1
|
Maytum A, Edginton-White B, Keane P, Cockerill PN, Cazier JB, Bonifer C. Chromatin priming elements direct tissue-specific gene activity before hematopoietic specification. Life Sci Alliance 2024; 7:e202302363. [PMID: 37989524 PMCID: PMC10663361 DOI: 10.26508/lsa.202302363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.
Collapse
Affiliation(s)
- Alexander Maytum
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Benjamin Edginton-White
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jean-Baptiste Cazier
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Onrust-van Schoonhoven A, de Bruijn MJW, Stikker B, Brouwer RWW, Braunstahl GJ, van IJcken WFJ, Graf T, Huylebroeck D, Hendriks RW, Stik G, Stadhouders R. 3D chromatin reprogramming primes human memory T H2 cells for rapid recall and pathogenic dysfunction. Sci Immunol 2023; 8:eadg3917. [PMID: 37418545 DOI: 10.1126/sciimmunol.adg3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.
Collapse
Affiliation(s)
- Anne Onrust-van Schoonhoven
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thomas Graf
- Centre for Genomic Regulation (CRG) and Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
3
|
Rose JR, Akdogan-Ozdilek B, Rahmberg AR, Powell MD, Hicks SL, Scharer CD, Boss JM. Distinct transcriptomic and epigenomic modalities underpin human memory T cell subsets and their activation potential. Commun Biol 2023; 6:363. [PMID: 37012418 PMCID: PMC10070634 DOI: 10.1038/s42003-023-04747-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Human memory T cells (MTC) are poised to rapidly respond to antigen re-exposure. Here, we derived the transcriptional and epigenetic programs of resting and ex vivo activated, circulating CD4+ and CD8+ MTC subsets. A progressive gradient of gene expression from naïve to TCM to TEM is observed, which is accompanied by corresponding changes in chromatin accessibility. Transcriptional changes suggest adaptations of metabolism that are reflected in altered metabolic capacity. Other differences involve regulatory modalities comprised of discrete accessible chromatin patterns, transcription factor binding motif enrichment, and evidence of epigenetic priming. Basic-helix-loop-helix factor motifs for AHR and HIF1A distinguish subsets and predict transcription networks to sense environmental changes. Following stimulation, primed accessible chromatin correlate with an augmentation of MTC gene expression as well as effector transcription factor gene expression. These results identify coordinated epigenetic remodeling, metabolic, and transcriptional changes that enable MTC subsets to ultimately respond to antigen re-encounters more efficiently.
Collapse
Affiliation(s)
- James R Rose
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bagdeser Akdogan-Ozdilek
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Tsuda S, Pipkin ME. Transcriptional Control of Cell Fate Determination in Antigen-Experienced CD8 T Cells. Cold Spring Harb Perspect Biol 2022; 14:a037945. [PMID: 34127445 PMCID: PMC8805646 DOI: 10.1101/cshperspect.a037945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Robust immunity to intracellular infections is mediated by antigen-specific naive CD8 T cells that become activated and differentiate into phenotypically and functionally diverse subsets of effector cells, some of which terminally differentiate and others that give rise to memory cells that provide long-lived protection. This developmental system is an outstanding model with which to elucidate how regulation of chromatin structure and transcriptional control establish gene expression programs that govern cell fate determination, insights from which are likely to be useful for informing the design of immunotherapeutic approaches to engineer durable immunity to infections and tumors. A unifying framework that describes how naive CD8 T cells develop into memory cells is still outstanding. We propose a model that incorporates a common early linear path followed by divergent paths that slowly lose capacity to interconvert and discuss classical and contemporary observations that support these notions, focusing on insights from transcriptional control and chromatin regulation.
