1
|
Chu X, Wang J. Quantifying the large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition of cell cycle. Open Biol 2023; 13:230175. [PMID: 37907089 PMCID: PMC10618054 DOI: 10.1098/rsob.230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Cell cycle is known to be regulated by the underlying gene network. Chromosomes, which serve as the scaffold for gene expressions, undergo significant structural reorganizations during mitosis. Understanding the mechanism of the cell cycle from the chromosome structural perspective remains a grand challenge. In this study, we applied an integrated theoretical approach to investigate large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition. We observed that the chromosome structural expansion and adaptation of the structural asphericity do not occur synchronously and attributed this behaviour to the unique unloading sequence of the two types of condensins. Furthermore, we observed that the coherent motions between the chromosomal loci are primarily enhanced within the topologically associating domains (TADs) as cells progress to the G1 phase, suggesting that TADs can be considered as both structural and dynamical units for organizing the three-dimensional chromosome. Our analysis also reveals that the quantified pathways of chromosome structural reorganization during the mitosis-to-G1 phase transition exhibit high stochasticity at the single-cell level and show nonlinear behaviours in changing TADs and contacts formed at the long-range regions. Our findings offer valuable insights into large-scale chromosome structural dynamics after mitosis.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
3
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
4
|
Derisoud E, Jouneau L, Dubois C, Archilla C, Jaszczyszyn Y, Legendre R, Daniel N, Peynot N, Dahirel M, Auclair-Ronzaud J, Wimel L, Duranthon V, Chavatte-Palmer P. Maternal age affects equine day 8 embryo gene expression both in trophoblast and inner cell mass. BMC Genomics 2022; 23:443. [PMID: 35705916 PMCID: PMC9199136 DOI: 10.1186/s12864-022-08593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breeding a mare until she is not fertile or even until her death is common in equine industry but the fertility decreases as the mare age increases. Embryo loss due to reduced embryo quality is partly accountable for this observation. Here, the effect of mare's age on blastocysts' gene expression was explored. Day 8 post-ovulation embryos were collected from multiparous young (YM, 6-year-old, N = 5) and older (OM, > 10-year-old, N = 6) non-nursing Saddlebred mares, inseminated with the semen of one stallion. Pure or inner cell mass (ICM) enriched trophoblast, obtained by embryo bisection, were RNA sequenced. Deconvolution algorithm was used to discriminate gene expression in the ICM from that in the trophoblast. Differential expression was analyzed with embryo sex and diameter as cofactors. Functional annotation and classification of differentially expressed genes and gene set enrichment analysis were also performed. RESULTS Maternal aging did not affect embryo recovery rate, embryo diameter nor total RNA quantity. In both compartments, the expression of genes involved in mitochondria and protein metabolism were disturbed by maternal age, although more genes were affected in the ICM. Mitosis, signaling and adhesion pathways and embryo development were decreased in the ICM of embryos from old mares. In trophoblast, ion movement pathways were affected. CONCLUSIONS This is the first study showing that maternal age affects gene expression in the equine blastocyst, demonstrating significant effects as early as 10 years of age. These perturbations may affect further embryo development and contribute to decreased fertility due to aging.
Collapse
Affiliation(s)
- Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Cédric Dubois
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Paris-Sud University F-91198, Gif-sur-Yvette, France
| | - Rachel Legendre
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Department of Computational Biology, Paris, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Laurence Wimel
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
5
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Gerguri T, Fu X, Kakui Y, Khatri BS, Barrington C, Bates PA, Uhlmann F. Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast. Nucleic Acids Res 2021; 49:1294-1312. [PMID: 33434270 PMCID: PMC7897502 DOI: 10.1093/nar/gkaa1270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023] Open
Abstract
Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.
Collapse
Affiliation(s)
- Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Xiao Fu
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Waseda Institute for Advanced Study, Waseda University, 1-21-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Bhavin S Khatri
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
7
|
Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg Chem 2020; 104:104266. [PMID: 33142421 DOI: 10.1016/j.bioorg.2020.104266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.
Collapse
Affiliation(s)
- Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
8
|
Golfier S, Quail T, Kimura H, Brugués J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 2020; 9:e53885. [PMID: 32396063 PMCID: PMC7316503 DOI: 10.7554/elife.53885] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Loop extrusion by structural maintenance of chromosomes (SMC) complexes has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.
