1
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
2
|
Fiore PF, Di Matteo S, Tumino N, Mariotti FR, Pietra G, Ottonello S, Negrini S, Bottazzi B, Moretta L, Mortier E, Azzarone B. Interleukin-15 and cancer: some solved and many unsolved questions. J Immunother Cancer 2021; 8:jitc-2020-001428. [PMID: 33203664 PMCID: PMC7674108 DOI: 10.1136/jitc-2020-001428] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.
Collapse
Affiliation(s)
| | - Sabina Di Matteo
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Gabriella Pietra
- Immuology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
| | - Selene Ottonello
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute, Milan, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erwan Mortier
- University of Nantes, CNRS, Inserm, CRCINA, University of Nantes, Nantes, France .,Immunotherapy, Graft, Oncology, LabEx IGO, Nantes, France
| | - Bruno Azzarone
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Nguyen V, Ameri K, Huynh K, Fredkin M, Grona R, Larpthaveesarp A, Gonzalez F, Yeghiazarians Y. Interleukin-15 modulates the response of cortical neurons to ischemia. Mol Cell Neurosci 2021; 115:103658. [PMID: 34343628 DOI: 10.1016/j.mcn.2021.103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Stroke is a major cause of death and disability in the United States. Current acute stroke therapy consists of clot-dissolving drugs, catheter-based interventions and physical rehabilitation. To date, there are no therapies that directly enhance neuronal survival after a stroke. Previous work from our lab demonstrated that Interleukin-15 (IL-15) peptide could rescue cardiomyocytes subjected to hypoxia. We sought to extend these findings to cortical neurons since IL-15 has been implicated to have an important role in neuronal homeostasis. METHODS We have evaluated the effect of IL-15 peptide on primary cortical neurons derived from embryonic rats in vitro under conditions of anoxia and glucose deprivation, and in vivo following middle cerebral artery occlusion. RESULTS IL-15 administration rescued neuronal cells subjected to anoxia coupled with glucose deprivation (AGD), as well as with reoxygenation. A hallmark of stroke is the ischemic microenvironment and associated oxidative stress, which results in DNA damage and ER stress, both of which contribute to neuronal cell damage and death. The expression of anoxia, ER stress, and DNA damage factors/markers was evaluated via western blot and correlated with the cellular survival effects of IL-15 in vitro. In addition, IL-15 effect of alleviating ER stress and increasing cell survival was also observed in vivo. INTERPRETATION Our data indicate, for the first time, that administration of the pleiotropic factor IL-15 reduces neuronal cell death during AGD, which correlates with modulation of multiple cellular stress pathways.
Collapse
Affiliation(s)
- Vien Nguyen
- Department of Medicine, University of California San Francisco (UCSF), USA.
| | - Kurosh Ameri
- Department of Medicine, University of California San Francisco (UCSF), USA
| | - Kevin Huynh
- Department of Medicine, University of California San Francisco (UCSF), USA
| | - Maxwell Fredkin
- Department of Medicine, University of California San Francisco (UCSF), USA
| | - Reinier Grona
- Department of Medicine, University of California San Francisco (UCSF), USA
| | | | | | - Yerem Yeghiazarians
- Department of Medicine, University of California San Francisco (UCSF), USA; Helen Diller Family Comprehensive Cancer Center, UCSF, USA
| |
Collapse
|
4
|
Guo L, Liu MF, Huang JN, Li JM, Jiang J, Wang JA. Role of interleukin-15 in cardiovascular diseases. J Cell Mol Med 2020; 24:7094-7101. [PMID: 32406586 PMCID: PMC7339208 DOI: 10.1111/jcmm.15296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐15 is a recently identified cytokine, which belongs to the interleukin‐2(IL‐2) family, and plays an important role in innate and adaptive immunoreaction. Given the fact that the structure of IL‐15 is partially similar to IL‐2, they share some common biological effects, including immunoregulation. IL‐2 was proven to protect cardiac function in mouse myocardial infarction models. Cardiovascular diseases (CVDs) dominate the cause of mortality worldwide. Besides atherosclerosis, inflammation is also widely involved