Collapse
Affiliation(s)
- Shanel Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
5
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Bevington SL, Ng STH, Britton GJ, Keane P, Wraith DC, Cockerill PN. Chromatin Priming Renders T Cell Tolerance-Associated Genes Sensitive to Activation below the Signaling Threshold for Immune Response Genes. Cell Rep 2021; 31:107748. [PMID: 32521273 PMCID: PMC7296351 DOI: 10.1016/j.celrep.2020.107748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Immunological homeostasis in T cells is maintained by a tightly regulated signaling and transcriptional network. Full engagement of effector T cells occurs only when signaling exceeds a critical threshold that enables induction of immune response genes carrying an epigenetic memory of prior activation. Here we investigate the underlying mechanisms causing the suppression of normal immune responses when T cells are rendered anergic by tolerance induction. By performing an integrated analysis of signaling, epigenetic modifications, and gene expression, we demonstrate that immunological tolerance is established when both signaling to and chromatin priming of immune response genes are weakened. In parallel, chromatin priming of immune-repressive genes becomes boosted, rendering them sensitive to low levels of signaling below the threshold needed to activate immune response genes. Our study reveals how repeated exposure to antigens causes an altered epigenetic state leading to T cell anergy and tolerance, representing a basis for treating auto-immune diseases. Activation of immune response genes is suppressed in tolerant T cells Epigenetic priming of repressive genes is boosted when tolerance is established Inhibitory receptor genes have a lower threshold of activation in tolerant cells Induction of tolerance by peptides points toward a therapy for multiple sclerosis
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sky T H Ng
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham J Britton
- Precision Immunology Institute and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev 2021; 300:100-124. [PMID: 33682165 DOI: 10.1111/imr.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (TEFF ) and memory (TMEM ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating TMEM cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA
| |
Collapse
|
8
|
Kellaway SG, Keane P, Edginton-White B, Regha K, Kennett E, Bonifer C. Different mutant RUNX1 oncoproteins program alternate haematopoietic differentiation trajectories. Life Sci Alliance 2021; 4:4/2/e202000864. [PMID: 33397648 PMCID: PMC7812315 DOI: 10.26508/lsa.202000864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Using integrated genome-wide and phenotypic methods this study investigates four different mutant RUNX1 oncoproteins and reveals how they differentially contribute to aberrant haematopoiesis. Mutations of the haematopoietic master regulator RUNX1 are associated with acute myeloid leukaemia, familial platelet disorder and other haematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. The biochemical behaviour of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown. To address this question we compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. We show that each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. The development of novel treatments for RUNX1-driven diseases will therefore require individual consideration.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Kakkad Regha
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ella Kennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Bevington SL, Fiancette R, Gajdasik DW, Keane P, Soley JK, Willis CM, Coleman DJL, Withers DR, Cockerill PN. Stable Epigenetic Programming of Effector and Central Memory CD4 T Cells Occurs Within 7 Days of Antigen Exposure In Vivo. Front Immunol 2021; 12:642807. [PMID: 34108962 PMCID: PMC8181421 DOI: 10.3389/fimmu.2021.642807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Bevington SL, Keane P, Soley JK, Tauch S, Gajdasik DW, Fiancette R, Matei-Rascu V, Willis CM, Withers DR, Cockerill PN. IL-2/IL-7-inducible factors pioneer the path to T cell differentiation in advance of lineage-defining factors. EMBO J 2020; 39:e105220. [PMID: 32930455 PMCID: PMC7667885 DOI: 10.15252/embj.2020105220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Saskia Tauch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Alomairi J, Molitor AM, Sadouni N, Hussain S, Torres M, Saadi W, Dao LTM, Charbonnier G, Santiago-Algarra D, Andrau JC, Puthier D, Sexton T, Spicuglia S. Integration of high-throughput reporter assays identify a critical enhancer of the Ikzf1 gene. PLoS One 2020; 15:e0233191. [PMID: 32453736 PMCID: PMC7250416 DOI: 10.1371/journal.pone.0233191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
The Ikzf1 locus encodes the lymphoid specific transcription factor Ikaros, which plays an essential role in both T and B cell differentiation, while deregulation or mutation of IKZF1/Ikzf1 is involved in leukemia. Tissue-specific and cell identity genes are usually associated with clusters of enhancers, also called super-enhancers, which are believed to ensure proper regulation of gene expression throughout cell development and differentiation. Several potential regulatory regions have been identified in close proximity of Ikzf1, however, the full extent of the regulatory landscape of the Ikzf1 locus is not yet established. In this study, we combined epigenomics and transcription factor binding along with high-throughput enhancer assay and 4C-seq to prioritize an enhancer element located 120 kb upstream of the Ikzf1 gene. We found that deletion of the E120 enhancer resulted in a significant reduction of Ikzf1 mRNA. However, the epigenetic landscape and 3D topology of the locus were only slightly affected, highlighting the complexity of the regulatory landscape regulating the Ikzf1 locus.
