1
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
Lu Y, Qin M, Qi X, Yang M, Zhai F, Zhang J, Yan Z, Yan L, Qiao J, Yuan P. Sex differences in human pre-gastrulation embryos. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2721-y. [PMID: 39327393 DOI: 10.1007/s11427-024-2721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Human fetuses exhibit notable sex differences in growth rate and response to the intrauterine environment, yet their origins and underlying mechanisms remain uncertain. Here, we conduct a detailed investigation of sex differences in human pre-gastrulation embryos. The lower methylation and incomplete inactivation of the X chromosome in females, as well as the sex-specific cell-cell communication patterns, contribute to sex-differential transcription. Male trophectoderm is more inclined toward syncytiotrophoblast differentiation and exhibits a stronger hormone secretion capacity, while female trophectoderm tends to retain cytotrophoblast program with stronger mitochondrial function as well as higher vasculogenesis and immunotolerance signals. Male primitive endoderm initiates the anterior visceral endoderm transcriptional program earlier than females. The cell cycle activities of the epiblast and primitive endoderm are higher in males compared to females, while the situation is opposite in the trophectoderm. In conclusion, our study provides in-depth insights into the sex differences in human pre-gastrulation embryos and contributes to unraveling the origins of the sex differences in human fetal development.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jiaqi Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
3
|
Quintana GR, Pfaus JG. Do Sex and Gender Have Separate Identities? ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:2957-2975. [PMID: 39105983 PMCID: PMC11335805 DOI: 10.1007/s10508-024-02933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 08/07/2024]
Abstract
The largely binary nature of biological sex and its conflation with the socially constructed concept of gender has created much strife in the last few years. The notion of gender identity and its differences and similarities with sex have fostered much scientific and legal confusion and disagreement. Settling the debate can have significant repercussions for science, medicine, legislation, and people's lives. The present review addresses this debate though different levels of analysis (i.e., genetic, anatomical, physiological, behavioral, and sociocultural), and their implications and interactions. We propose a rationale where both perspectives coexist, where diversity is the default, establishing a delimitation to the conflation between sex and gender, while acknowledging their interaction. Whereas sex in humans and other mammals is a biological reality that is largely binary and based on genes, chromosomes, anatomy, and physiology, gender is a sociocultural construct that is often, but not always, concordant with a person' sex, and can span a multitude of expressions.
Collapse
Affiliation(s)
- Gonzalo R Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales, Universidad de Tarapacá, Arica, Arica y Parinacota, Chile
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, 18200, Czech Republic.
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
4
|
Lima OJF, Ribeiro JDS, Vasconcelos JDC, Ferraz MFI, Silva CEDMTDRE, Barros WMA, Vieira GR, David MCMM, Matos RJB. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats. Behav Brain Res 2024; 460:114817. [PMID: 38122904 DOI: 10.1016/j.bbr.2023.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.
Collapse
Affiliation(s)
- Odair José Farias Lima
- Physical Education and Sports Science Nucleus, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | | | | | | | | | - Waleska Maria Almeida Barros
- Multicenter Postgraduate Program in Physiological Sciences, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | - Gilberto Ramos Vieira
- Postgraduate Program in Physical Education, Health Sciences Center, Federal University of Pernambuco, Brazil
| | | | | |
Collapse
|
5
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Rodríguez-Montes L, Ovchinnikova S, Yuan X, Studer T, Sarropoulos I, Anders S, Kaessmann H, Cardoso-Moreira M. Sex-biased gene expression across mammalian organ development and evolution. Science 2023; 382:eadf1046. [PMID: 37917687 PMCID: PMC7615307 DOI: 10.1126/science.adf1046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/18/2023] [Indexed: 11/04/2023]
Abstract
Sexually dimorphic traits are common among mammals and are specified during development through the deployment of sex-specific genetic programs. Because little is known about these programs, we investigated them using a resource of gene expression profiles in males and females throughout the development of five organs in five mammals (human, mouse, rat, rabbit, and opossum) and a bird (chicken). We found that sex-biased gene expression varied considerably across organs and species and was often cell-type specific. Sex differences increased abruptly around sexual maturity instead of increasing gradually during organ development. Finally, sex-biased gene expression evolved rapidly at the gene level, with differences between organs in the evolutionary mechanisms used, but more slowly at the cellular level, with the same cell types being sexually dimorphic across species.
