1
|
Franceschelli S, D’Andrea P, Speranza L, De Cecco F, Paolucci T, Panella V, Grilli A, Benedetti S. Biological effects of magnetic fields emitted by graphene devices, on induced oxidative stress in human cultured cells. Front Bioeng Biotechnol 2024; 12:1427411. [PMID: 39055337 PMCID: PMC11269256 DOI: 10.3389/fbioe.2024.1427411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Many recent studies have explored the healing properties of the extremely low-frequency electromagnetic field (ELF-EMF) to utilize electromagnetism for medical purposes. The non-invasiveness of electromagnetic induction makes it valuable for supportive therapy in various degenerative pathologies with increased oxidative stress. To date, no harmful effects have been reported or documented. We designed a small, wearable device which does not require a power source. The device consists of a substrate made of polyethylene terephthalate and an amalgam containing primarily graphene nanocrystals, also known as quantum dots. This device can transmit electromagnetic signals, which could induce biological effects. This study aims to verify the preliminary effects of the electromagnetic emission of the device on leukemic cells in culture. For this purpose, we studied the best-known effects of magnetic fields on biological models, such as cell viability, and the modulations on the main protagonists of cellular oxidative stress.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
- Uda-TechLab, Research Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | | | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
- Uda-TechLab, Research Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Federica De Cecco
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Teresa Paolucci
- Department of Medical Oral Sciences and Biotechnology (DiSmob), Physical Medicine and Rehabilitation Unit, G. D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Valeria Panella
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Alfredo Grilli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Stefano Benedetti
- School of Medicine, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
López de Mingo I, Rivera González MX, Maestú Unturbe C. The Cellular Response Is Determined by a Combination of Different ELF-EMF Exposure Parameters: A Scope Review. Int J Mol Sci 2024; 25:5074. [PMID: 38791113 PMCID: PMC11121623 DOI: 10.3390/ijms25105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Since the establishment of regulations for exposure to extremely low-frequency (0-300) Hz electromagnetic fields, scientific opinion has prioritised the hypothesis that the most important parameter determining cellular behaviour has been intensity, ignoring the other exposure parameters (frequency, time, mode, waveform). This has been reflected in the methodologies of the in vitro articles published and the reviews in which they are included. A scope review was carried out, grouping a total of 79 articles that met the proposed inclusion criteria and studying the effects of the different experiments on viability, proliferation, apoptosis, oxidative stress and the cell cycle. These results have been divided and classified by frequency, intensity, exposure time and exposure mode (continuous/intermittent). The results obtained for each of the processes according to the exposure parameter used are shown graphically to highlight the importance of a good methodology in experimental development and the search for mechanisms of action that explain the experimental results, considering not only the criterion of intensity. The consequence of this is a more than necessary revision of current exposure protection regulations for the general population based on the reductionist criterion of intensity.
Collapse
Affiliation(s)
- Isabel López de Mingo
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Marco-Xavier Rivera González
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Ceferino Maestú Unturbe
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Centro de Investigación en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Huang J, Zhao L, Xiong J, Liang Y. miRNA Expression Profile of Magnetic Field Combined with Nano-Scaffolds Enhance Chondrogenesis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The differentiation of mesenchymal stem cells (MSC) into cartilage is a critical step in the cartilage damage repair. Pulsed electromagnetic fields may provide a solution to promote the differentiation and proliferation of MSC, with a promisingly strong synergistic effect apparent when
MSC subjected to magnetic nanoparticles and pulsed electromagnetic fields simultaneously. Previously, we developed a magnetic nanoparticles hydrogel (MagGel) that, when combined with magnetic fields, substantially enhanced cartilage tissue repair; however, we still know little about the mechanisms
underlying its effectiveness. Here, we examined the role of magnetic fields and nano-scaffolds in promoting differentiation of MSCs into chondrocytes. Our results suggest that the mechanism causing MSC differentiation under these conditions resulted from the activation of multiple miRNAs and
signaling pathways. These results can be built upon by future molecular studies to identify which miRNAs are involved in to chondrogenesis. By identifying these miRNAs and their targeted pathways, we can better manipulate the expression of the specific miRNAs that promote MSC differentiation
and cartilage repair. Our study provides a starting point for the study of magnetic field-induced differentiation of the magnetic nanoparticles within stem cells.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen
University Health Science Center, Shenzhen, 518035, China
| | - Ling Zhao
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen
University Health Science Center, Shenzhen, 518035, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen
University Health Science Center, Shenzhen, 518035, China
| | - Yujie Liang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, 518020, China
| |
Collapse
|
4
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
5
|
Ross CL, Zhou Y, McCall CE, Soker S, Criswell TL. The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review. Bioelectricity 2019; 1:247-259. [PMID: 34471827 PMCID: PMC8370292 DOI: 10.1089/bioe.2019.0026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulsed electromagnetic field (PEMF) is emerging as innovative treatment for regulation of inflammation, which could have significant effects on tissue regeneration. PEMF modulates inflammatory processes through the regulation of pro- and anti-inflammatory cytokine secretion during different stages of inflammatory response. Consistent outcomes in studies involving animal and human tissue have shown promise for the use of PEMF as an alternative or complementary treatment to pharmaceutical therapies. Thus, PEMF treatment could provide a novel nonpharmaceutical means of modulating inflammation in injured tissues resulting in enhanced functional recovery. This review examines the effect of PEMF on immunomodulatory cells (e.g., mesenchymal stem/stromal cells [MSCs] and macrophages [MΦ]) to better understand the potential for PEMF therapy to modulate inflammatory signaling pathways and improve tissue regeneration. This review cites published data that support the use of PEMF to improve tissue regeneration. Our studies included herein confirm anti-inflammatory effects of PEMF on MSCs and MΦ.