in the pathogenesis of many CVDs including hypertension, heart failure (HF) and aneurysm. IL‐15, as a pro‐inflammatory cytokine, is up‐regulated in some cardiovascular diseases, such as myocardial infarction and atherosclerosis. The current understanding of IL‐15, including its signal pathway and cellular function, was described. Furthermore, IL‐15 has a protective effect in myocardial infarction and myocarditis by decreasing cardiomyocyte death and improving heart function. The inhibited effect of IL‐15 in ductus arteriosus (DA) should be focused on. IL‐15 promoted atherogenesis. IL‐15 may be a good target in treatment of cardiovascular diabetology. Finally, future research direction of IL‐15 deserves attention. Since IL‐15 plays several roles in CVDs, understanding the role of the IL‐15/IL‐15R system may provide a scientific basis for the development of new approaches that use IL‐15 for the treatment of CVDs.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ming-Fei Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ji-Niu Huang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jia-Min Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jian-An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Verboogen DRJ, Revelo NH, ter Beest M, van den Bogaart G. Interleukin-6 secretion is limited by self-signaling in endosomes. J Mol Cell Biol 2019; 11:144-157. [PMID: 30016456 PMCID: PMC6392102 DOI: 10.1093/jmcb/mjy038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/04/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cells producing cytokines often express the receptor for the same cytokine, which makes them prone to autocrine signaling. How cytokine release and signaling are regulated in the same cell is not understood. In this study, we demonstrate that signaling by exogenous and self-synthesized inflammatory cytokine interleukin-6 (IL-6) within endosomal compartments acts as a cellular brake that limits the synthesis of IL-6. Our data show that IL-6 is internalized by dendritic cells and signals from endosomal compartments containing the IL-6 receptor. Newly synthesized IL-6 also traffics via these endosomal compartments and signals in transit to the plasma membrane. This allows activation of STAT3 which in turn limits toll-like receptor 4 stimulant lipopolysaccharide (LPS) triggered transcription of IL-6. Long-term exposure to LPS removes this brake via inhibition of STAT3 by increased expression of suppressor of cytokine signaling 3 and results in fully fledged IL-6 production. This transient regulation could prevent excessive IL-6 production during early infections.
Collapse
Affiliation(s)
- Daniëlle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| |
Collapse
|
7
|
Ding JY, Wang ZH, Zhang ZZ, Cui XR, Hong YY, Liu QQ. Effects of three IL-15 variants on NCI-H446 cell proliferation and expression of cell cycle regulatory molecules. Oncotarget 2017; 8:108108-108117. [PMID: 29296227 PMCID: PMC5746129 DOI: 10.18632/oncotarget.22550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Interleukin 15 (IL-15) is a cytokine exhibiting antitumor characteristic similar to that of IL-2. However, in human tissues and cells, IL-15 expression and secretion is very limited, suggesting IL-15 functions mainly intracellularly. In the present study, we assessed the effects of transfecting NCI-H446 small cell lung cancer cells with genes encoding three IL-15 variants: prototypical IL-15, mature IL-15 peptide, and modified IL-15 in which the IL-2 signal peptide is substituted for the native signal peptide. NCI-H446 cells transfected with empty plasmid served as the control group. We found that IL-15 transfection effectively inhibited NCI-H446 cell proliferation and arrested cell cycle progression, with the modified IL-15 carrying the IL-2 signal peptide exerting the greatest effect. Consistent with those findings, expression each of the three IL-15 variants reduced growth of NCI-H446 xenograph tumors, and the modified IL-15 again showed the greatest effect. In addition, IL-15 expression led to down-regulation of the positive cell cycle regulators cyclin E and CDK2 and up-regulation of the negative cycle regulators p21 and Rb. These findings suggest IL-15 acts as a tumor suppressor that inhibits tumor cell proliferation by inducing cell cycle arrest.