Collapse
Affiliation(s)
- Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Xuefei Yuan
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Tania Studer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Simon Anders
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | |
Collapse
|
7
|
Whatley EG, Truong TT, Harvey AJ, Gardner DK. Preimplantation embryo exposure to ketone bodies exerts sex-specific effects on mouse fetal and placental transcriptomes. Reprod Biomed Online 2023; 47:103320. [PMID: 37748369 DOI: 10.1016/j.rbmo.2023.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/27/2023]
Abstract
RESEARCH QUESTION Does in vitro exposure of preimplantation mouse embryos to the ketone bodies β-hydroxybutyrate (βOHB) and acetoacetate (AcAc) impact post-transfer fetal and placental gene expression? DESIGN Blastocysts cultured in vitro with or without 2 mmol/l βOHB alone ('βOHB') or combined with 0.8 mmol/l AcAc ('Keto') underwent embryo transfer. Transcriptional profiles of sexed placenta, liver and brain at gestational day 14.5 were examined via RNA sequencing and DAVID functional analysis. RESULTS A sexually dimorphic response to in vitro ketone exposure was observed. Both βOHB and Keto exposure down-regulated genes related to oxidative phosphorylation specifically in female liver. βOHB down-regulated female placental steroid biosynthetic processes, while Keto treatment up-regulated genes relevant to blood vessel formation and cell migration in male placenta. Brain transcriptomes were minimally affected. X-linked genes and chromatin modifiers were identified as differentially expressed in both liver and placenta, alluding to a sex-specific regulatory mechanism. CONCLUSIONS Transient preimplantation ketone exposure perturbs sex-specific fetal liver and placental gene expression, demonstrating a developmental programming effect that warrants future investigation of the postnatal metabolic health of male and female offspring.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
8
|
Richardson V, Engel N, Kulathinal RJ. Comparative developmental genomics of sex-biased gene expression in early embryogenesis across mammals. Biol Sex Differ 2023; 14:30. [PMID: 37208698 DOI: 10.1186/s13293-023-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Mammalian gonadal sex is determined by the presence or absence of a Y chromosome and the subsequent production of sex hormones contributes to secondary sexual differentiation. However, sex chromosome-linked genes encoding dosage-sensitive transcription and epigenetic factors are expressed well before gonad formation and have the potential to establish sex-biased expression that persists beyond the appearance of gonadal hormones. Here, we apply a comparative bioinformatics analysis on a pair of published single-cell datasets from mouse and human during very early embryogenesis-from two-cell to pre-implantation stages-to characterize sex-specific signals and to assess the degree of conservation among early acting sex-specific genes and pathways. RESULTS Clustering and regression analyses of gene expression across samples reveal that sex initially plays a significant role in overall gene expression patterns at the earliest stages of embryogenesis which potentially may be the byproduct of signals from male and female gametes during fertilization. Although these transcriptional sex effects rapidly diminish, sex-biased genes appear to form sex-specific protein-protein interaction networks across pre-implantation stages in both mammals providing evidence that sex-biased expression of epigenetic enzymes may establish sex-specific patterns that persist beyond pre-implantation. Non-negative matrix factorization (NMF) on male and female transcriptomes generated clusters of genes with similar expression patterns across sex and developmental stages, including post-fertilization, epigenetic, and pre-implantation ontologies conserved between mouse and human. While the fraction of sex-differentially expressed genes (sexDEGs) in early embryonic stages is similar and functional ontologies are conserved, the genes involved are generally different in mouse and human. CONCLUSIONS This comparative study uncovers much earlier than expected sex-specific signals in mouse and human embryos that pre-date hormonal signaling from the gonads. These early signals are diverged with respect to orthologs yet conserved in terms of function with important implications in the use of genetic models for sex-specific disease.