Collapse
Affiliation(s)
- Jaafar Alomairi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Anne M. Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Wiam Saadi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Lan T. M. Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - David Santiago-Algarra
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Jean Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
12
|
Yahia-Cherbal H, Rybczynska M, Lovecchio D, Stephen T, Lescale C, Placek K, Larghero J, Rogge L, Bianchi E. NFAT primes the human RORC locus for RORγt expression in CD4 + T cells. Nat Commun 2019; 10:4698. [PMID: 31619674 PMCID: PMC6795897 DOI: 10.1038/s41467-019-12680-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (Th17) cells have crucial functions in mucosal immunity and the pathogenesis of several chronic inflammatory diseases. The lineage-specific transcription factor, RORγt, encoded by the RORC gene modulates Th17 polarization and function, as well as thymocyte development. Here we define several regulatory elements at the human RORC locus in thymocytes and peripheral CD4+ T lymphocytes, with CRISPR/Cas9-guided deletion of these genomic segments supporting their role in RORγt expression. Mechanistically, T cell receptor stimulation induces cyclosporine A-sensitive histone modifications and P300/CBP acetylase recruitment at these elements in activated CD4+ T cells. Meanwhile, NFAT proteins bind to these regulatory elements and activate RORγt transcription in cooperation with NF-kB. Our data thus demonstrate that NFAT specifically regulate RORγt expression by binding to the RORC locus and promoting its permissive conformation. The master transcription factor RORγt, encoded by the RORC gene, controls the polarization of CD4+ T cells expressing interleukin-17 (Th17). Here the authors describe several regulatory elements at the RORC locus that are recognized by NFAT and NFkB to induce a permissive epigenetic configuration of the RORC gene for RORγt expression and Th17 differentiation.
Collapse
Affiliation(s)
- Hanane Yahia-Cherbal
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magda Rybczynska
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Laboratoire Colloides et Matériaux Divisés, École supérieure de Physique et de Chimie industrielles, Paris, France
| | - Domenica Lovecchio
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Tharshana Stephen
- Institut Pasteur, Unité de Technologie et Service Cytométrie et Biomarqueurs (UTechS CB), Centre de recherche translationnelle (CRT), Paris, France
| | - Chloé Lescale
- Institut Pasteur, Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Paris, France
| | - Katarzyna Placek
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jérome Larghero
- Assistance Publique-Hopitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Cord Blood Bank; CIC de Biothérapies, CBT501, Paris, France
| | - Lars Rogge
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Elisabetta Bianchi
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.
| |
Collapse
|
13
|
Diao H, Pipkin M. Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation. F1000Res 2019; 8. [PMID: 31448086 PMCID: PMC6676507 DOI: 10.12688/f1000research.18211.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
The process by which naïve CD8 T cells become activated, accumulate, and terminally differentiate as well as develop into memory cytotoxic T lymphocytes (CTLs) is central to the development of potent and durable immunity to intracellular infections and tumors. In this review, we discuss recent studies that have elucidated ancestries of short-lived and memory CTLs during infection, others that have shed light on gene expression programs manifest in individual responding cells and chromatin remodeling events, remodeling factors, and conventional DNA-binding transcription factors that stabilize the differentiated states after activation of naïve CD8 T cells. Several models have been proposed to conceptualize how naïve cells become memory CD8 T cells. A parsimonious solution is that initial naïve cell activation induces metastable gene expression in nascent CTLs, which act as progenitor cells that stochastically diverge along pathways that are self-reinforcing and result in shorter- versus longer-lived CTL progeny. Deciphering how regulatory factors establish and reinforce these pathways in CD8 T cells could potentially guide their use in immunotherapeutic contexts.