Collapse
Affiliation(s)
- Jun-Ying Ding
- Beijing Key Laboratory of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Hospital of TCM, Capital Medical University, Beijing Institute of TCM, Beijing, China
| | - Zhi-Hua Wang
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, China
| | - Zheng-Zheng Zhang
- Department of Immunology and Key Laboratory of Immune Mechanism and Intervention on Serious Disease, Hebei Medical University, Shijiazhuang, China
| | - Xu-Ran Cui
- Beijing Key Laboratory of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Hospital of TCM, Capital Medical University, Beijing Institute of TCM, Beijing, China
| | - Yan-Ying Hong
- Beijing Key Laboratory of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Hospital of TCM, Capital Medical University, Beijing Institute of TCM, Beijing, China
| | - Qing-Quan Liu
- Beijing Key Laboratory of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Hospital of TCM, Capital Medical University, Beijing Institute of TCM, Beijing, China
| |
Collapse
|
8
|
Escudero-Hernández C, Martínez-Abad B, Ruipérez V, Garrote JA, Arranz E. New IL-15 receptor-α splicing variants identified in intestinal epithelial Caco-2 cells. Innate Immun 2016; 23:44-53. [PMID: 27794069 DOI: 10.1177/1753425916674263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IL-15 is a pleiotropic cytokine related to IL-2 which acts at a broader level than its counterpart. It is presented through its specific high-affinity receptor, IL-15Rα. Both cytokine and receptor are tightly regulated at multiple levels and are widely distributed. Thus, deregulation of their expression leads to an inflammatory immune response. Variants of splicing of IL-15Rα have been described in immune and barrier cells; however, their presence has not been focused on intestinal epithelial cells. In this study, we describe five new alternative variants of splicing of IL-15Rα in Caco-2 cells. Four of them were expressed into proteins inside Caco-2 cells, but these were unable to bind IL-15 or to follow the secretory pathway. However, the expression of mRNA itself might be relevant to diseases such as celiac disease, inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Martínez-Abad
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Violeta Ruipérez
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain.,2 Laboratory of Molecular Genetics, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Eduardo Arranz
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
9
|
Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, Devocelle A, Gu Y, Bruno S, Ferrini S, Chouaib S, Eid P, Azzarone B, Giron-Michel J. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia 2016; 17:509-17. [PMID: 26152359 PMCID: PMC4719000 DOI: 10.1016/j.neo.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
Intrarenal interleukin-15 (IL-15) participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15) isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC) to peritumoral (ptumTEC), tumoral (RCC), and cancer stem cells (CSC/CD105+). RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα) chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15) isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα). This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa) displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression.
Collapse
Affiliation(s)
- Sandy Azzi
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Cindy Gallerne
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Cristina Romei
- Department of Clinical and Experimental Immunology, Istituto G. Gaslini, Genoa, Italy
| | - Vincent Le Coz
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Rosaria Gangemi
- Biotherapy Unit, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, Genoa, Italy
| | - Krystel Khawam
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Aurore Devocelle
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Yanhong Gu
- Department of Oncology and Department of Experimental Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Stefania Bruno
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Silvano Ferrini
- Biotherapy Unit, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, Genoa, Italy
| | - Salem Chouaib
- INSERM UMR 753, Université de Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | - Pierre Eid
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Bruno Azzarone
- Department of Clinical and Experimental Immunology, Istituto G. Gaslini, Genoa, Italy.
| | - Julien Giron-Michel
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France.
| |
Collapse
|
10
|
Tosiek MJ, Fiette L, El Daker S, Eberl G, Freitas AA. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun 2016; 7:10888. [PMID: 26964669 PMCID: PMC4792960 DOI: 10.1038/ncomms10888] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of CD4+ T cells to change their phenotype and to specialize into different functional subsets may enhance the risk of autoimmune diseases. Here we investigate how a pleiotropic cytokine interleukin (IL)-15 may modify the functional commitment of CD4+ T cells expressing the lineage-associated transcription factors: forkhead box P3 (Foxp3; Treg) and RORγt (Th17) in the context of inflammatory bowel disease (IBD). We demonstrate in mice that impaired delivery of IL-15 to CD4+ T cells in the colon downmodulates Foxp3 expression (diminishing STAT5 phosphorylation) and enhances RORγt expression (by upregulating the expression of Runx1). In consequence, CD4+ T cells deprived of IL-15 rapidly trigger IBD characterized by enhanced production of pro-inflammatory cytokines (interferon-γ, IL-6) and accumulation of Th1/Th17 cells. Overall, our findings indicate a potentially beneficial role of IL-15 in IBD by fine-tuning the balance between Treg and Th17 cells and controlling intestinal inflammation.