Collapse
Affiliation(s)
- Stefan Golfier
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| | - Thomas Quail
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| |
Collapse
|
9
|
Ravi M, Ramanathan S, Krishna K. Factors, mechanisms and implications of chromatin condensation and chromosomal structural maintenance through the cell cycle. J Cell Physiol 2019; 235:758-775. [PMID: 31264212 DOI: 10.1002/jcp.29038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a "cohesin cycle." Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Srishti Ramanathan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Krupa Krishna
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
10
|
Yi F, Wang Z, Liu J, Zhang Y, Wang Z, Xu H, Li X, Bai N, Cao L, Song X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int J Biol Sci 2017; 13:1092-1099. [PMID: 28924389 PMCID: PMC5599913 DOI: 10.7150/ijbs.21206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC superfamily members, has been explored to function in many activities including chromosome dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can cause defect in the DNA damage repair pathway, which has been strongly associated with tumorigenesis. Here we focus to discuss SMC1's role in genome stability maintenance and tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Teves SS, An L, Hansen AS, Xie L, Darzacq X, Tjian R. A dynamic mode of mitotic bookmarking by transcription factors. eLife 2016; 5. [PMID: 27855781 PMCID: PMC5156526 DOI: 10.7554/elife.22280] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI:http://dx.doi.org/10.7554/eLife.22280.001 A kidney cell functions differently from a skin cell despite the fact that all the cells in one organism share the same DNA. This is because not all of the genes encoded within the DNA are active in the cells. Instead, cells can turn on just those genes that are specific to how that cell type works. One way that cells can regulate their genes is by using proteins called transcription factors that can bind to DNA to turn nearby genes on and off. When cells divide to form new cells, the DNA is condensed and gene activity is turned off. However, each dividing cell also has to ‘remember’ the program of genes that specifies its identity. After division, how do the cells know which genes to turn on and which ones to keep off? It was thought that the transcription factors attached to the DNA were all detached from it during cell division. Through studies in mouse embryonic stem cells, Teves et al. now show that this finding is largely an artifact of the methods used to study the process. In fact, many transcription factors still bind to and interact with DNA during cell division. This provides an efficient way for the newly formed cells to quickly reset to the pattern of gene activity appropriate for their cell type. Having found that many key transcription factors are still bound to DNA during cell division, the next challenge is to find out what role this binding plays in allowing cells to ‘remember’ their identity. DOI:http://dx.doi.org/10.7554/eLife.22280.002
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Luye An
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
12
|
Abstract
Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.
Collapse
|
13
|
Farr CJ, Antoniou-Kourounioti M, Mimmack ML, Volkov A, Porter ACG. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res 2014; 42:4414-26. [PMID: 24476913 PMCID: PMC3985649 DOI: 10.1093/nar/gku076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK and Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
14
|
Schröder-Heurich B, Wieland B, Lavin MF, Schindler D, Dörk T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J 2013; 28:1331-41. [PMID: 24344331 DOI: 10.1096/fj.13-236984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.
Collapse
Affiliation(s)
- Bianca Schröder-Heurich
- 1Hannover Medical School, Gynaecology Research Unit (OE 6411), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
15
|
Abstract
In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
16
|
Islam MR, Hosen MI, Zaman A, Islam MO. Structural, functional and molecular docking study to characterize GMI1 from Arabidopsis thaliana. Interdiscip Sci 2013; 5:13-22. [PMID: 23605636 DOI: 10.1007/s12539-013-0153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/10/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022]
Abstract
γ-irradiation and Mitomycin C Induced 1 (GMI1), is a member of the SMC-hinge domain-containing protein family that takes part in double stranded break repair mechanism in eukaryotic cells. In this study we hypothesize a small molecule-Adenosine Tri Phosphate (ATP) binding region of novel SMC like GM1 protein in model organism Arabidopsis thaliana using in silico modeling. Initially, analyzing sequence information for the protein indicated presence of motifs - 'Walker A nucleotide-binding domain' that are required to interact with nucleotides along with 'Walker B' motif and ABC signature sequences. This was further proven through GMI1-ATP docking experiment and results were verified by comparing the values with controls. In negative control, no binding was seen in the same binding region of GMI1 structure for small molecules randomly selected form PubChem database, whereas in positive control binding affinity of other known proteins with ATP binding potential resembled GMI1-ATP binding affinity of -5.4 kcal/mol. Furthermore we also docked small molecules that shares structural similarity with ATP to GMI1 and found that Purine Mononucleotide bound the region with the best affinity, which implies that the compound may bind the protein with strong binding and can work as a potential agonist/antagonist to GMI1. We believe that the study would shed more light into the GM1 mechanism of action. Although the computational predictions made here are based on concrete confidence, it should be mentioned that in vitro experimentation does not fall into the scopes of this study and thus the results found here have to be further validated in vitro.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | | | | | | |
Collapse
|
17
|
Kathiravan MK, Khilare MM, Nikoomanesh K, Chothe AS, Jain KS. Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 2012; 28:419-35. [DOI: 10.3109/14756366.2012.658785] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Madhavi M. Khilare
