1
|
Vanmunster M, Rojo-Garcia AV, Pacolet A, Jonkers I, Koppo K, Lories R, Suhr F. Prolonged mechanical muscle loading increases mechanosensor gene and protein levels and causes a moderate fast-to-slow fiber type switch in mice. J Appl Physiol (1985) 2023; 135:918-931. [PMID: 37675473 DOI: 10.1152/japplphysiol.00204.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Mechanosensing and subsequent mechanotransduction are indispensable for muscle plasticity. Nevertheless, a scarcity of literature exists regarding an all-encompassing understanding of the muscle mechanosensing machinery's response to prolonged loading, especially in conditions that resemble a natural physiological state of skeletal muscle. This study aimed to comprehensively explore the effects of prolonged mechanical loading on mechanosensitive components, skeletal muscle characteristics, and metabolism-related gene clusters. Twenty male C57BL/6J mice were randomly divided into two groups: control and prolonged mechanical loading. To induce prolonged mechanical loading on the triceps brachii (TRI) and biceps brachii (BIC) muscles, a 14-day period of tail suspension was implemented. In TRI only, prolonged mechanical loading caused a mild fast-to-slow fiber type shift together with increased mechanosensor gene and protein levels. It also increased transcription factors associated with slow muscle fibers while decreasing those related to fast-type muscle gene expression. Succinate dehydrogenase activity, a marker of muscle oxidative capacity, and genes involved in oxidative and mitochondrial turnover increased, whereas glycolytic-related genes decreased. Moreover, prolonged mechanical loading stimulated markers of muscle protein synthesis. Taken together, our data show a collective muscle-specific increase in mechanosensor gene and protein levels upon a period of prolonged mechanical loading in conditions that reflect a more natural physiological state of skeletal muscle in mice. We provide additional proof-of-concept that prolonged tail suspension-induced loading of the forelimbs triggers a muscle-specific fast-to-slow fiber type switch, and this coincides with increased protein synthesis-related signaling.NEW & NOTEWORTHY This study provides a comprehensive overview of the effects of prolonged loading on mechanosensitive components in conditions that better reflect the natural physiological state of skeletal muscle. Although the muscle mechanosensing machinery has been widely acknowledged for its responsiveness to altered loading, an inclusive understanding of its response to prolonged loading remains scarce. Our results show a fast-to-slow fiber type shift and an upregulation of mechanosensor gene and protein levels following prolonged loading.
Collapse
Affiliation(s)
- Mathias Vanmunster
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | | | - Alexander Pacolet
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank Suhr
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
He H, Ye Z, Xiao Y, Yang W, Qian X, Yang Y. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide. Anal Chem 2018; 90:2164-2169. [PMID: 29316789 DOI: 10.1021/acs.analchem.7b04510] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) potentially plays a regulatory role in mitochondrial fusion and fission, which are vital to cell survival and implicated in health, disease, and aging. Molecular tools facilitating the study of the relationship between NO and mitochondrial dynamics are in need. We have recently developed a novel NO donor (NOD550). Upon photoactivation, NOD550 decomposes to release two NO molecules and a fluorophore. The NO release could be spatially mapped with subdiffraction resolution and with a temporal resolution of 10 s. Due to the preferential localization of NOD550 at mitochondria, morphology and dynamics of mitochondria could be monitored upon NO release from NOD550.
Collapse
Affiliation(s)
- Haihong He
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| |
Collapse
|
3
|
Kanuri BN, Kanshana JS, Rebello SC, Pathak P, Gupta AP, Gayen JR, Jagavelu K, Dikshit M. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep 2017; 7:41009. [PMID: 28106120 PMCID: PMC5247703 DOI: 10.1038/srep41009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO2), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks.