Collapse
Affiliation(s)
- Victorya Richardson
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Nora Engel
- Department of Cancer Biology, Lewis Katz School of Medicine, Fels Cancer Institute for Personalized Medicine, Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Rob J Kulathinal
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
9
|
Batdorj E, AlOgayil N, Zhuang QKW, Galvez JH, Bauermeister K, Nagata K, Kimura T, Ward MA, Taketo T, Bourque G, Naumova AK. Genetic variation in the Y chromosome and sex-biased DNA methylation in somatic cells in the mouse. Mamm Genome 2023; 34:44-55. [PMID: 36454369 PMCID: PMC9947081 DOI: 10.1007/s00335-022-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.
Collapse
Affiliation(s)
- Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Kei Nagata
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, HonoluluHonolulu, HIHI, 96822, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
10
|
Sakka R, Abdelhedi F, Sellami H, Pichon B, Lajmi Y, Mnif M, Kebaili S, Derbel R, Kamoun H, Gdoura R, Delbaere A, Desir J, Abramowicz M, Vialard F, Dupont JM, Ammar-Keskes L. An unusual familial Xp22.12 microduplication including EIF1AX: A novel candidate dosage-sensitive gene for premature ovarian insufficiency. Eur J Med Genet 2022; 65:104613. [PMID: 36113757 DOI: 10.1016/j.ejmg.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
We report on the results of array-CGH and Whole exome sequencing (WES) studies carried out in a Tunisian family with 46,XX premature ovarian insufficiency (POI). This study has led to the identification of a familial Xp22.12 tandem duplication with a size of 559.4 kb, encompassing only three OMIM genes (RPS6KA3, SH3KBP1and EIF1AX), and a new heterozygous variant in SPIDR gene: NM_001080394.3:c.1845_1853delTATAATTGA (p.Ile616_Asp618del) segregating with POI. Increased mRNA expression levels were detected for SH3KBP1 and EIF1AX, while a normal transcript level for RPS6KA3 was detected in the three affected family members, explaining the absence of intellectual disability (ID). To the best of our knowledge, this is the first duplication involving the Xp22.12 region, reported in a family without ID, but rather with secondary amenorrhea (SA) and female infertility. As EIF1AX is a regulatory gene escaping X-inactivation, which has an extreme dosage sensitivity and highly expressed in the ovary, we suggest that this gene might be a candidate gene for ovarian function. Homozygous nonsense pathogenic variants of SPIDR gene have been reported in familial cases in POI. It has been suggested that chromosomal instability associated with SPIDR molecular defects supports the role of SPIDR protein in double-stranded DNA damage repair in vivo in humans and its causal role in POI. In this family, the variant (p.Ile616_Asp618del), present in a heterozygous state, is located in the domain that interacts with BLM and might disrupt the BLM binding ability of SPIDR protein. These findings strengthen the hypothesis that the additional effect of this variant could lead to POI in this family. Although the work represents the first evidence that EIF1AX duplication might be responsible for POI through its over-expression, further functional studies are needed to clarify and prove EIF1AX involvement in POI phenotype.
Collapse
Affiliation(s)
- Rim Sakka
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatma Abdelhedi
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Hanen Sellami
- Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, Nabeul, Tunisia; Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Bruno Pichon
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yosra Lajmi
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Sahbi Kebaili
- Department of Gynecology, HediChaker Hospital, Sfax, Tunisia
| | - Rihab Derbel
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Radhouane Gdoura
- Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, UniversitéLibre de Bruxelles, Brussels, Belgium
| | - Julie Desir
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - François Vialard
- Genetics Department, CHI Poissy St Germain-en-Laye, F-78300, Poissy, France; RHuMA Team, UMR-BREED, INRAE-UVSQ-ENVA, UFR-SVS, F-78180, Montigny le Bretonneux, France
| | - Jean-Michel Dupont
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Leila Ammar-Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
11
|
de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 2022; 11:e80008. [PMID: 35916372 PMCID: PMC9439683 DOI: 10.7554/elife.80008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.