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Kiana Nikoomanesh
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Aparna S. Chothe
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy,
Pune, Maharashtra, India
| | - Kishor S. Jain
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| |
Collapse
|
18
|
Shimamoto Y, Maeda YT, Ishiwata S, Libchaber AJ, Kapoor TM. Insights into the micromechanical properties of the metaphase spindle. Cell 2011; 145:1062-74. [PMID: 21703450 DOI: 10.1016/j.cell.2011.05.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/18/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023]
Abstract
The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
19
|
Wang M, Tang D, Wang K, Shen Y, Qin B, Miao C, Li M, Cheng Z. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:583-594. [PMID: 21615569 DOI: 10.1111/j.1365-313x.2011.04615.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shugoshin is a conserved protein in eukaryotes that protects the centromeric cohesin of sister chromatids from cleavage by separase during meiosis. In this study, we identify the rice (Oryza sativa, 2n=2x=24) homolog of ZmSGO1 in maize (Zea mays), named OsSGO1. During both mitosis and meiosis, OsSGO1 is recruited from nucleoli onto centromeres at the onset of prophase. In the Tos17-insertional Ossgo1-1 mutant, centromeres of sister chromatids separate precociously from each other from metaphase I, which causes unequal chromosome segregation during meiosis II. Moreover, the release of OsSGO1 from nucleoli is completely blocked in Ossgo1-1, which leads to the absence of OsSGO1 in centromeric regions after the onset of mitosis and meiosis. Furthermore, the timely assembly and maintenance of synaptonemal complexes during early prophase I are affected in Ossgo1 mutants. Finally, we found that the centromeric localization of OsSGO1 depends on OsAM1, not other meiotic proteins such as OsREC8, PAIR2, OsMER3, or ZEP1.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shintomi K, Hirano T. The relative ratio of condensin I to II determines chromosome shapes. Genes Dev 2011; 25:1464-9. [PMID: 21715560 PMCID: PMC3143936 DOI: 10.1101/gad.2060311] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
To understand how chromosome shapes are determined by actions of condensins and cohesin, we devised a series of protocols in which their levels are precisely changed in Xenopus egg extracts. When the relative ratio of condensin I to II is forced to be smaller, embryonic chromosomes become shorter and thicker, being reminiscent of somatic chromosomes. Further depletion of condensin II unveils its contribution to axial shortening of chromosomes. Cohesin helps juxtapose sister chromatid arms by collaborating with condensin I and counteracting condensin II. Thus, chromosome shaping is achieved by an exquisite balance among condensin I and II and cohesin.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Schubert I, Shaw P. Organization and dynamics of plant interphase chromosomes. TRENDS IN PLANT SCIENCE 2011; 16:273-81. [PMID: 21393049 DOI: 10.1016/j.tplants.2011.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 05/23/2023]
Abstract
Eukaryotic chromosomes occupy distinct territories within interphase nuclei. The arrangement of chromosome territories (CTs) is important for replication, transcription, repair and recombination processes. Our knowledge about interphase chromatin arrangement is mainly based on results from in situ labeling approaches. The phylogenetic affiliation of a species, cell cycle, differentiation status and environmental factors are all likely to influence interphase nuclear architecture. In this review we survey current data about relative positioning of CTs, somatic pairing of homologs, and sister chromatid alignment in meristematic and differentiated tissues, using data derived mainly from Arabidopsis thaliana, wheat (Triticum aestivum) and their relatives. We discuss morphological constraints and epigenetic impacts on nuclear architecture, the evolutionary stability of CT arrangements, and alterations of nuclear architecture during transcription and repair.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D06466 Gatersleben, Germany.
| | | |
Collapse
|
22
|
Lebedeva LI, Dubatolova TD, Omelyanchuk LV. Fluorometric identification of chromatin-packing level beyond resolution of light microscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x11010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Shintomi K, Hirano T. Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 2010; 119:459-67. [PMID: 20352243 DOI: 10.1007/s00412-010-0271-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 01/07/2023]
Abstract
When chromosomes start to assemble in mitotic prophase, duplicated chromatids are not discernible within each chromosome. As condensation proceeds, they gradually show up, culminating in two rod-shaped structures apposed along their entire length within a metaphase chromosome. This process, known as sister chromatid resolution, is thought to be a prerequisite for rapid and synchronous separation of sister chromatids in anaphase. From a mechanistic point of view, the resolution process can be dissected into three distinct steps: (1) release of cohesin from chromosome arms; (2) formation of chromatid axes mediated by condensins; and (3) untanglement of inter-sister catenation catalyzed by topoisomerase II (topo II). In this review article, we summarize recent progress in our understanding the molecular mechanisms of sister chromatid resolution with a major focus on its first step, cohesin release. An emerging idea is that this seemingly simple step is regulated by an intricate network of positive and negative factors, including cohesin-binding proteins and mitotic kinases. Interestingly, some key factors responsible for cohesin release in early mitosis also play important roles in controlling cohesin functions during interphase. Finally, we discuss how the step of cohesin release might mechanistically be coordinated with the actions of condensins and topo II.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, Japan
| | | |
Collapse
|
24
|
Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 2010; 76:5344-55. [PMID: 20562270 DOI: 10.1128/aem.00450-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h(-1)), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.