Collapse
Affiliation(s)
- Babu Nageswararao Kanuri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India.,Academy of Scientific and Innovative Research, New Delhi - 110001, India
| | - Jitendra S Kanshana
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Sanjay C Rebello
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Anand P Gupta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Jiaur R Gayen
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow - 226031, India
| | - Madhu Dikshit
- Academy of Scientific and Innovative Research, New Delhi - 110001, India
| |
Collapse
|
4
|
Rebolledo DL, Kim MJ, Whitehead NP, Adams ME, Froehner SC. Sarcolemmal targeting of nNOSμ improves contractile function of mdx muscle. Hum Mol Genet 2015; 25:158-66. [PMID: 26604149 DOI: 10.1093/hmg/ddv466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a key regulator of skeletal muscle function and metabolism, including vasoregulation, mitochondrial function, glucose uptake, fatigue and excitation-contraction coupling. The main generator of NO in skeletal muscle is the muscle-specific form of neuronal nitric oxide synthase (nNOSμ) produced by the NOS1 gene. Skeletal muscle nNOSμ is predominantly localized at the sarcolemma by interaction with the dystrophin protein complex (DPC). In Duchenne muscular dystrophy (DMD), loss of dystrophin leads to the mislocalization of nNOSμ from the sarcolemma to the cytosol. This perturbation has been shown to impair contractile function and cause muscle fatigue in dystrophic (mdx) mice. Here, we investigated the effect of restoring sarcolemmal nNOSμ on muscle contractile function in mdx mice. To achieve this, we designed a modified form of nNOSμ (NOS-M) that is targeted to the sarcolemma by palmitoylation, even in the absence of the DPC. When expressed specifically in mdx skeletal muscle, NOS-M significantly attenuates force loss owing to damaging eccentric contractions and repetitive isometric contractions (fatigue), while also improving force recovery after fatigue. Expression of unmodified nNOSμ at similar levels does not lead to sarcolemmal association and fails to improve muscle function. Aside from the benefits of sarcolemmal-localized NO production, NOS-M also increased the surface membrane levels of utrophin and other DPC proteins, including β-dystroglycan, α-syntrophin and α-dystrobrevin in mdx muscle. These results suggest that the expression of NOS-M in skeletal muscle may be therapeutically beneficial in DMD and other muscle diseases characterized by the loss of nNOSμ from the sarcolemma.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Min Jeong Kim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Nicholas P Whitehead
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| |
Collapse
|
5
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
6
|
Jimenez AG, Cooper-Mullin C, Anthony NB, Williams JB. Cellular metabolic rates in cultured primary dermal fibroblasts and myoblast cells from fast-growing and control Coturnix quail. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:23-30. [DOI: 10.1016/j.cbpa.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/30/2022]
|
7
|
Liu Z, Liu J, Wang J, Xu J, Liu Y, Sun X, Su L, Wang JH, Jiang Y. Role of testis-specific high-mobility-group protein in transcriptional regulation of inducible nitric oxide synthase expression in the liver of endotoxic shock mice. FEBS J 2014; 281:2202-13. [PMID: 24605775 DOI: 10.1111/febs.12774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/13/2023]
Abstract
Inducible nitric oxide synthase (iNOS) plays a central role in tissue damage during endotoxic shock. However, the underlying mechanisms that control transcription of iNOS are not completely defined. A screening strategy with DNA pull-down technology and two-dimensional difference in gel electrophorcsis (2D-DIGE) analysis was used to identify regulators that interact with the iNOS promoter. We found 14 proteins that bind to the iNOS promoter in the liver of endotoxic shock mice. After matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis, one of these proteins was identified as testis-specific high-mobility-group protein (tsHMG), an alternative splicing isoform encoded by the mitochondrial transcription factor A gene. We identified the binding sites of tsHMG on the iNOS promoter using a LiquiChip system, and further confirmed interactions between tsHMG and iNOS by RT-PCR, western blotting and immunofluorescence. Functional analysis by over-expression and RNA interference of tsHMG revealed that tsHMG regulates lipopolysaccharide-stimulated iNOS expression. These results indicate that tsHMG participates in modulation of iNOS expression in the early stage of endotoxic shock.
Collapse
Affiliation(s)
- Zhifeng Liu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China; Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gesing A, Masternak MM, Lewinski A, Karbownik-Lewinska M, Kopchick JJ, Bartke A. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice. J Gerontol A Biol Sci Med Sci 2013; 68:639-51. [PMID: 23197187 PMCID: PMC3708518 DOI: 10.1093/gerona/gls231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/19/2012] [Indexed: 01/06/2023] Open
Abstract
Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Saxena S, Shukla D, Bansal A. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride. Toxicol Appl Pharmacol 2012; 264:324-34. [PMID: 22982409 DOI: 10.1016/j.taap.2012.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/30/2012] [Indexed: 11/19/2022]
Abstract
High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl₂), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl₂ supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl₂ supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl₂ supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning.
