye I, Veyret B, Lewis N. Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1,800 MHz signals. J Neurophysiol 2018; 120:2719-2729. [PMID: 30133383 DOI: 10.1152/jn.00589.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rapid development of wireless communications has raised questions about their potential health risks. So far, the only identified biological effects of radiofrequency fields (RF) are known to be caused by heating, but the issue of potential nonthermal biological effects, especially on the central nervous system (CNS), remains open. We previously reported a decrease in the firing and bursting rates of neuronal cultures exposed to a Global System for Mobile (GSM) RF field at 1,800 MHz for 3 min (Moretti D, Garenne A, Haro E, Poulleier de Gannes F, Lagroye I, Lévêque P, Veyret B, Lewis N. Bioelectromagnetics 34: 571-578, 2013). The aim of the present work was to assess the dose-response relationship for this effect and also to identify a potential differential response elicited by pulse-modulated GSM and continuous-wave (CW) RF fields. Spontaneous bursting activity of neuronal cultures from rat embryonic cortices was recorded using 60-electrode multielectrode arrays (MEAs). At 17-28 days in vitro, the neuronal cultures were subjected to 15-min RF exposures, at specific absorption rates (SAR) ranging from 0.01 to 9.2 W/kg. Both GSM and CW signals elicited a clear decrease in bursting rate during the RF exposure phase. This effect became more marked with increasing SAR and lasted even beyond the end of exposure for the highest SAR levels. Moreover, the amplitude of the effect was greater with the GSM signal. Altogether, our experimental findings provide evidence for dose-dependent effects of RF signals on the bursting rate of neuronal cultures and suggest that part of the mechanism is nonthermal. NEW & NOTEWORTHY In this study, we investigated the effects of some radiofrequency (RF) exposure parameters on the electrical activity of neuronal cultures. We detected a clear decrease in bursting activity, dependent on exposure duration. The amplitude of this effect increased with the specific absorption rate (SAR) level and was greater with Global System for Mobile signal than with continuous-wave signal, at the same average SAR. Our experiment provides unique evidence of a decrease in electrical activity of cortical neuronal cultures during RF exposure.
Collapse
Affiliation(s)
- Corinne El Khoueiry
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France
| | - Daniela Moretti
- Center of Synaptic Neuroscience and Technology, Istituto Italiano di Technologia , Genoa , Italy
| | - Rémy Renom
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France
| | - Francesca Camera
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University , Rome , Italy
| | | | - André Garenne
- Institute of Neurodegenerative Diseases, UMR 5293, CNRS, University of Bordeaux , Bordeaux , France
| | | | - Emmanuelle Poque-Haro
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France
| | - Isabelle Lagroye
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France.,Paris "Sciences et Lettres" Research University , Paris , France
| | - Bernard Veyret
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France.,Paris "Sciences et Lettres" Research University , Paris , France
| | - Noëlle Lewis
- Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France
| |
Collapse
|
11
|
Occelli F, Lameth J, Adenis V, Huetz C, Lévêque P, Jay TM, Edeline JM, Mallat M. A Single Exposure to GSM-1800 MHz Signals in the Course of an Acute Neuroinflammatory Reaction can Alter Neuronal Responses and Microglial Morphology in the Rat Primary Auditory Cortex. Neuroscience 2018; 385:11-24. [DOI: 10.1016/j.neuroscience.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
|
12
|
Pirog A, Bornat Y, Perrier R, Raoux M, Jaffredo M, Quotb A, Lang J, Lewis N, Renaud S. Multimed: An Integrated, Multi-Application Platform for the Real-Time Recording and Sub-Millisecond Processing of Biosignals. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2099. [PMID: 29966339 PMCID: PMC6069272 DOI: 10.3390/s18072099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 12/30/2022]
Abstract
Enhanced understanding and control of electrophysiology mechanisms are increasingly being hailed as key knowledge in the fields of modern biology and medicine. As more and more excitable cell mechanics are being investigated and exploited, the need for flexible electrophysiology setups becomes apparent. With that aim, we designed Multimed, which is a versatile hardware platform for the real-time recording and processing of biosignals. Digital processing in Multimed is an arrangement of generic processing units from a custom library. These can freely be rearranged to match the needs of the application. Embedded onto a Field Programmable Gate Array (FPGA), these modules utilize full-hardware signal processing to lower processing latency. It achieves constant latency, and sub-millisecond processing and decision-making on 64 channels. The FPGA core processing unit makes Multimed suitable as either a reconfigurable electrophysiology system or a prototyping platform for VLSI implantable medical devices. It is specifically designed for open- and closed-loop experiments and provides consistent feedback rules, well within biological microseconds timeframes. This paper presents the specifications and architecture of the Multimed system, then details the biosignal processing algorithms and their digital implementation. Finally, three applications utilizing Multimed in neuroscience and diabetes research are described. They demonstrate the system’s configurability, its multi-channel, real-time processing, and its feedback control capabilities.