Collapse
|
25
|
Abstract
Mitotic chromosomes respond elastically to forces in the nanonewton range, a property important to transduction of stresses used as mechanical regulatory signals during cell division. In addition to being important biologically, chromosome elasticity can be used as a tool for investigating the folding of chromatin. This paper reviews experiments studying stretching and bending stiffness of mitotic chromosomes, plus experiments where changes in chromosome elasticity resulting from chemical and enzyme treatments were used to analyse connectivity of chromatin inside chromosomes. Experiments with nucleases indicate that non-DNA elements constraining mitotic chromatin must be isolated from one another, leading to the conclusion that mitotic chromosomes have a chromatin 'network' or 'gel' organization, with stretches of chromatin strung between 'crosslinking' points. The as-yet unresolved questions of the identities of the putative chromatin crosslinkers and their organization inside mitotic chromosomes are discussed.
Collapse
|
26
|
Gu S, Hu J, Song P, Gong W, Guo M. Identification of a new transcript specifically expressed in mouse spermatocytes: mmrp2. Mol Biol Rep 2006; 32:247-55. [PMID: 16328886 DOI: 10.1007/s11033-005-3005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
In an effort to examine the molecular basis of gametogenesis, we screened Riken cDNA database and the clone 4930481F22 that is expressed preponderantly in mouse testis was identified. In the course of the research, a new isoform of 4930481F22 clone was found, isolated from mouse testis and sequenced. It only lacks the 7th exon of 4930481F22 transcript. The new isoform only has 837 bp and encodes a putative 28.4 kDa protein. We investigated the expression pattern at the mRNA level by RT-PCR and in situ hybridization in testis. The new isoform was only expressed in the gonad, where it began to be detected at day 8 after birth. In situ hybridization proved that the new isoform mostly expressed in spermatocytes. The structure of the predicted protein and the expression pattern of the mRNA suggest that the new isoform could have an important role in meiosis. We temporarily named it mmrp 2 (Mouse Meiosis Related Protein 2).
Collapse
Affiliation(s)
- Shanye Gu
- Laboratory of Molecular Genetic and Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
27
|
Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y. Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. ACTA ACUST UNITED AC 2006; 174:499-508. [PMID: 16893973 PMCID: PMC2064256 DOI: 10.1083/jcb.200605074] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Cell Biology Group, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe Y. Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol 2005; 17:590-5. [PMID: 16229998 DOI: 10.1016/j.ceb.2005.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
A recently emerging protein family, shugoshin, plays a crucial role in the centromeric protection of cohesin, which is responsible for sister chromatid cohesion. This is especially important at the first meiotic division, where cohesin is cleaved by separase only along chromosome arms while the centromeric cohesin must be preserved. In vertebrate cells, arm cohesion is largely lost during prophase and prometaphase in order to facilitate sister chromatid resolution, whereas centromeric cohesion is preserved until the bipolar attachment of sister chromatids is established. Vertebrate shugoshin plays an essential role in protecting centromeric cohesin from prophase dissociation. In yeast, shugoshin also has a crucial role in sensing the loss of tension at kinetochores and in generating the spindle checkpoint signal.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi1-1-1, Tokyo 113-0032, Japan.
| |
Collapse
|
29
|
Strunnikov AV. SMC complexes in bacterial chromosome condensation and segregation. Plasmid 2005; 55:135-44. [PMID: 16229890 PMCID: PMC2670095 DOI: 10.1016/j.plasmid.2005.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 11/26/2022]
Abstract
Bacterial chromosomes segregate via a partition apparatus that employs a score of specialized proteins. The SMC complexes play a crucial role in the chromosome partitioning process by organizing bacterial chromosomes through their ATP-dependent chromatin-compacting activity. Recent progress in the composition of these complexes and elucidation of their structural and enzymatic properties has advanced our comprehension of chromosome condensation and segregation mechanics in bacteria.
Collapse
|
30
|
Abstract
Structural maintenance of chromosomes (SMC) proteins are chromosomal ATPases, highly conserved from bacteria to humans, that play fundamental roles in many aspects of higher-order chromosome organization and dynamics. In eukaryotes, SMC1 and SMC3 act as the core of the cohesin complexes that mediate sister chromatid cohesion, whereas SMC2 and SMC4 function as the core of the condensin complexes that are essential for chromosome assembly and segregation. Another complex containing SMC5 and SMC6 is implicated in DNA repair and checkpoint responses. The SMC complexes form unique ring- or V-shaped structures with long coiled-coil arms, and function as ATP-modulated, dynamic molecular linkers of the genome. Recent studies shed new light on the mechanistic action of these SMC machines and also expanded the repertoire of their diverse cellular functions. Dissecting this class of chromosomal ATPases is likely to be central to our understanding of the structural basis of genome organization, stability, and evolution.