Collapse
Affiliation(s)
- Marc de Manuel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Felix L Wu
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
12
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
14
|
AlOgayil N, Bauermeister K, Galvez JH, Venkatesh VS, Zhuang QKW, Chang ML, Davey RA, Zajac JD, Ida K, Kamiya A, Taketo T, Bourque G, Naumova AK. Distinct roles of androgen receptor, estrogen receptor alpha, and BCL6 in the establishment of sex-biased DNA methylation in mouse liver. Sci Rep 2021; 11:13766. [PMID: 34215813 PMCID: PMC8253761 DOI: 10.1038/s41598-021-93216-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism in gene regulation, including DNA methylation, is the main driver of sexual dimorphism in phenotypes. However, the questions of how and when sex shapes DNA methylation remain unresolved. Recently, using mice with different combinations of genetic and phenotypic sex, we identified sex-associated differentially methylated regions (sDMRs) that depended on the sex phenotype. Focusing on a panel of validated sex-phenotype dependent male- and female-biased sDMRs, we tested the developmental dynamics of sex bias in liver methylation and the impacts of mutations in the androgen receptor, estrogen receptor alpha, or the transcriptional repressor Bcl6 gene. True hermaphrodites that carry both unilateral ovaries and contralateral testes were also tested. Our data show that sex bias in methylation either coincides with or follows sex bias in the expression of sDMR-proximal genes, suggesting that sex bias in gene expression may be required for demethylation at certain sDMRs. Global ablation of AR, ESR1, or a liver-specific loss of BCL6, all alter sDMR methylation, whereas presence of both an ovary and a testis delays the establishment of male-type methylation levels in hermaphrodites. Moreover, the Bcl6-LKO shows dissociation between expression and methylation, suggesting a distinct role of BCL6 in demethylation of intragenic sDMRs.
Collapse
Affiliation(s)
- Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | | | | | - Varun S Venkatesh
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | | | - Matthew L Chang
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 1J3, Canada.,Department of Surgery, McGill University, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Canadian Centre for Computational Genomics, Montréal, QC, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 1J3, Canada. .,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int J Mol Sci 2021; 22:ijms22126426. [PMID: 34204008 PMCID: PMC8232708 DOI: 10.3390/ijms22126426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Collapse
Affiliation(s)
- Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Meriem Hamdi
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Fernando Perez-Sanz
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Dimitrios Rizos
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Pilar Coy
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
- Correspondence:
| |
Collapse
|
16
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Xiao Y, Sosa F, de Armas LR, Pan L, Hansen PJ. An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis. J Dairy Sci 2021; 104:3722-3735. [PMID: 33455782 PMCID: PMC8050830 DOI: 10.3168/jds.2020-19497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Gene expression analysis in preimplantation embryos has been used for answering fundamental questions related to development, prediction of pregnancy outcome, and other topics. Limited amounts of mRNA in preimplantation embryos hinders progress in studying the preimplantation embryo. Here, a method was developed involving direct synthesis and specific-target preamplification (STA) of cDNA for gene expression analysis in single blastocysts. Effective cell lysis and genomic DNA removal steps were incorporated into the method. In addition, conditions for real-time PCR of cDNA generated from these processes were improved. By using this system, reliable embryo sexing results based on expression of sex-chromosome linked genes was demonstrated. Calibration curve analysis of PCR results using the Fluidigm Biomark microfluidic platform (Fluidigm, South San Francisco, CA) was performed to evaluate 96 STA cDNA from single blastocysts. In total, 93.75% of the genes were validated. Robust amplification was detected even when STA cDNA from a single blastocyst was diluted 1,024-fold. Further analysis showed that within-assay variation increased when cycle threshold values exceeded 18. Overall, STA quantitative real-time PCR analysis was shown to be useful for analysis of gene expression of multiple specific targets in single blastocysts.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Li Pan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
18
|
Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak. Reprod Sci 2020; 28:801-818. [PMID: 33150487 DOI: 10.1007/s43032-020-00355-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023]
Abstract
Sex differences in human placenta exist from early pregnancy to term, however, it is unclear whether these differences are driven solely by sex chromosome complement or are subject to differential sex hormonal regulation. Here, we survey the human chorionic villus (CV) transcriptome for sex-linked signatures from 11 to 16 gestational weeks, corresponding to the first window of increasing testis-derived androgen production in male fetuses. Illumina HiSeq RNA sequencing was performed on Lexogen Quantseq 3' libraries derived from CV biopsies (n = 11 females, n = 12 males). Differential expression (DE) was performed to identify sex-linked transcriptional signatures, followed by chromosome mapping, pathway analysis, predicted protein interaction, and post-hoc linear regressions to identify transcripts that trend over time. We observe 322 transcripts DE between male and female CV from 11 to 16 weeks, with 22 transcripts logFC > 1. Contrary to our predictions, the difference between male and female expression of DE autosomal genes was more pronounced at the earlier gestational ages. In females, we found selective upregulation of extracellular matrix components, along with a number of X-linked genes. In males, DE transcripts centered on chromosome 19, with mitochondrial, immune, and pregnancy maintenance-related transcripts upregulated. Among the highest differentially expressed autosomal genes were CCRL2, LGALS13, and LGALS14, which are known to regulate immune cell interactions. Our results provide insight into sex-linked gene expression in late first and early second trimester developing human placenta and lay the groundwork to understand the mechanistic origins of sex differences in prenatal development.