Collapse
Affiliation(s)
- Saurabh Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | | | | |
Collapse
|
10
|
Rath E, Haller D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm Bowel Dis 2012; 18:1364-77. [PMID: 22183876 DOI: 10.1002/ibd.21944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs), like many other chronic diseases, feature multiple cellular stress responses including endoplasmic reticulum (ER) unfolded protein response (UPR). Maintaining protein homeostasis is indispensable for cell survival and, consequently, distinct signaling pathways have evolved to transmit organelle stress. While the ER UPR, aiming to restore ER homeostasis after challenges to ER function, has been extensively studied in the context of chronic diseases, only recently the related mitochondrial UPR (mtUPR), induced by disturbances of mitochondrial proteostasis, has drawn some attention. ER and mitochondria are in close contact and interact physically and functionally. Accumulating data have placed mitochondria at the center of diverse cellular functions and suggest mitochondria as integrators of signaling pathways such as autophagy and inflammation. Consequently, it is likely that mitochondrial stress and ER stress cannot be regarded separately and that mitochondrial stress, as well as ER stress, participates in the pathology of IBD. Protein homeostasis is particularly sensitive toward infections, oxidative stress, and energy deficiency. Thus, environmental disturbances impacting organelle function lead to the concerted activation of distinct UPRs. The metabolic status might therefore serve as an innate mechanism to sense the epithelial environment, including luminal-derived and host-derived factors. This review highlights mtUPR and its interrelation with ER UPR, focuses on recent studies identifying mitochondria as integrators of cellular danger signaling, and, furthermore, illustrates the importance ER UPR and mitochondrial dysfunction in IBD.
Collapse
Affiliation(s)
- Eva Rath
- Technische Universität München, Chair for Biofunctionality, ZIEL, Research Center for Nutrition and Food Science, CDD, Center for Diet and Disease, Freising-Weihenstephan, Germany
| | | |
Collapse
|
11
|
Gesing A, Masternak MM, Wang F, Joseph AM, Leeuwenburgh C, Westbrook R, Lewinski A, Karbownik-Lewinska M, Bartke A. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions. J Gerontol A Biol Sci Med Sci 2011; 66:1062-76. [PMID: 21788651 DOI: 10.1093/gerona/glr080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Zeligowski St., No 7/9, 90-752 Lodz, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gesing A, Bartke A, Wang F, Karbownik-Lewinska M, Masternak MM. Key regulators of mitochondrial biogenesis are increased in kidneys of growth hormone receptor knockout (GHRKO) mice. Cell Biochem Funct 2011; 29:459-67. [PMID: 21755522 DOI: 10.1002/cbf.1773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/06/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022]
Abstract
UNLABELLED The growth hormone receptor knockout (GHRKO) mice are remarkably long-lived and highly insulin sensitive. Alterations in mitochondrial biogenesis are associated with aging and various metabolic derangements. We have previously demonstrated increased gene expression of key regulators of mitochondriogenesis in kidneys, hearts and skeletal muscles of GHRKO mice. The aim of the present study was to quantify the protein levels of the following regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), AMP-activated protein kinase α (AMPKα), phospho-AMPKα (p-AMPKα), sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), phospho-eNOS (p-eNOS), nuclear respiratory factor-1 (NRF-1) and mitofusin-2 (MFN-2) in skeletal muscles and kidneys of GHRKOs in comparison to normal mice. We also were interested in the effects of calorie restriction (CR) and visceral fat removal (VFR) on these parameters. Both CR and VFR improve insulin sensitivity and can extend life span. RESULTS The renal levels of PGC-1α, AMPKα, p-AMPKα, SIRT-3, eNOS, p-eNOS and MFN-2 were increased in GHRKOs. In the GHRKO skeletal muscles, only MFN-2 was increased. Levels of the examined proteins were not affected by CR (except for PGC-1α and p-eNOS in skeletal muscles) or VFR. CONCLUSION GHRKO mice have increased renal protein levels of key regulators of mitochondriogenesis, and this may contribute to increased longevity of these knockouts.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | | | | | | | |
Collapse
|
13
|
Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life 2009; 61:871-9. [PMID: 19504573 DOI: 10.1002/iub.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endoplasmic reticulum (ER) response has been thought a cytoprotective mechanism to cope with accumulation of unfolded proteins in the ER. Recent progress has made a quantum leap revealing that ER stress response can be regarded as an autoregulatory system adjusting the ER capacity to cellular demand. This Copernican change raised a novel fundamental question in cell biology: how do cells regulate the capacity of each organelle in accordance with cellular needs? Although this fundamental question has not been fully addressed yet, research about each organelle has been advancing. The proliferation of the peroxisome is regulated by the PPAR alpha pathway, whereas the abundance of mitochondria appears to be regulated by mitochondrial retrograde signaling and the mitochondrial unfolded protein response. The functional capacity of the Golgi apparatus may be regulated by the mechanism of the Golgi stress response. These observations strongly suggest the existence of an elaborate network of organelle autoregulation in eukaryotic cells.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
14
|
Reynolds CM, Suliman HB, Hollingsworth JW, Welty-Wolf KE, Carraway MS, Piantadosi CA. Nitric oxide synthase-2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia. Free Radic Biol Med 2009; 46:564-72. [PMID: 19073249 PMCID: PMC2666005 DOI: 10.1016/j.freeradbiomed.2008.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/12/2008] [Accepted: 11/06/2008] [Indexed: 11/15/2022]
Abstract
Mitochondrial biogenesis protects metabolism from mitochondrial dysfunction produced by activation of innate immunity by lipopolysaccharide (LPS) or other bacterial products. Here we tested the hypothesis in mouse heart that activation of toll-like receptor-4 (TLR4), which induces early-phase genes that damage mitochondria, also activates mitochondrial biogenesis through induction of nitric oxide synthase (NOS2). We compared three strains of mice: wild type (Wt) C57BL/6J, TLR4(-/-), and NOS2(-/-)for cardiac mitochondrial damage and mitochondrial biogenesis by real-time RT-PCR, Western analysis, immunochemistry, and isoform analysis of myosin heavy chain (MHC) after sublethal heat-killed Escherichia coli (HkEC). After HkEC, Wt mice displayed significant myocardial mtDNA depletion along with enhanced TLR4 and NOS2 gene and protein expression that normalized in 72 h. HkEC generated less cytokine stress in TLR4(-/-)and NOS2(-/-)than Wt mice, NOS2(-/-)mice had mtDNA damage comparable to Wt, and both knockout strains failed to restore mtDNA copy number because of mitochondrial transcriptosome dysfunction. Wt mice also showed the largest beta-MHC isoform switch, but MHC recovery lagged in the NOS2(-/-)and TLR4(-/-)strains. The NOS2(-/-)mice also unexpectedly revealed the codependency of TLR4 expression on NOS2. These findings demonstrate the decisive participation of NOS2 induction by TLR4 in optimization of mitochondrial biogenesis and MHC expression after gram-negative challenge.
Collapse
Affiliation(s)
- Crystal M Reynolds
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
15
|
López-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008; 43:813-9. [PMID: 18662766 DOI: 10.1016/j.exger.2008.06.014] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 02/09/2023]
Abstract
Aging is associated with an overall loss of function at the level of the whole organism that has origins in cellular deterioration. Most cellular components, including mitochondria, require continuous recycling and regeneration throughout the lifespan. Mitochondria are particularly susceptive to damage over time as they are the major bioenergetic machinery and source of oxidative stress in cells. Effective control of mitochondrial biogenesis and turnover, therefore, becomes critical for the maintenance of energy production, the prevention of endogenous oxidative stress and the promotion of healthy aging. Multiple endogenous and exogenous factors regulate mitochondrial biogenesis through the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Activators of PGC-1alpha include nitric oxide, CREB and AMPK. Calorie restriction (CR) and resveratrol, a proposed CR mimetic, also increase mitochondrial biogenesis through activation of PGC-1alpha. Moderate exercise also mimics CR by inducing mitochondrial biogenesis. Negative regulators of PGC-1alpha such as RIP140 and 160MBP suppress mitochondrial biogenesis. Another mechanism involved in mitochondrial maintenance is mitochondrial fission/fusion and this process also involves an increasing number of regulatory proteins. Dysfunction of either biogenesis or fission/fusion of mitochondria is associated with diseases of the neuromuscular system and aging, and a greater understanding of the regulation of these processes should help us to ultimately control the aging process.