Collapse
Affiliation(s)
- Milena J. Tosiek
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Laurence Fiette
- Unité d'Histopathologie Humaine et Modèles Animaux, Department of Infection and Epidemiology, Institut Pasteur, Hôpital Ste Anne, 75015 Paris, France
- Université Paris-Descartes, Hôpital Ste Anne, 75015 Paris, France
| | - Sary El Daker
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Gérard Eberl
- CNRS, URA1961, 75015 Paris, France
- Unité de Développement des Tissus Lymphoïdes, Department of Immunology, Institut Pasteur, Paris, France
| | - Antonio A. Freitas
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| |
Collapse
|
11
|
Yuan H, Meng X, Guo W, Cai P, Li W, Li Q, Wang W, Sun Y, Xu Q, Gu Y. Transmembrane-Bound IL-15-Promoted Epithelial-Mesenchymal Transition in Renal Cancer Cells Requires the Src-Dependent Akt/GSK-3β/β-Catenin Pathway. Neoplasia 2016; 17:410-20. [PMID: 26025664 PMCID: PMC4468369 DOI: 10.1016/j.neo.2015.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
Intrarenal interleukin-15 (IL-15) plays a major role controlling epithelial survival and polarization both in physiological and pathologic conditions. Herein, we confirmed that human renal cell carcinomas (RCCs) express a membrane-bound IL-15 isoform displaying an unusual molecular weight of 27 kDa. Its stimulation with soluble IL-15 receptor α chain (s-IL-15Rα) triggers epithelial-mesenchymal transition (EMT) process as shown by the down-regulation of E-cadherin and zona occludens 1 and the up-regulation of vimentin and N-cadherin and promotes the migratory and invasive properties of RCC. S-IL-15Rα treatment triggered the Src/PI3K/Akt/GSK-3β pathway and promoted β-catenin nuclei translocation. Deactivation of this pathway by using Src-specific inhibitor PP2, PI3K inhibitor LY294002, and AKT inhibitor MK2206 hampered β-catenin nuclei translocation and suppressed EMT, migration, and invasion of RCC. S-IL-15Rα treatment also enhanced Src-dependent phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (Erk1/2). FAK knockdown significantly decreased the migration and invasion of RCC, which suggest that Src-FAK signaling was involved in s-IL-15Rα-favored migration and invasion of RCC. At the same time, inhibitors of Erk1/2 also significantly decreased the migration and invasion of RCC but could not reverse s-IL-15Rα-induced EMT. Taken together, our results reveal that Src-dependent PI3K/Akt/GSK3b/β-catenin pathway is required for s-IL-15Ra-dependent induction of EMT in RCC, while Src-FAK and Src-Erk1/2 signaling were involved in s-IL-15Rα-promoted migration and invasion properties of RCC. Our study provides a better understanding of IL-15 signaling in RCC tumor progression, which may lead to novel targeted therapies and provide some suggestions when using IL-15 in clinic.
Collapse
Affiliation(s)
- Huaqin Yuan
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaoxin Meng
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Cai
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wanshuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Weicheng Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Bazgir B, Salesi M, Koushki M, Amirghofran Z. Effects of Eccentric and Concentric Emphasized Resistance Exercise on IL-15 Serum Levels and Its Relation to Inflammatory Markers in Athletes and Non-Athletes. Asian J Sports Med 2015; 6:e27980. [PMID: 26448857 PMCID: PMC4594145 DOI: 10.5812/asjsm.27980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 12/24/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cytokines play an important role in modulating the muscle's metabolic and immunological responses to exercise. OBJECTIVES In the present study, we investigated changes in the serum levels of Interleukin (IL)-15 as well as tumor necrosis factor (TNF)-α and high sensitivity C-reactive protein (hs-CRP), as markers of inflammation, in athlete and non-athlete young men following eccentric (ECC) and concentric (CON) emphasized resistance exercise (RE). PATIENTS AND METHODS This study recruited 28 young males, 14 athletes and 14 non-athletes. Subjects completed two bouts of ECC and CON emphasized RE five days apart. Each bout included seven exercises that emphasized all major muscle groups with weight loads of 70% - 80% of one repetition maximum (1RM) for CON RE and 90% - 100% of 1RM for ECC RE. We analyzed subjects' blood samples before and immediately after each bout of exercise to determine cytokine and hs-CRP serum levels according to enzyme-linked immunosorbent assay. RESULTS Statistical analysis showed a significant difference between IL-15 serum levels before and after ECC and CON RE in non-athletes (P = 0.03). In athletes, IL-15 serum level only increased after ECC RE (P = 0.01), which was noted to be the highest degree of change in IL-15 levels in all subjects. For athletes, the hs-CRP levels significantly decreased (P < 0.05). The serum levels of both TNF-α and hs-CRP were also significantly down-regulated after ECC RE in non-athletes. CONCLUSIONS These results indicated that fitness level and RE could modulate circulating levels of IL-15 and suggest the potential anti-inflammatory effects of IL-15 during RE.