Collapse
Affiliation(s)
- Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
14
|
Wang Z, Liu S, Tao Y. Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol 2019; 108:75-80. [PMID: 30784765 DOI: 10.1016/j.molimm.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
RNA polymerase II (Pol II) binds to promoter-proximal regions of inducible target genes that are controlled and not transcribed by several negative elongation factors, which is known as Pol II stalling. The occurrence of stalling is due to particular modification signatures and structural conformations of chromatin that affect Pol II elongation. The existence and physiological importance of Pol II stalling implies that there is a dynamic balance in chromatin regulation prior to endogenous or exogenous stimulation. In this review, we discuss the effects of ATP-dependent chromatin remodeling complexes and histone modification via transcriptional machinery Pol II C-terminal domain phosphorylated at serine 5 (S5P RNAPII) initiation and S2P RNAPII elongation on the expression or silence of specific genes after the production of activated or differentiated signals or cytokines. The response occurs immediately during immune cell development and function, and it also includes the generation of immunological memories. This summary suggests that the host immune response genes involve a novel mechanism of selectively regulatory chromatin remodeling, a fundamental and crucial aspect of epigenetic regulation.
Collapse
Affiliation(s)
- Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Uskoković V, Tang S, Wu VM. On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14491-14508. [PMID: 29625010 DOI: 10.1021/acsami.8b02520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Memory effects, despite being intrinsic to biological systems, are rarely potentiated in biomaterials. By exploring the transition between amorphous calcium phosphate (ACP) and hydroxyapatite (HAp) from different empirical angles, here, we attempt to set the basis for elicitation of structural memory effects in CPs. Two CPs precipitated under different degrees of saturation (DS), yielding HAp at a low DS and ACP at a high DS, were shown to evolve into structures with a high level of crystallographic similarity after their prolonged aging in the solution and served as the basis for this study. Amorphous-to-crystalline transition was abrupt in both precipitates, indicating an autocatalytic process preceded by considerable nucleation lag times, but it was more dynamic and proceeded in multiple stages in the precipitate formed at a higher DS, involving a greater degree of lattice rearrangements. ACP was found to exist in one of the two stoichiometrically and crystallographically different forms, one of which, amounting to ≥60 wt %, resembled tricalcium phosphate and transformed to HAp through the surface dissolution/reprecipitation mechanism and the other one, amounting to ≤20 wt %, was apatitic, enabling the transformation of ACP to HAp via martensitic, bulk lattice reordering phenomena. Large density of stacking faults was responsible for the comparatively high lattice strain, the property to which biogenic apatite owes its ability to accommodate foreign ions and act as a mineral reservoir for the body. Being the precursor for biogenic apatite during biomineralization and a thermodynamically logical intermediate in the ripening of HAp per the Ostwald law of stages, ACP proved to be more prone to structural transformation than the final and the most stable of the CP phases in this sequence of events: HAp. Amorphized upon gelation, two CPs transformed into HAp, albeit at different rates, which were higher for the material that had been crystalline prior to amorphization than for the one that had initially been amorphous, indicating the presence of a definite memory effect. The two HAp powders with different histories of formation also elicited different biological responses, including a Runx2 transcription factor expression in MC3T3-E1 osteoblasts, cell uptake efficiency, and antibacterial activity, extending the memory effect in HAp to the biological domain. The biological response was typically indistinct between the final products and their respective precursors but markedly different between the two products obtained by following different formation paths, confirming the presence of the given memory effect. It is suggested that the key to explaining the difference in the response between the materials differing in their route of formation lies in the direct dependence between the DS at which precipitation occurs and the rate of exchange of hydrated ions and ionic clusters across the particle surface in contact with a solution.