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
16
|
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88:611-38. [PMID: 18391175 DOI: 10.1152/physrev.00025.2007] [Citation(s) in RCA: 1173] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
17
|
Diaz F, Moraes CT. Mitochondrial biogenesis and turnover. Cell Calcium 2008; 44:24-35. [PMID: 18395251 DOI: 10.1016/j.ceca.2007.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Abstract
Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | |
Collapse
|
18
|
Roy S, Shah H, Rink C, Khanna S, Bagchi D, Bagchi M, Sen CK. Transcriptome of primary adipocytes from obese women in response to a novel hydroxycitric acid-based dietary supplement. DNA Cell Biol 2007; 26:627-39. [PMID: 17708719 DOI: 10.1089/dna.2007.0617] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is a global public health problem. Traditional herbal medicines may have some potential in managing obesity. The dried fruit rind of Garcinia cambogia, also known as Malabar tamarind, is a unique source of (-)-hydroxycitric acid (HCA), which exhibits a distinct sour taste and has been safely used for centuries in Southeastern Asia to make meals more filling. Recently it has been demonstrated that when taken orally, a novel, highly soluble calcium/potassium salt of HCA (HCA-SX) is safe and bioavailable in the human plasma. Although HCA-SX seems to be conditionally effective in weight management in experimental animals and in humans, its mechanism of action remains unclear. METHODS In this study, subcutaneous preadipocytes collected from obese women with body mass index>25 kg/m2 were differentiated to adipocytes for 2 weeks in culture. The effects of low-dose HCA-SX on lipid metabolism and on the adipocyte transcriptome were tested. HCA-SX augmented isoproterenol- and 3-isobutyryl-1-methylxanthine-induced lipolysis. Using oil red O, the production of lipid storage droplets by the cultured mature human adipocytes was visualized and enumerated. RESULTS HCA-SX caused droplet dispersion facilitating lipase action on the lipids. HCA-SX markedly induced leptin expression in the adipocytes. In the microarray analyses, a total of 54,676 probe sets were screened. HCA-SX resulted in significant down-regulation of 348, and induction of 366 fat- and obesity-related genes. HCA-SX induced transactivation of hypoxia inducible factor (HIF), a novel approach in the management of obesity. CONCLUSION Taken together, the net effects support the antilipolytic and antiadipogenic effects of HCA-SX. Further human studies are warranted.
Collapse
Affiliation(s)
- Sashwati Roy
- Laboratory of Molecular Medicine and the Microarray Core Facility, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mitochondria cannot be made de novo but replicate by a mechanism of recruitment of new proteins, which are added to preexisting subcompartments. Although mitochondria have their own DNA, more than 98% of the total protein complement of the organelle is encoded by the nuclear genome. Mitochondrial biogenesis requires a coordination of expression of two genomes and therefore cross talk between the nucleus and mitochondria. In mammals, regulation of mitochondrial biogenesis and proliferation is influenced by external factors, such as nutrients, hormones, temperature, exercise, hypoxia, and aging. This complexity points to the existence of a coordinated and tightly regulated network connecting different pathways. Communications are also required for eliciting mitochondrial responses to specific stress pathways. This review covers the mechanisms of mitochondrial biogenesis and the way cells respond to external signals to maintain mitochondrial function and cellular homeostasis.
Collapse
Affiliation(s)
- Michael T Ryan
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia.