Collapse
Affiliation(s)
- Ana Losada
- Spanish National Cancer Center (CNIO), Madrid
| | | |
Collapse
|
31
|
Stray JE, Crisona NJ, Belotserkovskii BP, Lindsley JE, Cozzarelli NR. The Saccharomyces cerevisiae Smc2/4 condensin compacts DNA into (+) chiral structures without net supercoiling. J Biol Chem 2005; 280:34723-34. [PMID: 16100111 DOI: 10.1074/jbc.m506589200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smc2/4 forms the core of the Saccharomyces cerevisiae condensin, which promotes metaphase chromosome compaction. To understand how condensin manipulates DNA, we used two in vitro assays to study the role of SMC (structural maintenance of chromosome) proteins and ATP in reconfiguring the path of DNA. The first assay evaluated the topology of knots formed in the presence of topoisomerase II. Unexpectedly, both wild-type Smc2/4 and an ATPase mutant promoted (+) chiral knotting of nicked plasmids, revealing that ATP hydrolysis and the non-SMC condensins are not required to compact DNA chirally. The second assay measured Smc2/4-dependent changes in linking number (Lk). Smc2/4 did not induce (+) supercoiling, but instead induced broadening of topoisomer distributions in a cooperative manner without altering Lk(0). To explain chiral knotting in substrates devoid of chiral supercoiling, we propose that Smc2/4 directs chiral DNA compaction by constraining the duplex to retrace its own path. In this highly cooperative process, both (+) and (-) loops are sequestered (about one per kb), leaving net writhe and twist unchanged while broadening Lk. We have developed a quantitative theory to account for these results. Additionally, we have shown at higher molar stoichiometries that Smc2/4 prevents relaxation by topoisomerase I and nick closure by DNA ligase, indicating that Smc2/4 can saturate DNA. By electron microscopy of Smc2/4-DNA complexes, we observed primarily two protein-laden bound species: long flexible filaments and uniform rings or "doughnuts." Close packing of Smc2/4 on DNA explains the substrate protection we observed. Our results support the hypothesis that SMC proteins bind multiple DNA duplexes.
Collapse
Affiliation(s)
- James E Stray
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
32
|
Watanabe Y. Sister chromatid cohesion along arms and at centromeres. Trends Genet 2005; 21:405-12. [PMID: 15946764 DOI: 10.1016/j.tig.2005.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/16/2005] [Accepted: 05/10/2005] [Indexed: 12/21/2022]
Abstract
There is an obvious difference between the regulation of sister chromatid cohesion at centromeres and along chromosome arms during meiosis, because centromeric cohesion, but not arm cohesion, persists throughout anaphase of the first meiotic division. This regional difference of sister chromatid cohesion is also observed during mitosis; the cohesion is much more robust at the centromere at metaphase, where it antagonizes the pulling force of spindle microtubules that attach to the kinetochores from opposite poles. Recent studies have illuminated the underlying molecular mechanisms that strengthen and protect centromeric cohesion in mitosis and meiosis, and the central role of a conserved protein, shugoshin.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
33
|
Watanabe Y, Kitajima TS. Shugoshin protects cohesin complexes at centromeres. Philos Trans R Soc Lond B Biol Sci 2005; 360:515-21, discussion 521. [PMID: 15897177 PMCID: PMC1569468 DOI: 10.1098/rstb.2004.1607] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The different regulation of sister chromatid cohesion at centromeres and along chromosome arms is obvious during meiosis, because centromeric cohesion, but not arm cohesion, persists throughout anaphase of the first division. A protein required to protect centromeric cohesin Rec8 from separase cleavage has been identified and named shugoshin (or Sgo1) after shugoshin ("guardian spirit" in Japanese). It has become apparent that shugoshin shows marginal homology with Drosophila Mei-S332 and several uncharacterized proteins in other eukaryotic organisms. Because Mei-S332 is a protein previously shown to be required for centromeric cohesion in meiosis, it is now established that shugoshin represents a conserved protein family defined as a centromeric protector of Rec8 cohesin complexes in meiosis. The regional difference of sister chromatid cohesion is also observed during mitosis in vertebrates; the cohesion is much more robust at the centromere at metaphase, where it antagonizes the pulling force of spindle microtubules that attach the kinetochores from opposite poles. The human shugoshin homologue (hSgo1) is required to protect the centromeric localization of the mitotic cohesin, Scc1, until metaphase. Bub1 plays a crucial role in the localization of shugoshin to centromeres in both fission yeast and humans.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
34
|
Jessberger R. How to divorce engaged chromosomes? Mol Cell Biol 2005; 25:18-22. [PMID: 15601826 PMCID: PMC538789 DOI: 10.1128/mcb.25.1.18-22.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rolf Jessberger
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Ave., New York, NY 10029, USA.
| |
Collapse
|
35
|
Mitosis: Regulation and organization of cell division. RUSS J GENET+ 2004. [DOI: 10.1007/s11177-005-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Carpenter AJ, Porter ACG. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 2004; 15:5700-11. [PMID: 15456904 PMCID: PMC532048 DOI: 10.1091/mbc.e04-08-0732] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.