Collapse
Affiliation(s)
- Christina L. Ross
- Center for Integrative Medicine, Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yu Zhou
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Charles E. McCall
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shay Soker
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tracy L. Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Krylov VV, Chebotareva YV, Izyumov YG. Delayed consequences of the influence of simulated geomagnetic storms on roach Rutilus rutilus embryos. JOURNAL OF FISH BIOLOGY 2019; 95:1422-1429. [PMID: 31589783 DOI: 10.1111/jfb.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
This study presents data collected over a 3 year period on the effects of simulated geomagnetic storms (SGMS) on Eurasian roach Rutilus rutilus embryos. Effects were studied during different stages of early development. Rutilis rutilus were raised in ponds for 4 months after exposure to SGMS. The mass, standard length and morphological characteristics of under-yearlings exposed as embryos were recorded. A decrease in length-mass indices in under-yearlings was noted after they had been exposed to SGMS during the first 2 days or during the third and fourth days of early development. Near the time point of 48 h post fertilisation, either no effect or an increased size was observed. In addition, exposure to SGMS led to a redistribution of the vertebral number between the sections of the vertebral column as well as changes in the number of seismosensory system openings in the mandibular and praeoperculum bones of under-yearlings. Observed effects are similar to previously published data on the influence of anthropogenic magnetic fields on roach, namely changes in linear-mass indices, number of vertebrae and number of seismosensory system openings in the mandibular bones of under-yearlings exposed as embryos. Possible mechanisms of magnetic influence on early development of fish are discussed.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- Laboratory of Population Biology and Genetics, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Oblast, Russian Federation
| | - Yulia V Chebotareva
- Laboratory of Population Biology and Genetics, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Oblast, Russian Federation
| | - Yuri G Izyumov
- Laboratory of Population Biology and Genetics, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Oblast, Russian Federation
| |
Collapse
|
7
|
Kavand H, van Lintel H, Renaud P. Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca 2+ on chondrogenic differentiation. J Tissue Eng Regen Med 2019; 13:799-811. [PMID: 30793837 DOI: 10.1002/term.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Previous studies provide strong evidence for the therapeutic effect of electromagnetic fields (EMFs) on different tissues including cartilage. Diverse exposure parameters applied in scientific reports and the unknown interacting mechanism of EMF with biological systems make EMF studies challenging. In 1985, Liboff proposed that when magnetic fields are tuned to the cyclotron resonance frequencies of critical ions, the motion of ions through cell membranes is enhanced, and thus biological effects appear. Such exposure system consists of a weak alternating magnetic field (B1 ) in the presence of a static magnetic field (B0 ) and depends on the relationship between the magnitudes of B0 and B1 and the angular frequency Ω. The purpose of the present study is to determine the chondrogenic potential of EMF with regards to pulsed EMF (PEMF) and the ion cyclotron resonance (ICR) theory. We used different stimulating systems to generate EMFs in which cells are either stimulated with ubiquitous PEMF parameters, frequently reported, or parameters tuned to satisfy the ICR for Ca2+ (including negative and positive control groups). Chondrogenesis was analysed after 3 weeks of treatment. Cell stimulation under the ICR condition showed positive results in the context of glycosaminoglycans and type II collagen synthesis. In contrast, the other electromagnetically stimulated groups showed no changes compared with the control groups. Furthermore, gene expression assays revealed an increase in the expression of chondrogenic markers (COL2A1, SOX9, and ACAN) in the ICR group. These results suggest that the Ca2+ ICR condition can be an effective factor in inducing chondrogenesis.
Collapse
Affiliation(s)
- Hanie Kavand
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald van Lintel
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Ross CL, Ang DC, Almeida-Porada G. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis. Front Immunol 2019; 10:266. [PMID: 30886614 PMCID: PMC6409305 DOI: 10.3389/fimmu.2019.00266] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of synovium (synovitis), with inflammatory/immune cells and resident fibroblast-like synoviocytes (FLS) acting as major players in the pathogenesis of this disease. The resulting inflammatory response poses considerable risks as loss of bone and cartilage progresses, destroying the joint surface, causing joint damage, joint failure, articular dysfunction, and pre-mature death if left untreated. At the cellular level, early changes in RA synovium include inflammatory cell infiltration, synovial hyperplasia, and stimulation of angiogenesis to the site of injury. Different angiogenic factors promote this disease, making the role of anti-angiogenic therapy a focus of RA treatment. To control angiogenesis, mesenchymal stromal cells/pericytes (MSCs) in synovial tissue play a vital role in tissue repair. While recent evidence reports that MSCs found in joint tissues can differentiate to repair damaged tissue, this repair function can be repressed by the inflammatory milieu. Extremely-low frequency pulsed electromagnetic field (PEMF), a biophysical form of stimulation, has an anti-inflammatory effect by causing differentiation of MSCs. PEMF has also been reported to increase the functional activity of MSCs to improve differentiation to chondrocytes and osteocytes. Moreover, PEMF has been demonstrated to accelerate cell differentiation, increase deposition of collagen, and potentially return vascular dysfunction back to homeostasis. The aim of this report is to review the effects of PEMF on MSC modulation of cytokines, growth factors, and angiogenesis, and describe its effect on MSC regeneration of synovial tissue to further understand its potential role in the treatment of RA.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States.,Wake Forest Center for Integrative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dennis C Ang
- Department of Rheumatology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Aharonovich Y, Scheinowitz M, Zlochiver S. Cardiac KATP channel modulation by 16Hz magnetic fields - A theoretical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:161-164. [PMID: 28268304 DOI: 10.1109/embc.2016.7590665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heart exposure to 16Hz magnetic fields (MFs) was shown to be cardio-protective for diseased hearts; still, the mechanism of this effect is unknown. We hypothesize that a possible one mechanism is an increased trans-membrane KATP channel open probability due to modulation of the degree of dissociation between K+ ions, having a resonance frequency of 16Hz, and the channel selectivity filter. The Fan-Makielski Markovian KATP channel model was adopted, and the MF bio-effect was manifested by modulating the open probability of the channel using the predictive MF bio-effect parameter based on Binhi's quantum mechanics model. The model was integrated in a ventricular single cell model and the MF effect on the calcium transients [Ca2+] was assessed. Periodic pacing (Cycle Length CL=1sec) was applied and a 16Hz or 32Hz MF was turned on at t=0 for 10min. MF exposure gradually decreased [Ca2+] due to KATP channel opening, more strongly at 16Hz. Additionally, a small negative diastolic shift was observed. These numerical results demonstrated similarity to published experimental data using similar 16Hz MF exposure. We conclude that 16Hz MF exposure increases the KATP channel open probability, lowering the cellular calcium load. Our model could be integrated in a tissue model to predict optimal MF parameters for future cardiac therapy devices.
Collapse
|
10
|
Cheng X, Rajjoub K, Shashurin A, Yan D, Sherman JH, Bian K, Murad F, Keidar M. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 2016; 38:53-62. [DOI: 10.1002/bem.22014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoqian Cheng
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Kenan Rajjoub
- Columbian College of Arts and SciencesThe George Washington UniversityWashingtonDistrict of Columbia
| | | | - Dayun Yan
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Jonathan H. Sherman
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ka Bian
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ferid Murad
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Michael Keidar
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| |
Collapse
|
11
|
Makarov VI, Khmelinskii I. External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields. Electromagn Biol Med 2014; 35:15-29. [PMID: 25259623 DOI: 10.3109/15368378.2014.959175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.