| | | |
Collapse
|
20
|
Abstract
Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathway of mitochondrial biogenesis following oxidant injury has not been examined. A 10-fold overexpression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1alpha (PGC-1alpha) in control RPTCs resulted in a 52% increase in mitochondrial number, a 27% increase in respiratory capacity, and a 30% increase in mitochondrial protein markers, demonstrating that PGC-1alpha mediates mitochondrial biogenesis in RPTCs. RPTCs sublethally injured with TBHP exhibited a 50% decrease in mitochondrial function and increased mitochondrial autophagy. Compared with the controls, PGC-1alpha levels increased 12-fold on days 1, 2, and 3 post-injury and returned to base line on day 4 as mitochondrial function returned. Inhibition p38 MAPK blocked the up-regulation of PGC-1alpha following oxidant injury, whereas inhibition of calcium-calmodulin-dependent protein kinase, calcineurin A, nitric-oxide synthase, and phosphoinositol 3-kinase had no effect. The epidermal growth factor receptor (EGFR) was activated following TBHP exposure, and the EGFR inhibitor AG1478 blocked the up-regulation of PGC-1alpha. Additional inhibitor studies revealed that the sequential activation of Src, p38 MAPK, EGFR, and p38 MAPK regulate the expression of PGC-1alpha following oxidant injury. In contrast, although Akt was activated following oxidant injury, it did not play a role in PGC-1alpha expression. We suggest that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1alpha.
Collapse
Affiliation(s)
- Kyle A Rasbach
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
21
|
Parker E, Phillips DIW, Cockington RA, Cull C, Poulton J. A common mitchondrial DNA variant is associated with thinness in mothers and their 20-yr-old offspring. Am J Physiol Endocrinol Metab 2005; 289:E1110-4. [PMID: 15998658 DOI: 10.1152/ajpendo.00600.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A common mitochondrial (mt)DNA variant that is maternally inherited, the 16189 variant, is associated with type 2 diabetes and thinness at birth. To elucidate the association of the variant with thinness, we studied the 16189 variant in a well-characterized Australian cohort (n = 161) who were followed up from birth to age 20 yr. PCR analysis and mtDNA haplotyping was carried out on DNA from 161 offspring from consecutive, normal, singleton pregnancies followed from birth to age 20 yr. The 16189 mtDNA variant was present in 14 of the 161 20 yr olds (8.7%). Both the mothers with the 16189 variant and their 20-yr-old offspring were thinner than those without. Median (interquartile range) BMI was 21.9 kg/m(2) (20.4 to 22.9) in mothers with the variant compared with 23.5 (21.4 to 26.6) in those without (P = 0.013) and 22.2 (21.1 to 23.8) in 20 yr olds with the variant compared with 22.7 (20.8 to 25.6) in those without (P = 0.019). The 16189 variant was also associated with a high placental weight and high placental-to-birth weight ratio (P = 0.051 and P = 0.0024, respectively). Insulin sensitivity was normal in 20 yr olds with the 16189 variant. This contrasts with 20 yr olds who did not have the variant but who had been thin or small at birth and who had normal BMI and normal placental-to-birth weight ratio, but were insulin resistant. This study suggests that the 16189 mtDNA variant is associated with maternally inherited thinness in young adults. This may be mediated by effects on mtDNA replication and, thence, placental function. Further research is required to confirm these hypotheses.
Collapse
Affiliation(s)
- Ellen Parker
- Nuffield Dept. of Obstetrics and Gynaecology, The Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Dhaunsi GS. Molecular mechanisms of organelle biogenesis and related metabolic diseases. Med Princ Pract 2005; 14 Suppl 1:49-57. [PMID: 16103713 DOI: 10.1159/000086184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022] Open
Abstract
Organelle biogenesis is regulated by transcriptional networks that modulate expression of specific genes encoding organellar proteins. Structural and functional specificity of organelles requires not only the transcription of specific genes and translation of resulting mRNAs, but also the transfer of encoded polypeptides to their site of function through signaling peptides. A defect in targeting of proteins to their subcellular site of function may not necessarily prevent biogenesis of the organelle, but would definitely lead to formation of a defective organelle with respect to that specific function. Several metabolic diseases are associated with dysfunction or defects in organelle biogenesis; among these, peroxisome biogenesis disorders, mitochondrial biogenesis defects and lysosomal storage disorders are an extensively studied group of genetic diseases where biogenesis of the organelle is compromised either due to a defect in assembly of the organelle itself or impaired import of matrix proteins into the organelle. Recent advances in biochemical and molecular aspects of biogenesis of subcellular organelles have not only unraveled the mechanisms for organization of cellular networks, but have also provided new insights into the development of metabolic diseases that are caused by disruption of organelle biogenesis. This article reviews the molecular mechanisms of biogenesis of mitochondria, lysosomes and peroxisomes in relation to the metabolic diseases of genetic or nongenetic origin.
Collapse
Affiliation(s)
- Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|