Collapse
Affiliation(s)
- Antoine Pirog
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, F-33400 Talence, France.
| | - Yannick Bornat
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, F-33400 Talence, France.
| | - Romain Perrier
- Signalisation et physiopathologie cardiovasculaire, INSERM S-1180, University of Paris Sud, F-92296 Châtenay-Malabry, France.
| | - Matthieu Raoux
- Institut de Chimie et Biologie des Membranes et des Nano-objets (CBMN), University of Bordeaux, CNRS UMR 5248, F-33600 Pessac, France.
| | - Manon Jaffredo
- Institut de Chimie et Biologie des Membranes et des Nano-objets (CBMN), University of Bordeaux, CNRS UMR 5248, F-33600 Pessac, France.
| | - Adam Quotb
- Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Federal University of Toulouse Midi-Pyrénées, CNRS UMR 8001, F-31031 Toulouse, France.
| | - Jochen Lang
- Institut de Chimie et Biologie des Membranes et des Nano-objets (CBMN), University of Bordeaux, CNRS UMR 5248, F-33600 Pessac, France.
| | - Noëlle Lewis
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, F-33400 Talence, France.
| | - Sylvie Renaud
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, F-33400 Talence, France.
| |
Collapse
|
13
|
Köhler T, Wölfel M, Ciba M, Bochtler U, Thielemann C. Terrestrial Trunked Radio (TETRA) exposure of neuronal in vitro networks. ENVIRONMENTAL RESEARCH 2018; 162:1-7. [PMID: 29272813 DOI: 10.1016/j.envres.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Terrestrial Trunked Radio (TETRA) is a worldwide common mobile communication standard, used by authorities and organizations with security tasks. Previous studies reported on health effects of TETRA, with focus on the specific pulse frequency of 17.64Hz, which affects calcium efflux in neuronal cells. Likewise among others, it was reported that TETRA affects heart rate variability, neurophysiology and leads to headaches. In contrast, other studies conclude that TETRA does not affect calcium efflux of cells and has no effect on people's health. In the present study we examine whether TETRA short- and long-term exposure could affect the electrophysiology of neuronal in vitro networks. Experiments were performed with a carrier frequency of 395MHz, a pulse frequency of 17.64Hz and a differential quaternary phase-shift keying (π/4 DQPSK) modulation. Specific absorption rates (SAR) of 1.17W/kg and 2.21W/kg were applied. In conclusion, the present results do not indicate any effect of TETRA exposure on electrophysiology of neuronal in vitro networks, neither for short-term nor long-term exposure. This applies to the examined parameters spike rate, burst rate, burst duration and network synchrony.
Collapse
Affiliation(s)
- Tim Köhler
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Maximilian Wölfel
- Laboratory for EMC, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Manuel Ciba
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Ulrich Bochtler
- Laboratory for EMC, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Christiane Thielemann
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| |
Collapse
|
14
|
Saito A, Takahashi M, Makino K, Suzuki Y, Jimbo Y, Nakasono S. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure. Front Physiol 2018; 9:189. [PMID: 29662453 PMCID: PMC5890104 DOI: 10.3389/fphys.2018.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/23/2018] [Indexed: 01/20/2023] Open
Abstract
High-intensity and low frequency (1-100 kHz) time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz), a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF), and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA)-based extracellular recording technique. As a result of short-term hPF-MF exposure (50-400 mT root-mean-square (rms), 50 Hz, sinusoidal wave, 6 s), the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50-200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI); subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4-10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field) in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that the potentiation of neuronal activity after 400 mT hPF-MF exposure was related to the depression of autonomous activity of pacemaker-like neurons. Our results indicated that the synchronized bursting activity was increased by hPF-MF exposure (E-field: >0.3 V/m), and the response was due to reduced inhibitory pacemaker-like neuronal activity.
Collapse
Affiliation(s)
- Atsushi Saito
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Masayuki Takahashi
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Kei Makino
- Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yukihisa Suzuki
- Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Satoshi Nakasono
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| |
Collapse
|
15
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
16
|
Oster S, Daus AW, Erbes C, Goldhammer M, Bochtler U, Thielemann C. Long-term electromagnetic exposure of developing neuronal networks: A flexible experimental setup. Bioelectromagnetics 2016; 37:264-78. [DOI: 10.1002/bem.21974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Stefan Oster
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Andreas W. Daus
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Christian Erbes
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Michael Goldhammer
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
- Laboratory for Electromagnetic Compatibility (EMC); Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Ulrich Bochtler
- Laboratory for Electromagnetic Compatibility (EMC); Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | | |
Collapse
|
17
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
18
|
Paffi A, Camera F, Apollonio F, d'Inzeo G, Liberti M. Restoring the encoding properties of a stochastic neuron model by an exogenous noise. Front Comput Neurosci 2015; 9:42. [PMID: 25999845 PMCID: PMC4422033 DOI: 10.3389/fncom.2015.00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed.
Collapse
Affiliation(s)
- Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome Rome, Italy ; Italian Inter-University Center for the Study of Electromagnetic Fields and Biological Systems Genova, Italy
| | - Francesca Camera
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome Rome, Italy ; Italian Inter-University Center for the Study of Electromagnetic Fields and Biological Systems Genova, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome Rome, Italy ; Italian Inter-University Center for the Study of Electromagnetic Fields and Biological Systems Genova, Italy
| | - Guglielmo d'Inzeo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome Rome, Italy ; Italian Inter-University Center for the Study of Electromagnetic Fields and Biological Systems Genova, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome Rome, Italy ; Italian Inter-University Center for the Study of Electromagnetic Fields and Biological Systems Genova, Italy
| |
Collapse
|
19
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|