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering , University of Illinois , 851 South Morgan Street , Chicago , Illinois 60607-7052 , United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , 9401 Jeronimo Road , Irvine , California 92618-1908 , United States
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , 9401 Jeronimo Road , Irvine , California 92618-1908 , United States
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , 9401 Jeronimo Road , Irvine , California 92618-1908 , United States
| |
Collapse
|
16
|
Neonatal Colonic Inflammation Epigenetically Aggravates Epithelial Inflammatory Responses to Injury in Adult Life. Cell Mol Gastroenterol Hepatol 2018; 6:65-78. [PMID: 29928672 PMCID: PMC6008258 DOI: 10.1016/j.jcmgh.2018.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Early life adversity is considered a risk factor for the development of gastrointestinal diseases, including inflammatory bowel disease. We hypothesized that early life colonic inflammation causes susceptibility to aggravated overexpression of interleukin (IL)1β. METHODS We developed a 2-hit rat model in which neonatal inflammation (NI) and adult inflammation (AI) were induced by trinitrobenzene sulfonic acid. RESULTS Aggravated immune responses were observed in NI + AI rats, including a sustained up-regulation of IL1β and other cytokines. In parallel with exacerbated loss of inhibitor of kappa B alpha expression, NI + AI rats showed hyperacetylation of histone H4K12 and increased V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A binding on the IL1B promoter, accompanied by high levels of norepinephrine/epinephrine. Propranolol, a β-blocker, markedly ameliorated the inflammatory response and IL1β overexpression by mitigating against epigenetic modifications. Adrenalectomy abrogated NI-induced disease susceptibility whereas yohimbine sensitized the epithelium for exacerbated immune response. The macrophages of NI rats produced more IL1β than controls after exposure to lipopolysaccharide (LPS), suggesting hypersensitization; incubation with LPS plus Foradil (Sigma, St. Louis, MO), a β2-agonist, induced a greater IL1β expression than LPS alone. Epinephrine and Foradil also exacerbated LPS-induced IL1β activation in human THP-1-derived macrophages, by increasing acetylated H4K12, and these increases were abrogated by propranolol. CONCLUSIONS NI sensitizes the colon epithelium for exacerbated IL1β activation by increasing stress hormones that induce histone hyperacetylation, allowing greater access of nuclear factor-κB to the IL1B promoter and rendering the host susceptible to aggravated immune responses. Our findings suggest that β blockers have a therapeutic potential for inflammatory bowel disease susceptibility and establish a novel paradigm whereby NI induces epigenetic susceptibility to inflammatory bowel disease.
Collapse
Key Words
- AI, adult inflammation
- ChIP, chromatin immunoprecipitation
- Ctl, control
- Early Life Adversity
- Epinephrine
- H4K12ac, acetylated HRK12
- HDAC, histone deacetylase
- Histone Acetylation
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- IκB, inhibitor of kappa B alpha
- LPS, lipopolysaccharide
- MPO, myeloperoxidase
- NF-κB
- NF-κB, nuclear factor-κB
- NI, neonatal inflammation
- PCR, polymerase chain reaction
- PMA, phorbol 12-myristate 13-acetate
- RNAP II, RNA polymerase II
- RelA, V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A
- TNBS, 2,4,6-trinitrobenzene sulfonic acid
- Tnf, tumor necrosis factor
- mRNA, messenger RNA
Collapse
|
17
|
Brignall R, Cauchy P, Bevington SL, Gorman B, Pisco AO, Bagnall J, Boddington C, Rowe W, England H, Rich K, Schmidt L, Dyer NP, Travis MA, Ott S, Jackson DA, Cockerill PN, Paszek P. Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2652-2667. [PMID: 28904128 PMCID: PMC5632840 DOI: 10.4049/jimmunol.1602033] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.