Collapse
Affiliation(s)
- Adam J Carpenter
- Gene Targeting Group, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London W12 ONN, United Kingdom
| | | |
Collapse
|
37
|
Coelho PA, Queiroz-Machado J, Sunkel CE. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J Cell Sci 2004; 116:4763-76. [PMID: 14600262 DOI: 10.1242/jcs.00799] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of compact mitotic chromosomes and resolution of sister chromatids are two essential processes for the correct segregation of the genome during mitosis. Condensin, a five-subunit protein complex, is thought to be required for chromosome condensation. However, recent genetic analysis suggests that condensin is only essential to resolve sister chromatids. To study further the function of condensin we have depleted DmSMC4, a subunit of the complex, from Drosophila S2 cells by dsRNA-mediated interference. Cells lacking DmSMC4 assemble short mitotic chromosomes with unresolved sister chromatids where Barren, a non-SMC subunit of the complex is unable to localise. Topoisomerase II, however, binds mitotic chromatin after depletion of DmSMC4 but it is no longer confined to a central axial structure and becomes diffusely distributed all over the chromatin. Furthermore, cell extracts from DmSMC4 dsRNA-treated cells show significantly reduced topoisomerase II-dependent DNA decatenation activity in vitro. Nevertheless, DmSMC4-depleted chromosomes have centromeres and kinetochores that are able to segregate, although sister chromatid arms form extensive chromatin bridges during anaphase. These chromatin bridges do not result from inappropriate maintenance of sister chromatid cohesion by DRAD21, a subunit of the cohesin complex. Moreover, depletion of DmSMC4 prevents premature sister chromatid separation, caused by removal of DRAD21, allowing cells to exit mitosis with chromatin bridges. Our results suggest that condensin is required so that an axial chromatid structure can be organised where topoisomerase II can effectively promote sister chromatid resolution.
Collapse
Affiliation(s)
- Paula A Coelho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
38
|
Sullivan M, Higuchi T, Katis VL, Uhlmann F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 2004; 117:471-82. [PMID: 15137940 DOI: 10.1016/s0092-8674(04)00415-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 02/03/2004] [Accepted: 03/03/2004] [Indexed: 11/15/2022]
Abstract
At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topologically entangled state. Separase, concomitantly with cleaving cohesin, activates the phosphatase Cdc14. We find that Cdc14 exerts two effects on rDNA, both mediated by the condensin complex. Lengthwise condensation of rDNA shortens the chromosome XII arm sufficiently for segregation. This condensation depends on the aurora B kinase complex. Independently of condensation, Cdc14 induces condensin-dependent resolution of cohesin-independent rDNA linkage. Cdc14-dependent sister chromatid resolution at the rDNA could introduce a temporal order to chromosome segregation.
Collapse
Affiliation(s)
- Matt Sullivan
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
39
|
Hardy CD, Crisona NJ, Stone MD, Cozzarelli NR. Disentangling DNA during replication: a tale of two strands. Philos Trans R Soc Lond B Biol Sci 2004; 359:39-47. [PMID: 15065655 PMCID: PMC1693293 DOI: 10.1098/rstb.2003.1363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.
Collapse
Affiliation(s)
- Christine D Hardy
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA
| | | | | | | |
Collapse
|
40
|
Yalon M, Gal S, Segev Y, Selig S, Skorecki KL. Sister chromatid separation at human telomeric regions. J Cell Sci 2004; 117:1961-70. [PMID: 15039457 DOI: 10.1242/jcs.01032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are nucleoprotein complexes located at chromosome ends, vital for preserving chromosomal integrity. Telomeric DNA shortens with progressive rounds of cell division, culminating in replicative senescence. Previously we have reported, on the basis of fluorescent in situ hybridization, that several human telomeric regions display solitary signals (singlets) in metaphase cells of presenescent fibroblasts, in comparison to other genomic regions that hybridize as twin signals (doublets). In the current study, we show that an additional 12 out of 12 telomeric regions examined also display metaphase singlet signals in pre-senescent cells, and that excess telomere-metaphase singlets also occur in earlier passage cells harvested from elderly individuals. In cancer cell lines expressing telomerase and in pre-senescent fibroblasts ectopically expressing hTERT, this phenomenon is abrogated. Confocal microscope image analysis showed that the telomere metaphase singlets represent regions that have replicated but not separated; this is presumably because of persistent cohesion. The introduction of mutations that interfere with the normal dissolution of cohesion at the metaphase to anaphase transition induced the cut (chromosomes untimely torn) phenotype in early passage fibroblasts, with predominantly telomeric rather than centromeric DNA, present on the chromatin bridges between the daughter nuclei. These results suggest that telomeric regions in animal cells may potentially be sites of persistent cohesion, and that this cohesion may be the basis for an observed excess of fluorescent in situ hybridization metaphase singlets at telomeres. Persistent cohesion at telomeres may be associated with attempted DNA repair or chromosomal abnormalities, which have been described in pre-senescent cells.