Collapse
Affiliation(s)
- Vladimir I Makarov
- a Department of Physics , University of Puerto Rico , Rio Piedras , San Juan , PR , USA and
| | | |
Collapse
|
12
|
Makarov VI, Khmelinskii I. Modulation effect of low-frequency electric and magnetic fields on CO2 production and rates of acetate and pyruvate formation in Saccharomyces cerevisiae cell culture. Electromagn Biol Med 2014; 34:93-104. [PMID: 24694348 DOI: 10.3109/15368378.2014.902382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied action of one-dimensional, two-dimensional and three-dimensional low-frequency oscillating electric and magnetic fields on sugar metabolism in Saccharomyces cerevisiae cell culture. S. cerevisiae cells were grown on a minimal medium containing glucose (10%) as a carbon source and salts (0.3-0.5%) that supplied nitrogen, phosphorus and trace metals. We found that appropriate three-dimensional field patterns can either accelerate or inhibit sugar metabolism in yeast cells, as compared to control experiments. We also studied aerobic sugar metabolism, with similar results. Sugar metabolism was monitored by formation of pyruvate, acetate and CO2. We found that for the P1 parameter set the cell metabolism accelerates as evaluated by all of the monitored chemical products, and the cell density growth rate also accelerates, with opposite effects observed for the P2 parameter set. These parameter sets are introduced using D, ω, φ, B, ω', and φ' - vectors defining amplitudes, frequencies and phases of periodic electric and magnetic fields, respectively. Thus, the P1 parameter set: D = (2.6, 3.1, 2.2) V/cm; ω = (0.8, 1.6, 0.2) kHz; φ = (1.31, 0.9, 1.0) rad; B = (3.1, 7.2, 7.2) × 10(-4) T; ω' = (2.1, 1.3, 3.1) kHz; φ' = (0.4, 2.1, 2.8) rad; and the P2 parameter set: D = (4.3, 1.6, 3.8) V/cm; ω = (3.3, 1.8, 2.8) kHz; φ = (0.86, 1.1, 0.4) rad; B = (5.4, 1.3, 1.3) × 10(-4) T; ω' = (1.3, 1.7, 0.9) kHz; φ' = (2.6, 1.7, 1.7) rad. The effects obtained for the less complex field combinations that used one-dimensional or two-dimensional configurations, or omitted either the electric or the magnetic contribution, were significantly weaker than those obtained for the complete P1 and P2 parameter sets.
Collapse
|
13
|
Bae JE, Do JY, Kwon SH, Lee SD, Jung YW, Kim SC, Chae KS. Electromagnetic field-induced converse cell growth during a long-term observation. Int J Radiat Biol 2013; 89:1035-44. [PMID: 23859432 DOI: 10.3109/09553002.2013.825063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Professional and public concern about the potential adverse effects of man-made electromagnetic fields (EMF) on the human body has dramatically expanded in recent years. Despite numerous attempts to investigate this issue, the long-standing challenge of reproducibility surrounding alternating EMF effects on human health remains unresolved. Our chief aim was to investigate a plausible mechanism for this phenomenon. MATERIALS AND METHODS Growth of cultured human cancer cells, DU145 and Jurkat, exposed to power frequency magnetic field (MF) (60 Hz, 1 mT) for 3 days, was determined using a 2-(4-Iodophenyl)- 3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay and a trypan blue exclusion assay. This experiment was repeated at incubators long-term monitoring period up to 5.3 years. A periodogram analysis was performed to investigate periodic patterns in the MF and sham effects on cell growth. RESULTS Unlike conventional assumptions, the MF effect on growth in both cell types was promotive or suppressive in a period-dependent manner. The converse cell growth induced by the MF was consistent in incubators, with little variation. CONCLUSIONS Spatiotemporal evidence suggests that the period-dependent converse cell growth by the MF may contribute to the poor reproducibility and explain the adverse effects observed in previous experimental and epidemiological investigations. Additionally, the novel approach of this study may be applied to design features required to experimentally determine the effects of EMF on living organisms in a convincing manner.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Department of Nanoscience & Nanotechnology
| | | | | | | | | | | | | |
Collapse
|
14
|
Gavoçi E, Zironi I, Remondini D, Virelli A, Castellani G, Del Re B, Giorgi G, Aicardi G, Bersani F. ELF magnetic fields tuned to ion parametric resonance conditions do not affect TEA-sensitive voltage-dependent outward K(+) currents in a human neural cell line. Bioelectromagnetics 2013; 34:579-88. [PMID: 23900932 DOI: 10.1002/bem.21807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/22/2013] [Indexed: 11/06/2022]
Abstract
Despite the experimental evidence of significant biological effects of extremely low frequency (ELF) magnetic fields (MFs), the underlying mechanisms are still unclear. Among the few mechanisms proposed, of particular interest is the so called "ion parametric resonance (IPR)" hypothesis, frequently referred to as theoretical support for medical applications. We studied the effect of different combinations of static (DC) and alternating (AC) ELF MFs tuned on resonance conditions for potassium (K(+)) on TEA-sensitive voltage-dependent outward K(+) currents in the human neuroblastoma BE(2)C cell line. Currents through the cell membrane were measured by whole-cell patch clamp before, during, and after exposure to MF. No significant changes in K(+) current density were found. This study does not confirm the IPR hypothesis at the level of TEA-sensitive voltage-dependent outward K(+) currents in our experimental conditions. However, this is not a direct disprove of the hypothesis, which should be investigated on other ion channels and at single channel levels also.
Collapse
Affiliation(s)
- Entelë Gavoçi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One 2013; 8:e62663. [PMID: 23750202 PMCID: PMC3672148 DOI: 10.1371/journal.pone.0062663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. RESULTS WE FIND THAT: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. CONCLUSIONS SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity.