Collapse
Affiliation(s)
- Behzad Bazgir
- Exercise Physiology Research Center (EPRC), Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohsen Salesi
- Department of Physical Education, Shiraz University, Shiraz, IR Iran
| | - Maryam Koushki
- Department of Physical Education, Shiraz University, Shiraz, IR Iran
| | - Zahra Amirghofran
- Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Zahra Amirghofran, Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-7132351575, E-mail:
| |
Collapse
|
13
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|
15
|
Luff JA, Yuan H, Kennedy D, Schlegel R, Felsburg P, Moore PF. Keratinocyte antiviral response to Poly(dA:dT) stimulation and papillomavirus infection in a canine model of X-linked severe combined immunodeficiency. PLoS One 2014; 9:e102033. [PMID: 25025687 PMCID: PMC4099134 DOI: 10.1371/journal.pone.0102033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022] Open
Abstract
X-linked severe combined immunodeficiency (XSCID) is caused by a genetic mutation within the common gamma chain (γc), an essential component of the cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. XSCID patients are most commonly treated with bone marrow transplants (BMT) to restore systemic immune function. However, BMT-XSCID humans and dogs remain at an increased risk for development of cutaneous papillomavirus (PV) infections and their associated neoplasms, most typically cutaneous papillomas. Since basal keratinocytes are the target cell for the initial PV infection, we wanted to determine if canine XSCID keratinocytes have a diminished antiviral cytokine response to poly(dA:dT) and canine papillomavirus-2 (CPV-2) upon initial infection. We performed quantitative RT-PCR for antiviral cytokines and downstream interferon stimulated genes (ISG) on poly(dA:dT) stimulated and CPV-2 infected monolayer keratinocyte cultures derived from XSCID and normal control dogs. We found that XSCID keratinocytes responded similarly to poly(dA:dT) as normal keratinocytes by upregulating antiviral cytokines and ISGs. CPV-2 infection of both XSCID and normal keratinocytes did not result in upregulation of antiviral cytokines or ISGs at 2, 4, or 6 days post infection. These data suggest that the antiviral response to initial PV infection of basal keratinocytes is similar between XSCID and normal patients, and is not the likely source for the remaining immunodeficiency in XSCID patients.
Collapse
Affiliation(s)
- Jennifer A Luff
- Department of Veterinary Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| | - Douglas Kennedy
- Department of Immunology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| | - Peter Felsburg
- Department of Immunology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter F Moore
- Department of Veterinary Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Yin J, Liu C, Wang X, Wang L, Shi Y, Tang W, Ding G, Liu R, Chen S, Gu H, Zheng L. Interleukin 15 receptor alpha rs2228059 A > C polymorphism decreased risk of gastric cardiac adenocarcinoma in a Chinese population. Tumour Biol 2014; 35:6593-600. [PMID: 24696261 DOI: 10.1007/s13277-014-1872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/19/2014] [Indexed: 11/28/2022] Open
Abstract
Gastric cardiac adenocarcinoma (GCA) is one of the common malignant tumors in the world and has a high incidence in China. Both environmental risk factors and genetic factors might play an essential role in the GCA carcinogenesis. We performed a hospital-based case-control study to evaluate the genetic effects of interleukin 15 (IL15) and IL15 receptor alpha (IL15RA) functional single nucleotide polymorphisms (SNPs) on the pathogenesis of GCA. A total of 243 GCA cases and 476 controls were enrolled in this study. The genotypes were determined using a custom-by-design 48-Plex SNPscan(TM) Kit. When the IL15RA rs2228059 AA homozygote genotype was used as the reference group, the CC genotype was correlated with a significantly decreased risk for GCA (CC vs. AA: adjusted OR = 0.61, 95 % CI = 0.37-0.98, p = 0.042). Our results revealed that functional variant IL15RA rs2228059 A > C might attenuate individual's risk of GCA. However, there was no significant association between the other five IL15 SNPs and GCA susceptibility. This present study demonstrated that IL15RA rs2228059 A > C polymorphism might modify GCA susceptibility. The results were based on a limited sample size; future larger studies with more rigorous designs are warranted to validate our findings.