Collapse
|
19
|
Zhuang QKW, Galvez JH, Xiao Q, AlOgayil N, Hyacinthe J, Taketo T, Bourque G, Naumova AK. Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells 2020; 9:E1436. [PMID: 32527045 PMCID: PMC7349295 DOI: 10.3390/cells9061436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Qian Xiao
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA;
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jeffrey Hyacinthe
- Department of Quantitative Life Sciences, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Anna K. Naumova
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
20
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Carvalheira LDR, Tríbulo P, Borges ÁM, Hansen PJ. Sex affects immunolabeling for histone 3 K27me3 in the trophectoderm of the bovine blastocyst but not labeling for histone 3 K18ac. PLoS One 2019; 14:e0223570. [PMID: 31600298 PMCID: PMC6786533 DOI: 10.1371/journal.pone.0223570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/18/2019] [Indexed: 11/29/2022] Open
Abstract
The mammalian embryo displays sexual dimorphism in the preimplantation period. Moreover, competence of the embryo to develop is dependent on the sire from which the embryo is derived and can be modified by embryokines produced by the endometrium such as colony stimulating factor 2 (CSF2). The preimplantation period is characterized by large changes in epigenetic modifications of DNA and histones. It is possible, therefore, that effects of sex, sire, and embryo regulatory molecules are mediated by changes in epigenetic modifications. Here it was tested whether global levels of two histone modifications in the trophectoderm of the bovine blastocyst were affected by sex, sire, and CSF2. It was found that amounts of immunolabeled H3K27me3 were greater (P = 0.030) for male embryos than female embryos. Additionally, labeling for H3K27me3 and H3K18ac depended upon the bull from which embryos were derived. Although CSF2 reduced the proportion of embryos developing to the blastocyst, there was no effect of CSF2 on labeling for H3K27me3 or H3K18ac. Results indicate that the blastocyst trophoctoderm can be modified epigenetically by embryo sex and paternal inheritance through alterations in histone epigenetic marks.
Collapse
Affiliation(s)
- Luciano de R. Carvalheira
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Álan M. Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
22
|
Deegan DF, Engel N. Sexual Dimorphism in the Age of Genomics: How, When, Where. Front Cell Dev Biol 2019; 7:186. [PMID: 31552249 PMCID: PMC6743004 DOI: 10.3389/fcell.2019.00186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
In mammals, sex chromosomes start to program autosomal gene expression and epigenetic patterns very soon after fertilization. Yet whether the resulting sex differences are perpetuated throughout development and how they connect to the sex-specific expression patterns in adult tissues is not known. There is a dearth of information on the timing and continuity of sex biases during development. It is also unclear whether sex-specific selection operates during embryogenesis. On the other hand, there is mounting evidence that all adult tissues exhibit sex-specific expression patterns, some of which are independent of hormonal influence and due to intrinsic regulatory effects of the sex chromosome constitution. There are many diseases with origins during embryogenesis that also exhibit sex biases. Epigenetics has provided us with viable mechanisms to explain how the genome stores the memory of developmental events. We propose that some of these marks can be traced back to the sex chromosomes, which interact with the autosomes and establish sex-specific epigenetic features soon after fertilization. Sex-biased epigenetic marks that linger after reprograming may reveal themselves at the transcriptional level at later developmental stages and possibly, throughout the lifespan. Detailed molecular information on the ontogeny of sex biases would also elucidate the sex-specific selective pressures operating on embryos and how compensatory mechanisms evolved to resolve sexual conflict.