Collapse
|
16
|
Savić T, Janać B, Todorović D, Prolić Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med 2011; 30:108-14. [DOI: 10.3109/15368378.2011.566780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
|
18
|
Abstract
AbstractThe influence of magnetic fields on hatching and chromatin state of brine shrimp, Artemia sp., was investigated. Dry Artemia cysts were exposed to a magnetic field of intensity 25 mT for 10 min. The magnetic field was applied in different variants: constant field, rotating field of different directions (right-handed and left-handed) and different magnet polarization. The effect of ultra wideband pulse radiation and microwave radiation was also investigated. The energy density on the surface of object exposed to ultra wideband pulse radiation was 10−2, 10−3, 10−4, 10−5 and 10−6 W/cm2, the power of microwave radiation was 10−4 and 10−5 W/cm2, exposure time - 10 s. After incubation of the cysts for 48 hours in sea water the hatching percentage of Artemia from exposed cysts was higher than in controls. The number of heterochromatin granules was significantly higher in the nauplia (newborn larvae of Artemia) developed from cysts that had been exposed to magnetic and electromagnetic fields. The data obtained demonstrate an increase in percentage hatching of Artemia cysts after treatment with magnetic and electromagnetic fields and chromatin condensation in nauplia. We have also shown different effects of right-handed and left-handed rotating magnetic fields on these processes.
Collapse
|
19
|
Cerella C, Cordisco S, Albertini MC, Accorsi A, Diederich M, Ghibelli L. Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. Int J Biochem Cell Biol 2010; 43:393-400. [PMID: 21095240 DOI: 10.1016/j.biocel.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
The ability of magnetic fields (MFs) to promote/increase Ca(2+) influx into cells is widely recognized, but the underlying mechanisms remain obscure. Here we analyze how static MFs of 6 mT modulates thapsigargin-induced Ca(2+) movements in non-excitable U937 monocytes, and how this relates to the anti-apoptotic effect of MFs. Magnetic fields do not affect thapsigargin-induced Ca(2+) mobilization from endoplasmic reticulum, but significantly increase the resulting Ca(2+) influx; this increase requires intracellular signal transduction actors including G protein, phospholipase C, diacylglycerol lipase and nitric oxide synthase, and behaves as a non-capacitative Ca(2+) entry (NCCE), a type of influx with an inherent signaling function, rather than a capacitative Ca(2+) entry (CCE). All treatments abrogating the extra Ca(2+) influx also abrogate the anti-apoptotic effect of MFs, demonstrating that MF-induced NCCE elicits an anti-apoptotic survival pathway.
Collapse
Affiliation(s)
- Claudia Cerella
- Dipartimento di Biologia, Universita' degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica snc, 00133 Roma, Italy
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Muehsam DJ, Pilla AA. A Lorentz model for weak magnetic field bioeffects: part II--secondary transduction mechanisms and measures of reactivity. Bioelectromagnetics 2009; 30:476-88. [PMID: 19437458 DOI: 10.1002/bem.20493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Part I it was shown that the thermal component of the motion of a charged particle in an oscillator potential, that is, within a molecular binding site, rotates at the Larmor frequency in an applied magnetic field. It was also shown that the Larmor angular frequency is independent of the thermal noise strength and thus offers a mechanism for the biological detection of weak (microT-range) magnetic fields. Part II addresses the question of how the Larmor trajectory could affect biological reactivity. The projection of the motion onto a Cartesian axis measures the nonuniformity of the Larmor trajectory in AC and combined AC/DC magnetic fields, suggesting a means of assessing resonances. A physically meaningful measure of reactivity based upon the classical oscillator trajectory is suggested, and the problem of initial conditions is addressed through averaging over AC phases. AC resonance frequencies occur at the Larmor frequency and at other frequencies, and are dependent upon the ratio of AC/DC amplitudes and target kinetics via binding lifetime. The model is compared with experimental data reported for a test of the ion parametric resonance (IPR) model on data from Ca2+ flux in membrane vesicles, neurite outgrowth from PC-12 cells and a cell-free calmodulin-dependent myosin phosphorylation system, and suggests Mg2+ is the target for these systems. The results do not require multiple-ion targets, selection of isotopes, or additional curve fitting. The sole fitting parameter is the binding lifetime of the target system and the results shown are consistent with the literature on binding kinetics.
Collapse
Affiliation(s)
- David J Muehsam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | |
Collapse
|
22
|
Muehsam DJ, Pilla AA. A Lorentz model for weak magnetic field bioeffects: part I--thermal noise is an essential component of AC/DC effects on bound ion trajectory. Bioelectromagnetics 2009; 30:462-75. [PMID: 19437460 DOI: 10.1002/bem.20494] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously employed the Lorentz-Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that microT-range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady-state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase.
Collapse
Affiliation(s)
- David J Muehsam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | |
Collapse
|
23
|
|
24
|
Smith SD, McLeod BR, Liboff AR. Effects of Resonant Magnetic Fields on Chick Femoral Development In Vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379109031401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stephen D. Smith
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0084
| | - Bruce R. McLeod
- Department of Electrical, Engineering Montana State University, Bozeman, MT, 59717
| | | |
Collapse
|
25
|
Alberto D, Busso L, Garfagnini R, Giudici P, Gnesi I, Manta F, Piragino G, Callegaro L, Crotti G. Effects of Extremely Low-Frequency Magnetic Fields on L-glutamic Acid Aqueous Solutions at 20, 40, and 60 μT Static Magnetic Fields. Electromagn Biol Med 2009; 27:241-53. [DOI: 10.1080/15368370802344052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Raggi F, Vallesi G, Rufini S, Gizzi S, Ercolani E, Rossi R. ELF Magnetic Therapy and Oxidative Balance. Electromagn Biol Med 2009; 27:325-39. [DOI: 10.1080/15368370802493271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Jandová A, Mhamdi L, Nedbalová M, Čoček A, Trojan S, Dohnalová A, Pokorný J. Effects of Magnetic Field 0.1 and 0.05 mT on Leukocyte Adherence Inhibition. Electromagn Biol Med 2009. [DOI: 10.1080/15368370500379681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
McLeod BR, Liboff AR, Smith SD. Biological Systems in Transition: Sensitivity to Extremely Low-Frequency Fields. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379209012850] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Huang L, Dong L, Chen Y, Qi H, Xiao D. Effects of Sinusoidal Magnetic Field Observed on Cell Proliferation, Ion Concentration, and Osmolarity in Two Human Cancer Cell Lines. Electromagn Biol Med 2009; 25:113-26. [PMID: 16771300 DOI: 10.1080/15368370600719067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Low frequency magnetic fields have previously been shown to affect cell functions. In this article, the effects of 20 mT, 50 Hz sinusoidal magnetic field on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines (HL-60 and SK-Hep-1) were investigated. Inhibition of cell growth was observed. On the other hand, the exposure also increased the Na+, K+ ion concentration and osmolarity in cell supernatant compared to the control group. To our knowledge, this is the first study on cancer cells where magnetic fields affect osmolarity in cell supernatant. In addition, a model of cells exposed to the oscillating magnetic field is described as well as the characteristics of ions in and out of cells. The experimental data appears to be consistent with the theoretical analysis. The results are also discussed in terms of the relationships among cell growth, ion concentration, and osmolarity. Magnetic field inhibitions of cell growth in vitro may relate to changes in cell ion concentration and osmolarity.