Collapse
Affiliation(s)
- Ruth Brignall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sarah L Bevington
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bethany Gorman
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela O Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christopher Boddington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - William Rowe
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin Rich
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark A Travis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
18
|
Bhat J, Helmuth J, Chitadze G, Kouakanou L, Peters C, Vingron M, Ammerpohl O, Kabelitz D. Stochastics of Cellular Differentiation Explained by Epigenetics: The Case of T-Cell Differentiation and Functional Plasticity. Scand J Immunol 2017; 86:184-195. [PMID: 28799233 DOI: 10.1111/sji.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic marks including histone modifications and DNA methylation are associated with the regulation of gene expression and activity. In addition, an increasing number of non-coding RNAs with regulatory activity on gene expression have been identified. Alongside, technological advancements allow for the analysis of these mechanisms with high resolution up to the single-cell level. For instance, the assay for transposase-accessible chromatin using sequencing (ATAC-seq) simultaneously probes for chromatin accessibility and nucleosome positioning. Thus, it provides information on two levels of epigenetic regulation. Development and differentiation of T cells into functional subset cells including memory T cells are dynamic processes driven by environmental signals. Here, we briefly review the current knowledge of how epigenetic regulation contributes to subset specification, differentiation and memory development in T cells. Specifically, we focus on epigenetic mechanisms differentially active in the two distinct T cell populations expressing αβ or γδ T cell receptors. We also discuss examples of epigenetic alterations of T cells in autoimmune diseases. DNA methylation and histone acetylation are subject to modification by several classes of 'epigenetic modifiers', some of which are in clinical use or in preclinical development. Therefore, we address the impact of some epigenetic modifiers on T-cell activation and differentiation, and discuss possible synergies with T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- J Bhat
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - J Helmuth
- Otto-Warburg-Laboratories: Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - G Chitadze
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - L Kouakanou
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - C Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - O Ammerpohl
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - D Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
19
|
Santiago-Algarra D, Dao LTM, Pradel L, España A, Spicuglia S. Recent advances in high-throughput approaches to dissect enhancer function. F1000Res 2017; 6:939. [PMID: 28690838 PMCID: PMC5482341 DOI: 10.12688/f1000research.11581.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
The regulation of gene transcription in higher eukaryotes is accomplished through the involvement of transcription start site (TSS)-proximal (promoters) and -distal (enhancers) regulatory elements. It is now well acknowledged that enhancer elements play an essential role during development and cell differentiation, while genetic alterations in these elements are a major cause of human disease. Many strategies have been developed to identify and characterize enhancers. Here, we discuss recent advances in high-throughput approaches to assess enhancer activity, from the well-established massively parallel reporter assays to the recent clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based technologies. We highlight how these approaches contribute toward a better understanding of enhancer function, eventually leading to the discovery of new types of regulatory sequences, and how the alteration of enhancers can affect transcriptional regulation.
Collapse
Affiliation(s)
| | - Lan T M Dao
- Aix-Marseille University, TAGC, Marseille, France
| | - Lydie Pradel
- Aix-Marseille University, TAGC, Marseille, France
| | | | | |
Collapse
|
20
|
Bevington SL, Cauchy P, Withers DR, Lane PJL, Cockerill PN. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Front Immunol 2017; 8:204. [PMID: 28316598 PMCID: PMC5334638 DOI: 10.3389/fimmu.2017.00204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
21
|
España AP, Santiago-Algarra D, Pradel L, Spicuglia S. [High-throughput approaches to study cis-regulating elements]. Biol Aujourdhui 2017; 211:271-280. [PMID: 29956654 DOI: 10.1051/jbio/2018015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Gene expression in higher eukaryotes is regulated through the involvement of transcription start site (TSS)-proximal (promoters) and -distal (enhancers) regulatory elements. Enhancer elements play an essential role during development and cell differentiation, while genetic alterations in these elements are a major cause of human disease. Here, we discuss recent advances in high-throughput approaches to identify and characterize enhancer elements, from the well-established massively parallel reporter assays to the recent clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based technologies. We discuss how these approaches contribute toward a better understanding of enhancer function in normal and pathological conditions.
Collapse
Affiliation(s)
- Alexandre P España
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - David Santiago-Algarra
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Lydie Pradel
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Salvatore Spicuglia
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|