Collapse
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dulucq S, Laverdière C, Sinnett D, Krajinovic M. Pharmacogenetic considerations for acute lymphoblastic leukemia therapies. Expert Opin Drug Metab Toxicol 2014; 10:699-719. [PMID: 24673379 DOI: 10.1517/17425255.2014.893294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Advances in our understanding of the pathobiology of childhood acute lymphoblastic leukemia (ALL) have led to risk-targeted treatment regimens and remarkable improvement in survival rates. Still, up to 20% of patients experience treatment failure due to drug resistance. Treatment-related toxicities are often life-threatening and are the primary cause of treatment interruption, while ALL survivors may develop complications due to exposure to chemotherapy and/or irradiation during a vulnerable period of development. Different factors may contribute to variable treatment outcomes including patient genetics that has been shown to play important role. AREAS COVERED This review summarizes candidate gene and genome-wide association studies that identified common polymorphisms underlying variability in treatment responses including a few studies addressing late effects of the treatment. Genetic variants influencing antileukemic drug effects or leukemic cell biology have been identified, including for example variants in folate-dependent enzymes, influx and efflux transporters, metabolizing enzymes, drug receptor or apoptotic proteins. EXPERT OPINION Many pharmacogenetic studies have been conducted in ALL and a variety of potential markers have been identified. Yet more comprehensive insight into genome variations influencing drug responses is needed. Whole exome/genome sequencing, careful study design, mechanistic explanation of association found and collaborative studies will ultimately lead to personalized treatment and improved therapeutic and health outcomes.
Collapse
Affiliation(s)
- Stéphanie Dulucq
- University Health Center Bordeaux, Heamatology Laboratory , Bordeaux , France
| | | | | | | |
Collapse
|
18
|
Gillgrass A, Ashkar A. Stimulating natural killer cells to protect against cancer: recent developments. Expert Rev Clin Immunol 2014; 7:367-82. [DOI: 10.1586/eci.10.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Pagliari D, Cianci R, Frosali S, Landolfi R, Cammarota G, Newton EE, Pandolfi F. The role of IL-15 in gastrointestinal diseases: a bridge between innate and adaptive immune response. Cytokine Growth Factor Rev 2013; 24:455-66. [PMID: 23791986 DOI: 10.1016/j.cytogfr.2013.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
IL-15 is a member of the IL-2 family of cytokines whose signaling pathways are a bridge between innate and adaptive immune response. IL-15 is part of the intestinal mucosal barrier, and functions to modulate gut homeostasis. IL-15 has pivotal roles in the control of development, proliferation and survival of both innate and adaptive immune cells. IL-15 becomes up-regulated in the inflamed tissue of intestinal inflammatory disease, such as IBD, Celiac Disease and related complications. Indeed, several studies have reported that IL-15 may participate to the pathogenesis of these diseases. Furthermore, although IL-15 seems to be responsible for inflammation and autoimmunity, it also may increase the immune response against cancer. For these reasons, we decided to study the intestinal mucosa as an 'immunological niche', in which immune response, inflammation and local homeostasis are modulated. Understanding the role of the IL-15/IL-15R system will provide a scientific basis for the development of new approaches that use IL-15 for immunotherapy of autoimmune diseases and malignancies. Indeed, a better understanding of the complexity of the mucosal immune system will contribute to the general understanding of immuno-pathology, which could lead to new therapeutical tools for widespread immuno-mediated diseases.