Collapse
Affiliation(s)
- Lingzhen Huang
- Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Blackman C. Cell phone radiation: Evidence from ELF and RF studies supporting more inclusive risk identification and assessment. PATHOPHYSIOLOGY 2009; 16:205-16. [PMID: 19264460 DOI: 10.1016/j.pathophys.2009.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022] Open
Abstract
Many national and international exposure standards for maximum radiation exposure from the use of cell phone and other similar portable devices are ultimately based on the production of heat particularly in regions of the head, that is, thermal effects (TE). The recent elevation in some countries of the allowable exposure, that is, averaging the exposure that occurs in a 6min period over 10g of tissue rather than over 1g allows for greater heating in small portions of the 10-g volume compared to the exposure that would be allowed averaged over 1-g volume. There is concern that 'hot' spots, that is, momentary higher intensities, could occur in portions of the 10-g tissue piece, might have adverse consequences, particularly in brain tissue. There is another concern about exposure to cell phone radiation that has been virtually ignored except for the National Council of Radiation Protection and Measurements (NCRP) advice given in a publication in 1986 [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.]. This NCRP review and guidance explicitly acknowledge the existence of non-thermal effects (NTE), and included provisions for reduced maximum-allowable limits should certain radiation characteristics occur during the exposure. If we are to take most current national and international exposure standards as completely protective of thermal injury for acute exposure only (6min time period) then the recent evidence from epidemiological studies associating increases in brain and head cancers with increased cell phone use per day and per year over 8-12 years, raises concerns about the possible health consequences on NTE first acknowledged in the NCRP 1986 report [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.]. This paper will review some of the salient evidence that demonstrates the existence of NTE and the exposure complexities that must be considered and understood to provide appropriate, more thorough evaluation and guidance for future studies and for assessment of potential health consequences. Unfortunately, this paper is necessary because most national and international reviews of the research area since the 1986 report [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.] have not included scientists with expertise in NTE, or given appropriate attention to their requests to include NTE in the establishment of public-health-based radiation exposure standards. Thus, those standards are limited because they are not comprehensive.
Collapse
|
31
|
Weintraub MI, Cole SP. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. PAIN MEDICINE 2008; 9:493-504. [PMID: 18777606 DOI: 10.1111/j.1526-4637.2007.00324.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine if a physics-based combination of simultaneous static and time-varying dynamic magnetic field stimulation to the wrist 4 hours/day for 2 months can reduce subjective neuropathic pain and influence objective electrophysiologic parameters of patients with carpal tunnel syndrome (CTS). METHODS Randomized, double-blinded, placebo-controlled trial of 36 symptomatic hands. Primary endpoints were visual analog scale (VAS) and neuropathic pain scale (NPS) scores at baseline and 2 months and a Patient's Global Impression of Change (PGIC) questionnaire at the end of 2 months. Secondary endpoints were neurologic examination, median nerve distal latencies (compound muscle action potential [CMAP]/sensory nerve action potential [SNAP]), dynamometry, pinch gauge readings, and current perception threshold (CPT) scores. An "active" device was provided gratis at the end of the study, with 15 subjects voluntarily remaining within the open protocol an additional 2-10 months and using the preselected primary and secondary parameters. RESULTS (two months). Of the 31 hands, 25 (13 magnet, 12 sham) had moderate to severe pain (VAS > 4). The VAS and PGIC revealed a nonsignificant pain reduction. NPS analyses (anova) demonstrated a statistically significant reduction of "deep" pain (35% downward arrow vs 12% upward arrow, P = 0.018), NPS Total Composite (decreases of 42% vs 24%, P = 0.042), NPS Total Descriptor Score (NPS 8; 43% vs 24%), and NPS 4 (42% vs 11%). Motor strength, CMAP/SNAP, and CPT scores were not significantly changed. Of the 15 hands with up to 10 months of active PEMF (pulsed electromagnetic fields) exposure, there was objective improvement in nerve conduction (CMAP = 53%, SNAP = 40%, >1 SD), and subjective improvement on examination (40%), pain scores (50%), and PGIC (70%). No detectable changes in motor strength and CPT. CONCLUSIONS PEMF exposure in refractory CTS provides statistically significant short- and longterm pain reduction and mild improvement in objective neuronal functions. Neuromodulation appears to influence nociceptive-C and large A-fiber functions, probably through ion/ligand binding.
Collapse
|
32
|
Weintraub MI, Khoury A, Cole SP. Biologic Effects of 3 Tesla (T) MR Imaging Comparing Traditional 1.5 T and 0.6 T in 1023 Consecutive Outpatients. J Neuroimaging 2007; 17:241-5. [PMID: 17608910 DOI: 10.1111/j.1552-6569.2007.00118.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The recent use of high and ultra-high magnetic field (MF) systems (3.0 T and above) have raised concerns about biologic effects and safety. Sensory symptoms (magnetophosphenes, dizziness/vertigo, headaches, metallic taste, pain changes, and cognitive effects) have been reported. We monitored 1023 consecutive outpatients undergoing MRI after recent introduction of a 3 T MR unit in our community. METHODS/DESIGN Observational study utilizing a pretest and posttest symptom rating scale (0-10) questionnaire presented to subjects undergoing MRI at three different facilities with five MRI machines, specifically a 3 T (Philips), three units with 1.5 T (GE, GE, Philips), and one 0.6 T (Fonar) unit to record symptoms before and after study. RESULTS 147 subjects (14%) experienced either new (N= 69; 6.7%) or changes (N= 78; 8%) in symptoms. New onset symptoms occurred predominantly with 3 T and female preponderance (75%) [P= .002]. Vertigo/dizziness (N= 28, 5.6%) [P= .001], headache (N= 8), spine pain (N= 11) occurred more frequently on 3 T, whereas magnetophosphenes (N= 8) and metallic mouth symptoms (N= 4) occurred principally in 1.5 T. Seventy-eight subjects (8%) experienced pain symptoms upward arrow downward arrow with 75% occurring with 1.5 T. Females were 60%. Forty-three percent of individuals had brain MRIs. Symptoms of vertigo/dizziness, headaches, and magnetophosphenes were more commonly seen in individuals undergoing brain MRIs but other body sites were also represented. CONCLUSIONS Although no harmful effects were reported in 1023 cases, an unexpected high rate of 14% of individuals experienced sensory stimulation in both 3 T and 1.5 T units. Females appear to be more magnetically sensitive.