Collapse
Affiliation(s)
| | - Nora Engel
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Deegan DF, Karbalaei R, Madzo J, Kulathinal RJ, Engel N. The developmental origins of sex-biased expression in cardiac development. Biol Sex Differ 2019; 10:46. [PMID: 31488212 PMCID: PMC6727560 DOI: 10.1186/s13293-019-0259-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Expression patterns between males and females vary in every adult tissue, even in organs with no conspicuous dimorphisms such as the heart. While studies of male and female differences have traditionally focused on the influence of sex hormones, these do not account for all the differences at the molecular and epigenetic levels. We previously reported that a substantial number of genes were differentially expressed in male and female mouse embryonic stem (ES) cells and revealed dose-dependent enhancer activity in response to Prdm14, a key pluripotency factor expressed more highly in female ES cells. In this work, we investigated the role of Prdm14 in establishing sex-specific gene expression networks. We surveyed the sex-specific landscape in early embryogenesis with special reference to cardiac development. We generated sex-specific co-expression networks from mouse ES cells, examined the presence of sex-specific chromatin domains, and analyzed previously published datasets from different developmental time points to characterize how sex-biased gene expression waxes and wanes to evaluate whether sex-biased networks are detectable throughout heart development. RESULTS We performed ChIP-seq on male and female mouse ES cells to determine differences in chromatin status. Our study reveals sex-biased histone modifications, underscoring the potential for the sex chromosome complement to prime the genome differently in early development with consequences for later expression biases. Upon differentiation of ES cells to cardiac precursors, we found sex-biased expression of key transcription and epigenetic factors, some of which persisted from the undifferentiated state. Using network analyses, we also found that Prdm14 plays a prominent role in regulating a subset of dimorphic expression patterns. To determine whether sex-biased expression is present throughout cardiogenesis, we re-analyzed data from two published studies that sampled the transcriptomes of mouse hearts from 8.5 days post-coitum embryos to neonates and adults. We found sex-biased expression at every stage in heart development, and interestingly, identified a subset of genes that exhibit the same bias across multiple cardiogenic stages. CONCLUSIONS Overall, our results support the existence of sexually dimorphic gene expression profiles and regulatory networks at every stage of cardiac development, some of which may be established in early embryogenesis and epigenetically perpetuated.
Collapse
Affiliation(s)
- Daniel F. Deegan
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Reza Karbalaei
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Jozef Madzo
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Rob J. Kulathinal
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Nora Engel
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| |
Collapse
|
24
|
Peeters SB, Korecki AJ, Baldry SEL, Yang C, Tosefsky K, Balaton BP, Simpson EM, Brown CJ. How do genes that escape from X-chromosome inactivation contribute to Turner syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:28-35. [PMID: 30779428 DOI: 10.1002/ajmg.c.31672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
X-chromosome inactivation generally results in dosage equivalence for expression of X-linked genes between 46,XY males and 46,XX females. The 20-30% of genes that escape silencing are thus candidates for having a role in the phenotype of Turner syndrome. Understanding which genes escape from silencing, and how they avoid this chromosome-wide inactivation is therefore an important step toward understanding Turner Syndrome. We have examined the mechanism of escape using a previously reported knock-in of a BAC containing the human escape gene RPS4X in mouse. We now demonstrate that escape from inactivation for RPS4X is already established by embryonic Day 9.5, and that both silencing and escape are faithfully maintained across the lifespan. No overt abnormalities were observed for transgenic mice up to 1 year of age despite robust transcription of the human RPS4X gene with no detectable downregulation of the mouse homolog. However, there was no significant increase in protein levels, suggesting translational compensation in the mouse. Finally, while many of the protein-coding genes have been assessed for their inactivation status, less is known about the X-linked RNA genes, and we propose that for many microRNA genes their inactivation status can be predicted as they are intronic to genes for which the inactivation status is known.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Sarah E L Baldry
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Christine Yang
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kira Tosefsky
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Naumova AK. When Does the Epigenome Become "Sexy"? Bioessays 2018; 40:e1800120. [PMID: 30009513 DOI: 10.1002/bies.201800120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Anna K Naumova
- Departments of Obstetrics and Gynecology and Human Genetics, McGill University, Montreal,QC, Canada H4A 3J1
| |
Collapse
|