Collapse
Affiliation(s)
- Danilo Pagliari
- Institute of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Croce M, Orengo AM, Azzarone B, Ferrini S. Immunotherapeutic applications of IL-15. Immunotherapy 2013; 4:957-69. [PMID: 23046239 DOI: 10.2217/imt.12.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IL-15 is a member of the IL-2 family of cytokines, which play a fundamental role in innate and adaptive immune responses. IL-15 has pleiotropic immune-enhancing activities, as it stimulates NK, T and NKT cell proliferation, survival and effector functions. In view of these properties, IL-15 is regarded as a good candidate for cancer immunotherapy. This possibility is reinforced by its low toxicity and efficacy in preclinical tumor models. The use of IL-15 to boost the immune response in HIV infection has also been proposed, although further studies are required to establish potential risks and benefits. Clinical trials of IL-15 have been initiated in cancer patients and in HIV vaccination and will elucidate the potential of IL-15-based immunotherapy. The purpose of this review is to provide an update on the potential applications of IL-15 in cancer immunotherapy and HIV infection.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS-AOU San-Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Interleukin (IL)-15 is a ubiquitously expressed cytokine existing in both intracellular and secretory forms. Here we review the expression, regulation, and functions of IL15 and its receptors in the brain. IL15 receptors show robust upregulation after neuroinflammation, suggesting a major role of IL15 signaling in cerebral function. Involvement of the IL15 system in neuropsychiatric behavior is reflected by the effects of IL15, IL15Rα, and IL2Rγ deletions on neurobehavior and neurotransmitters, the effects of IL15 treatment on neuronal activity, and the potential role of IL15 in neuroplasticity/neurogenesis. The results show that IL15 modulates GABA and serotonin transmission. This may underlie deficits in mood (depressive-like behavior and decreased normal anxiety) and memory, as well as activity level, sleep, and thermoregulation. Although IL15 has only a low level of permeation across the blood-brain barrier, peripheral IL15 is able to activate multiple signaling pathways in neurons widely distributed in CNS regions. The effects of IL15 in "preventing" neuropsychiatric symptoms in normal mice implicate a potential therapeutic role of this polypeptide cytokine.
Collapse
|
23
|
Fitzgerald W, Grivel JC. A universal nanoparticle cell secretion capture assay. Cytometry A 2012; 83:205-11. [PMID: 22996967 DOI: 10.1002/cyto.a.22199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/17/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022]
Abstract
Secreted proteins play an important role in intercellular interactions, especially between cells of the immune system. Currently, there is no universal assay that allows a simple noninvasive identification and isolation of cells based on their secretion of various products. We have developed such a method. Our method is based on the targeting, to the cell surface, of heterofunctional nanoparticles coupled to a cell surface-specific antibody and to a secreted protein-specific antibody, which captures the secreted protein on the surface of the producing cell. Importantly, this method does not compromise cellviability and is compatible with further culture and expansion of the secreting cells.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section on Intercellular Interactions, Program in Physical Biology, The Eunice Kennedy-Shriver National Institute of Health and Human Development, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
24
|
Barra NG, Chew MV, Reid S, Ashkar AA. Interleukin-15 treatment induces weight loss independent of lymphocytes. PLoS One 2012; 7:e39553. [PMID: 22768089 PMCID: PMC3387179 DOI: 10.1371/journal.pone.0039553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/26/2012] [Indexed: 01/26/2023] Open
Abstract
Obesity is a chronic inflammatory condition characterized by activation and infiltration of proinflammatory immune cells and a dysregulated production of proinflammatory cytokines. While known as a key regulator of immune natural killer (NK) cell function and development, we have recently demonstrated that reduced expression of the cytokine Interleukin-15 (IL-15) is closely linked with increased body weight and adiposity in mice and humans. Previously, we and others have shown that obese individuals have lower circulating levels of IL-15 and NK cells. Lean IL-15 overexpressing (IL-15 tg) mice had an accumulation in adipose NK cells compared to wildtype and NK cell deficient obese IL-15−/− mice. Since IL-15 induces weight loss in IL-15−/− and diet induced obese mice and has effects on various lymphocytes, the aim of this paper was to determine if lymphocytes, particularly NK cells, play a role in IL-15 mediated weight loss. Acute IL-15 treatment resulted in an increased accumulation of NK, NKT, and CD3+ T cells in adipose tissue of B6 mice. Mice depleted of NK and NKT cells had similar weight loss comparable to controls treated with IL-15. Finally, IL-15 treatment induces significant weight loss in lymphocyte deficient RAG2−/−γc−/− mice independent of food intake. Fat pad cross-sections show decreased pad size with cytokine treatment is due to adipocyte shrinkage. These results clearly suggest that IL-15 mediates weight loss independent of lymphocytes.