Collapse
Affiliation(s)
- Michael I Weintraub
- Department of Neurology and Medicine, New York Medical College, Valhalla, New York, USA.
| | | | | |
Collapse
|
33
|
De Souza A, Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 2006; 27:247-57. [PMID: 16511881 DOI: 10.1002/bem.20206] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop.
Collapse
Affiliation(s)
- A De Souza
- Laboratory of Non-Ionizing Radiation, Center for Environmental Research, Services and Technologies, Agricultural Research Institute Jorge Dimitrov, Granma, Cuba.
| | | | | | | | | | | |
Collapse
|
34
|
Salamino F, Minafra R, Grano V, Diano N, Mita DG, Pontremoli S, Melloni E. Effect of extremely low frequency magnetic fields on calpain activation. Bioelectromagnetics 2005; 27:43-50. [PMID: 16283653 DOI: 10.1002/bem.20176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of low intensity, low frequency magnetic fields (MFs) on catalytic activity of the calcium dependent protease calpain was determined following the enzyme activation both in "in vitro" and "in vivo" conditions. We have observed that a 0.3 mT MF induces a significant increase in the requirement of the protease for this metal ion. This change is detectable at low [Ca(2+)] and disappears when the level of Ca(2+) is raised to saturating amounts. The observed effects are not due to transient MF(-) induced conformational changes occurring in calpain, but to direct effects of the MF on Ca(2+) ions, which become less available for the binding sites present in calpain. Altogether, these results indicate that exposure to low intensity, low frequency MFs alters the intracellular Ca(2+) "availability," thereby modifying the related cell response.
Collapse
Affiliation(s)
- Franca Salamino
- Department of Experimental Medicine-Biochemistry Section, and Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Ohata R, Tomita N, Ikada Y. Effect of a static magnetic field on ion transport in a cellulose membrane. J Colloid Interface Sci 2004; 270:413-6. [PMID: 14697708 DOI: 10.1016/j.jcis.2003.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cellulose membrane was exposed to the static magnetic field (SMF) in the presence of KCl solution and ion transport through the membrane was measured before and after the SMF exposure. SMF at 0.24 T significantly enhanced the rate of ion transport, especially after the first exposure (p<0.05), while the increased ion transport rate did not return to the initial basal level after exchange of the aqueous medium. These results suggest that an irreversible, temporal conformation change took place on the cellulose membrane or on the water bound to the cellulose surface. The accelerating effect of SMF on the ion transport seems to have occurred as a result of stabilized hydration layer on the cellulose surface.
Collapse
Affiliation(s)
- R Ohata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507 Kyoto, Japan.
| | | | | |
Collapse
|
36
|
Markov MS. Myosin Light Chain Phosphorylation Modification Depending on Magnetic Fields. I. Theoretical. Electromagn Biol Med 2004. [DOI: 10.1081/jbc-200026319] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Abstract
Work by Lund, Burr, Becker, and others leads to the inescapable conclusion that organisms tend to express quasisystemic electric changes when perturbed, and, conversely, will tend toward wellness either through endogenous repair currents or the application of equivalent external currents. We show that an all-inclusive electromagnetic field representation for living systems is fully consistent with this extensive body of work. This electrogenomic field may provide the basis for a new paradigm in biology and medicine that is radically different from the present emphasis on molecular biology and biochemistry. An electromagnetic field description also enables a more rational transformation from the genome than the present endpoint, universally stated in terms of the so-called visible characteristics. Furthermore, once the organism is described as an electromagnetic entity, this strongly suggests the reason for the efficacy of the various electromagnetic therapies, namely as the most direct means of restoring the body's impacted electromagnetic field to its normal state.
Collapse
Affiliation(s)
- Abraham R Liboff
- Department of Physics, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
38
|
Bauréus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 2003; 24:395-402. [PMID: 12929158 DOI: 10.1002/bem.10136] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard.
Collapse
|
39
|
Soja G, Kunsch B, Gerzabek M, Reichenauer T, Soja AM, Rippar G, Bolhàr-Nordenkampf HR. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line. Bioelectromagnetics 2003; 24:91-102. [PMID: 12524675 DOI: 10.1002/bem.10069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to determine the effects of an electromagnetic field from a high voltage transmission line on the yield of agricultural crops cultivated underneath and near the transmission line. For 5 years, experiments with winter wheat and corn were carried out near the 380 kV transmission line Dürnrohr (Austria)-Slavetice (Czech Republic). Different field strengths were tested by planting the crops at different distances from the transmission line. The plants were grown in experimental plots (1.77 m2), aligned to equal electric field strengths, and were cultivated according to standard agricultural practice. The soil for all plots was homogenized layer-specifically to a depth of 0.5 m to guarantee uniform soil conditions in the plant root environment. The soil was sampled annually for determinations of carbon content and the behavior of microbial biomass. During development of the vegetation, samples were collected at regular intervals for growth rate analyses. At physiological maturity, the plots (n = 8) were harvested for grain and straw yield determinations. The average electric and magnetic field strengths at four distances from the transmission line (nominal distances: 40, 14, 8, and 2 m) were between 0.2 and 4.0 kV/m and between 0.4 and 4.5 micro T, respectively. No effect of the field exposures on soil microbial biomass could be detected. The wheat grain yields were 7% higher (average of 5 years) in the plots with the lowest field exposure than in the plots nearer to the transmission line (P <.10). The responses of the plants were more pronounced in years with drought episodes during grain filling than in humid years. No significant yield differences were found for corn yields. The extent of the yield variations attributed to the distance from the transmission line was small compared to the observed annual variations in climatic or soil specific site characteristics.
Collapse
Affiliation(s)
- G Soja
- ARC Seibersdorf Research, Department of Environmental Research, Seibersdorf, Austria.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
It is proposed that the avian magnetic compass depends on the angle between the horizontal component B(h) of the geomagnetic field (GMF) and E(r), the radial electric field distribution generated by gamma-oscillations within the optic tectum (TeO). We hypothesize that the orientation of the brain relative to B(h) is perceived as a set of electric field ion cyclotron resonance (ICR) frequencies that are distributed in spatially recognizeable regions within the TeO. For typical GMF intensities, the expected ICR frequencies fall within the 20-50 Hz range of gamma-oscillation frequencies observed during visual stimulation. The model builds on the fact that the superficial lamina of the TeO receive signals from the retina that spatially map the visual field. The ICR frequencies are recruited from the local wide-band gamma-oscillations and are superposed on the tectum for interpretation along with other sensory data. As a first approximation, our analysis is restricted to the medial horizontal plane of the TeO. For the bird to fly in a preferred, previously mapped direction relative to B(h), it hunts for that orientation that positions the frequency maxima at appropriate locations on the TeO. This condition can be maintained even as B(h) varies with geomagnetic latitude during the course of long-distance flights. The magnetovisual coordinate system (straight phi, omega) overlaying the two halves of the tectal surface in a nonsymmetric way may imply an additional orienting function for the TeO over and above that of a simple compass (e.g., homing navigation as distinct from migrational navigation).