Collapse
Affiliation(s)
- Michal Yalon
- Bruce Rappaport Faculty of Medicine and Research Institute - Technion and Rambam Medical Center, Haifa, Israel 31096
| | | | | | | | | |
Collapse
|
41
|
Abstract
We review micromechanical experiments studying mechanoelastic properties of mitotic chromosomes. We discuss the history of this field, starting from the classic in vivo experiments of Nicklas (1983). We then focus on experiments where chromosomes were extracted from prometaphase cells and then studied by micromanipulation and microfluidic biochemical techniques. These experiments reveal that chromosomes have a well-behaved elastic response over a fivefold range of stretching, with an elastic modulus similar to that of a loosely tethered polymer network. Perturbation by microfluidic "spraying" of various ions reveals that the mitotic chromosome can be rapidly and reversibly decondensed or overcondensed, i.e., that the native state is not maximally compacted. We compare our results for chromosomes from cells to results of experiments by Houchmandzadeh and Dimitrov (1999) on chromatids reconstituted using Xenopus egg extracts. Remarkably, while the stretching elastic response of reconstituted chromosomes is similar to that observed for chromosomes from cells, reconstituted chromosomes are far more easily bent. This result suggests that reconstituted chromatids have a large-scale structure that is quite different from chromosomes in somatic cells. Finally, we discuss microspraying experiments of DNA-cutting enzymes, which reveal that the element that gives mitotic chromosomes their mechanical integrity is DNA itself. These experiments indicate that chromatin-condensing proteins are not organized into a mechanically contiguous "scaffold," but instead that the mitotic chromosome is best thought of as a cross-linked network of chromatin. Preliminary results from restriction enzyme digestion experiments indicate a spacing between chromatin "cross-links" of roughly 15 kb, a size similar to that inferred from classical chromatin loop isolation studies. These results suggest a general strategy for the use of micromanipulation methods for the study of chromosome structure.
Collapse
Affiliation(s)
- M G Poirier
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
42
|
Parra MT, Viera A, Gómez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 2004; 117:1221-34. [PMID: 14970259 DOI: 10.1242/jcs.00947] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SCP3 is a meiosis-specific structural protein appearing at axial elements and lateral elements of the synaptonemal complex. We have analysed the behaviour of SCP3 and the cohesin subunit Rad21 in mouse spermatocytes by means of a squashing technique. Our results demonstrate that both proteins colocalize and are partially released from chromosome arms during late prophase I stages, although they persist at the interchromatid domain of metaphase I bivalents. Thus, Rad21 cannot be considered a `mitotic'-specific variant, but coexists with Rec8. During late prophase I SCP3 and Rad21 accumulate at centromeres, and together with the chromosomal passenger proteins INCENP and aurora-B kinase, show a complex `double cornet'-like distribution at the inner domain of metaphase I centromeres beneath the associated sister kinetochores. We have observed that Rad21 and SCP3 are displaced from centromeres during telophase I when sister kinetochores separate, and are not present at metaphase II centromeres. Thus, we hypothesise that Rad21, and the superimposed SCP3 and SCP2, are involved in the monopolar attachment of sister kinetochores during meiosis I, and are not responsible for the maintenance of sister-chromatid centromere cohesion during meiosis II as previously suggested.
Collapse
Affiliation(s)
- María Teresa Parra
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kagansky A, Freeman L, Lukyanov D, Strunnikov A. Histone tail-independent chromatin binding activity of recombinant cohesin holocomplex. J Biol Chem 2004; 279:3382-8. [PMID: 14613943 PMCID: PMC2680671 DOI: 10.1074/jbc.m306078200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.
Collapse
Affiliation(s)
| | - Lita Freeman
- From the Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Alexander Strunnikov
- From the Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
44
|
Lavoie BD, Hogan E, Koshland D. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 2004; 18:76-87. [PMID: 14701879 PMCID: PMC314280 DOI: 10.1101/gad.1150404] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 11/18/2003] [Indexed: 11/25/2022]
Abstract
Chromosome condensation plays an essential role in the maintenance of genetic integrity. Using genetic, cell biological, and biochemical approaches, we distinguish two cell-cycle-regulated pathways for chromosome condensation in budding yeast. From G(2) to metaphase, we show that the condensation of the approximately 1-Mb rDNA array is a multistep process, and describe condensin-dependent clustering, alignment, and resolution steps in chromosome folding. We functionally define a further postmetaphase chromosome assembly maturation step that is required for the maintenance of chromosome structural integrity during segregation. This late step in condensation requires the conserved mitotic kinase Ipl1/aurora in addition to condensin, but is independent of cohesin. Consistent with this, the late condensation pathway is initiated during the metaphase-to-anaphase transition, supports de novo condensation in cohesin mutants, and correlates with the Ipl1/aurora-dependent phosphorylation of condensin. These data provide insight into the molecular mechanisms of higher-order chromosome folding and suggest that two distinct condensation pathways, one involving cohesins and the other Ipl1/aurora, are required to modulate chromosome structure during mitosis.