Collapse
Affiliation(s)
- A R Liboff
- Department of Physics, Oakland University, Rochester, Michigan 49309, USA.
| | | |
Collapse
|
41
|
Oishi M, Onesti ST. Electrical bone graft stimulation for spinal fusion: a review. Neurosurgery 2000; 47:1041-55; discussion 1055-6. [PMID: 11063097 DOI: 10.1097/00006123-200011000-00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although electrical stimulation to aid bone fusion is well established in the treatment of long-bone fractures, its use as an aid in spinal fusion is not as well documented. This article presents the history and scientific basis of electrical stimulation to aid bone fusion and extensively reviews the clinical literature. It is intended to provide an objective review of the indications and limitations of electrical stimulation to enhance spinal fusion and to serve as a reference source for further study.
Collapse
Affiliation(s)
- M Oishi
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, New York 10467, USA
| | | |
Collapse
|
42
|
Preece AW, Hand JW, Clarke RN, Stewart A. Power frequency electromagnetic fields and health. Where's the evidence? Phys Med Biol 2000; 45:R139-54. [PMID: 11008945 DOI: 10.1088/0031-9155/45/9/201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Twenty years ago concerns were raised that exposure to power frequency (or extremely low frequency (ELF)) electromagnetic fields (EMFs) may be associated with an increased risk of cancer or other health hazards. Subsequently no associations have been shown between laboratory magnetic field exposures and carcinogenesis in either animal or cellular models. Indeed, studies have demonstrated that magnetic fields are not associated with cancer. However, the puzzle remains that the results of some epidemiological studies may be interpreted as suggesting that living close to high-voltage transmission (HVT) lines appears to increase slightly the risk of childhood leukaemia. Alternatively, these results could result from small biases and errors in individual studies, which might not necessarily be the same in each study. The nature of the epidemiological studies (power-line, wire code, magnetic field or appliance based) appears to determine whether and how the EMFs associated with HVT lines might be a risk factor. It is possible that a simple association with either magnetic or electric field exposure may not be the whole answer, and an alternative mechanism is always a possibility. Although the interpretation of the available evidence by most expert bodies has led them to conclude that exposure to power frequency electric and magnetic fields is not a human health hazard, a working group under the auspices of the US National Institute of Environmental Health Sciences (NIEHS) concluded that there was a possible low risk associated with certain exposures to ELF magnetic fields. NIEHS itself interpreted the finding as insufficient to warrant aggressive regulatory concern but stated that, because virtually everyone is routinely exposed to ELF EMFs, passive regulatory action is warranted, such as a continued emphasis on educating both the public and the regulated community on means aimed at reducing exposures. These analyses, conclusions and advice are not contradicted by subsequent studies, and therefore the conclusion of the World Health Organisation that further research is needed seems valid.
Collapse
Affiliation(s)
- A W Preece
- Bristol Oncology Centre, University of Bristol, UK
| | | | | | | |
Collapse
|
43
|
Zhadin MN. Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics 2000; 19:279-92. [PMID: 9669542 DOI: 10.1002/(sici)1521-186x(1998)19:5<279::aid-bem2>3.0.co;2-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is an attempt to solve the energetic problem of the primary detection of weak parallel static (DC) and alternating (AC) extremely low frequency (ELF) magnetic fields. We studied the equations of motion for an ion situated inside a macromolecule under the influence of these fields. The main concern is with the magnetic field influence on thermal motion of the ion in the macromolecule. The resonance effects are revealed at discrete frequencies of the ion thermal oscillations determined by the DC field magnitude and the AC field frequency. These phenomena result from the Larmor precession of the ion thermal motion. When the DC field or, to a greater extent, the combined DC and AC fields with the specific frequencies are turned on or cut off, changes occur in the energy of the ion thermal motion. If, inside the macromolecule, the ion is sufficiently protected against immediate impacts of particles of the medium surrounding the macromolecule, these changes may be enough to trigger alteration in the quantum state of the macromolecule.
Collapse
Affiliation(s)
- M N Zhadin
- Laboratory of Neurocybernetics, Institute of Cell Biophysics, Pushchino, Moscow Region, Russia.
| |
Collapse
|
44
|
Muehsam DJ, Pilla AA. Lorentz approach to static magnetic field effects on bound-ion dynamics and binding kinetics: thermal noise considerations. Bioelectromagnetics 2000; 17:89-99. [PMID: 9139637 DOI: 10.1002/(sici)1521-186x(1996)17:2<89::aid-bem3>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study characterizes an ion-binding site, a molecular cleft in a signalling molecule such as calmodulin or troponin C, as a damped linear isotropic oscillator potential for small displacements about the origin. Quantitative assessments of the effects of thermal noise and exogenous static magnetic fields are made through a statistical mechanical treatment of the Lorentz-Langevin equation for an ion bound in a molecular cleft. Thermal noise causes a bound ion to be ejected from the site after a bound lifetime dependent upon the thermal noise spectral density. It is shown that the Lorentz-Langevin model requires values of the viscous damping parameter many orders of magnitude below those for bulk water in order to characterize the binding site and to obtain realistic lifetimes for a bound ion. The model predicts that milliTesla-range magnetic fields are required for static field effects on dissociation kinetics. The Lorentz equation also yields a classic coherent solution describing precession of the bound-ion oscillator orientation at the Larmor frequency. The bound-ion dynamics described by this coherent solution are sensitive to microTesla-range static magnetic fields in the presence of thermal noise. Numerical integration of the contribution of thermal noise forces to these dynamics is in good agreement with the results of statistical mechanical analysis, also producing realistic bound lifetimes for only very low viscous damping values. The mechanisms by which modulation of precessional motion might enable a signalling molecule such as calmodulin to detect an exogenous magnetic field are presently unclear.