Collapse
Affiliation(s)
- Brigitte D Lavoie
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
45
|
Abstract
Eukaryotic chromosomes undergo dramatic changes and movements during mitosis. These include the individualization and compaction of the two copies of replicated chromosomes (the sister chromatids) and their subsequent segregation to the daughter cells. Two multisubunit protein complexes termed 'cohesin' and 'condensin', both composed of SMC (Structural Maintenance of Chromosomes) and kleisin subunits, have emerged as crucial players in these processes. Cohesin is required for holding sister chromatids together whereas condensin, together with topoisomerase II, has an important role in organizing individual axes of sister chromatids prior to their segregation during anaphase. SMC and kleisin complexes also regulate the compaction and segregation of bacterial nucleoids. New research suggests that these ancient regulators of chromosome structure might function as topological devices that trap chromosomal DNA between 50 nm long coiled coils.
Collapse
|
46
|
Pasierbek P, Födermayr M, Jantsch V, Jantsch M, Schweizer D, Loidl J. The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Exp Cell Res 2003; 289:245-55. [PMID: 14499625 DOI: 10.1016/s0014-4827(03)00266-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The product of the Caenorhabditis elegans ORF F18E2.3 is homologous to the cohesin component Scc3p. By antibody staining the product of F18E2.3 is found in interphase and early meiotic nuclei. At pachytene it localizes to the axes of meiotic chromosomes but is no longer detectable on chromatin later in meiosis or in mitoses. Depletion of the gene product by RNAi results in aberrant mitoses and meioses. In meiosis, homologous pairing is defective during early meiotic prophase and at diakinesis there occur univalents consisting of loosely connected sister chromatids or completely separated sisters. The recombination protein RAD-51 accumulates in nuclear foci at higher numbers during meiotic prophase and disappears later than in wild-type worms, suggesting a defect in the repair of meiotic double-stranded DNA breaks. Embryos showing nuclei of variable size and anaphase bridges, indicative of mitotic segregation defects, are frequently observed. In the most severely affected gonads, nuclear morphology cannot be related to any specific stage. The cytological localization and the consequences of the lack of the protein indicate that C. elegans SCC-3 is essential for sister chromatid cohesion both in mitosis and in meiosis.
Collapse
Affiliation(s)
- Pawel Pasierbek
- Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
47
|
Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 2003; 14:3821-33. [PMID: 12972566 PMCID: PMC196571 DOI: 10.1091/mbc.e03-01-0860] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.
Collapse
Affiliation(s)
- Daniela Cimini
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Genetics and Molecular Biology, University La Sapienza, 00185 Rome, Italy
| | | | | | | |
Collapse
|
48
|
Stray JE, Lindsley JE. Biochemical analysis of the yeast condensin Smc2/4 complex: an ATPase that promotes knotting of circular DNA. J Biol Chem 2003; 278:26238-48. [PMID: 12719426 DOI: 10.1074/jbc.m302699200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the contributions that the structural maintenance of chromosome proteins (SMCs) make to condensin activity, we have tested a number of biochemical, biophysical, and DNA-associated attributes of the Smc2p-Smc4p pair from budding yeast. Smc2p and Smc4p form a stable heterodimer, the "Smc2/4 complex," which upon analysis by sedimentation equilibrium appears to reversibly self-associate to form heterotetramers. Individually, neither Smc2p nor Smc4p hydrolyzes ATP; however, ATPase activity is recovered by equal molar mixing of both purified proteins. Hydrolysis activity is unaffected by the presence of DNA. Smc2/4 binds both linearized and circular plasmids, and the binding appears to be independent of adenylate nucleotide. High mole ratios of Smc2/4 to plasmid promote a geometric change in circular DNA that can be trapped as knots by type II topoisomerases but not as supercoils by a type I topoisomerase. Binding titration analyses reveal that two Smc2/4-DNA-bound states exist, one disrupted by and one resistant to salt challenge. Competition-displacement experiments show that Smc2/4-DNA-bound species formed at even high protein to DNA mole ratios remain reversible. Surprisingly, only linear and supercoiled DNA, not nicked-circular DNA, can completely displace Smc2/4 prebound to a labeled, nicked-circular DNA. To explain this geometry-dependent competition, we present two models of DNA binding by SMCs in which two DNA duplexes are captured within the inter-coil space of an Smc2/4 heterodimer. Based on these models, we propose a DNA displacement mechanism to explain how differences in geometry could affect the competitive potential of DNA.
Collapse
Affiliation(s)
- James E Stray
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-3201, USA
| | | |
Collapse
|
49
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
50
|
Abstract
The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".
Collapse
Affiliation(s)
- John F Marko
- Department of Physics, University of Illinois at Chicago, 60607, USA.
| | | |
Collapse
|