Collapse
Affiliation(s)
- D J Muehsam
- Bioelectrochemistry Laboratory, Department of Orthopedics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
45
|
Zhadin MN, Novikov VV, Barnes FS, Pergola NF. Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 2000; 19:41-5. [PMID: 9453705 DOI: 10.1002/(sici)1521-186x(1998)19:1<41::aid-bem4>3.0.co;2-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combined parallel static and alternating magnetic fields cause a rapid change in the ionic current flowing through an aqueous glutamic acid solution when the alternating field frequency is equal to the cyclotron frequency. The current peak is 20-30% of the background direct current. The peak is observed with slow sweep in the alternating magnetic field frequency from 1 Hz-10 Hz. Only one resonance peak in the current is observed in this frequency range. The frequency corresponding to the peak is directly proportional to the static magnetic field. The above effect only arises at very small alternating field amplitude in the range from 0.02 microT-0.08 microT.
Collapse
Affiliation(s)
- M N Zhadin
- Laboratory of Neurocybernetics, Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
46
|
Albertini A, Zucchini P, Noera G, Cadossi R, Pace Napoleone C, Pierangeli A. Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics 1999; 20:372-7. [PMID: 10453065 DOI: 10.1002/(sici)1521-186x(199909)20:6<372::aid-bem6>3.0.co;2-l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This series of experiments assesses the effect of exposure to low-frequency pulsing electromagnetic fields (PEMFs) in 340 rats with acute experimental myocardial infarcts. The left anterior descending artery was ligated with suture thread, and the rats underwent total body exposure to PEMFs until they were killed. Twenty-four hours after surgery, the necrotic area was evaluated by staining with triphenyltetrazolium chloride. A significant reduction of the necrotic area was observed in the animals exposed to PEMFs compared with the nonexposed controls. Exposure for up to 6 days does not appear to affect the area of necrosis, although in exposed animals an increase of vascular invasion of the necrotic area is observed: 24.3 % as against 11.3 % in controls. No effect on the necrotic area size from exposure was found when the left anterior descending artery was occluded for 60 min, followed by reperfusion. The results reported show that exposure to PEMFs is able to limit the area of necrosis after an acute ischemic injury caused by permanent ligation of the left anterior descending artery. These data are in agreement with the protective effect of PEMFs observed on acute ischemia in skin free flaps in rats and in cerebral infarcts in rabbits.
Collapse
Affiliation(s)
- A Albertini
- Hospital S.M. Misericordia of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Pilla AA, Muehsam DJ, Markov MS, Sisken BF. EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. BIOELECTROCHEMISTRY AND BIOENERGETICS (LAUSANNE, SWITZERLAND) 1999; 48:27-34. [PMID: 10228567 DOI: 10.1016/s0302-4598(98)00148-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of an electromagnetic field (EMF) target pathway are used to estimate frequency windows for EMF bioeffects. Ion/ligand binding is characterized via first order kinetics from which a specific electrical impedance can be derived. The resistance/capacitance properties of the binding pathway impedance, determined by the kinetics of the rate-determining step, define the frequency range over which the target pathway is most sensitive to external EMF. Applied signals may thus be configured such that their spectral content closely matches that of the target, using evaluation of the signal to thermal noise ratio to optimize waveform parameters. Using the approach proposed in this study, a pulsed radio frequency (PRF) waveform, currently employed clinically for soft tissue repair, was returned by modulation of burst duration, producing significant bioeffects at substantially reduced signal amplitude. Application is made to Ca2+/Calmodulin-dependent myosin phosphorylation, for which the binding time constants may be estimated from reported kinetics, neurite outgrowth from embryonic chick dorsal root explants and bone repair in a fracture model. The results showed that the retuned signal produced increased phosphorylation rates, neurite outgrowth and biomechanical strength that were indistinguishable from those produced by the clinical signal, but with a tenfold reduction in peak signal amplitude, approximately 800-fold reduction in average amplitude and approximately 10(6)-fold reduction in average power.
Collapse
Affiliation(s)
- A A Pilla
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
48
|
Jahreis GP, Johnson PG, Zhao YL, Hui SW. Absence of 60-Hz, 0.1-mT magnetic field-induced changes in oncogene transcription rates or levels in CEM-CM3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:334-42. [PMID: 9878814 DOI: 10.1016/s0167-4781(98)00238-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our objective was to assess the reproducibility of the 60-Hz magnetic field-induced, time-dependent transcription changes of c-fos, c-jun and c-myc oncogenes in CEM-CM3 cells reported by Phillips et al. (Biochim. Biophys. Acta, 1132 (1992) 140-144). Cells were exposed to a 60-Hz magnetic field (MF) at 0.1 mT (rms), generated by a pair of Helmholtz coils energized in a reinforcing (MF) mode, or to a null magnetic field when the coils were energized in a bucking (sham) mode. After MF or sham exposure for 15, 30, 60 or 120 min, nuclei and cytoplasmic RNA were extracted. Transcription rates were measured by a nuclear run-on assay, and values were normalized against either their zero-time exposure values, or against those of the c-G3PDH (housekeeping) gene at the same time points. There was no significant difference, at P=0.05, detected between MF and either sham-exposed or control cells at any time point. Transcript levels of the oncogenes were measured by Northern analysis and normalized as above. No significant difference (P=0.05) in transcript levels between MF and either sham-exposed or control cells was detected.
Collapse
Affiliation(s)
- G P Jahreis
- Membrane Biophysics Laboratory, Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
49
|
Is the Ca2+ transport of human erythrocytes influenced by ELF- and MF-electromagnetic fields? ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00204-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Abstract
The clinical benefits of electromagnetic fields have been claimed for 20 centuries, yet it still is not clear how they work or in what circumstances they should be used. There is a large body of evidence that steady direct current and time varying electric fields are generated in living bone by metabolic activity and mechanical deformation, respectively. Externally supplied direct currents have been used to treat nonunions, appearing to trigger mitosis and recruitment of osteogenic cells, possibly via electrochemical reactions at the electrode-tissue interface. Time varying electromagnetic fields also have been used to heal nonunions and to stabilize hip implants, fuse spines, and treat osteonecrosis and osteoarthritis. Recent research into the mechanism(s) of action of these time varying fields has concentrated on small, extremely low frequency sinusoidal electric fields. The osteogenic capacity of these fields does not appear to involve changes in the transmembrane electric potential, but instead requires coupling to the cell interior via transmembrane receptors or by mechanical coupling to the membrane itself.
Collapse
Affiliation(s)
- M W Otter
- Program in Biomedical Engineering, State University of New York at Stony Brook 11794-8181, USA
| | | | | |
Collapse
|