Collapse
Affiliation(s)
- Nicole G. Barra
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marianne V. Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Reid
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A. Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn's disease alters MHC-rafts in CD4+ T-cells. Cytometry A 2011; 81:149-64. [PMID: 22128034 DOI: 10.1002/cyto.a.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/09/2022]
Abstract
Clusters of MHCI, ICAM-1, CD44, CD59, IL-2R, and IL-15R molecules have been studied on the surface of CD4(+) T-cells from peripheral blood and lymph nodes of patients in Crohn's disease and healthy individuals as controls by using a dual-laser flow cytometric fluorescence resonance energy transfer (FRET) technique and fluorescently stained Fabs. When cells from patients in Crohn's disease are compared to those of controls, the surface expression level for the MHCI reduced by ∼45%, for CD44 enhanced by ∼100%, and for IL-2Rα, IL-15Rα, and common γ(c) enhanced by ∼50%, ∼70%, and ∼130%, respectively. Efficiencies of FRET monitoring homoassociation for the MHCI and CD44 reduced, that for IL-2Rα enhanced. While efficiencies of FRET monitoring the association of γ(c) and ICAM-1 with the MHCI reduced, those monitoring association of IL-2/15Rα, CD44, and CD59 with MHCI enhanced. Efficiencies of FRET measured between the MHCI and IL-2Rα, IL-15Rα differently enhanced to the advantage of IL-15Rα, the one measured between γ(c) and IL-2Rα reduced, suggesting modulations in the strength of interaction of MHCI with IL-2R, IL-15R, and γ(c). The increases in density of surface bound cTx and in the associations of the receptors with the G(M1)-ganglioside lipid molecules suggest stronger lipid raft interactions of the receptors. The observed alterations of MHC-rafts in Crohn's disease--summarized in models of receptor patterns of diseased and control cells--may have functional consequences regarding signaling by the raft components.
Collapse
Affiliation(s)
- László Damjanovich
- Department of Surgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
26
|
Castro I, Yu A, Dee MJ, Malek TR. The basis of distinctive IL-2- and IL-15-dependent signaling: weak CD122-dependent signaling favors CD8+ T central-memory cell survival but not T effector-memory cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:5170-82. [PMID: 21984699 DOI: 10.4049/jimmunol.1003961] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent work suggests that IL-2 and IL-15 induce distinctive levels of signaling through common receptor subunits and that such varied signaling directs the fate of Ag-activated CD8(+) T cells. In this study, we directly examined proximal signaling by IL-2 and IL-15 and CD8(+) T cell primary and memory responses as a consequence of varied CD122-dependent signaling. Initially, IL-2 and IL-15 induced similar p-STAT5 and p-S6 activation, but these activities were only sustained by IL-2. Transient IL-15-dependent signaling is due to limited expression of IL-15Rα. To investigate the outcome of varied CD122 signaling for CD8(+) T cell responses in vivo, OT-I T cells were used from mouse models where CD122 signals were attenuated by mutations within the cytoplasmic tail of CD122 or intrinsic survival function was provided in the absence of CD122 expression by transgenic Bcl-2. In the absence of CD122 signaling, generally normal primary response occurred, but the primed CD8(+) T cells were not maintained. In marked contrast, weak CD122 signaling supported development and survival of T central-memory (T(CM)) but not T effector-memory (T(EM)) cells. Transgenic expression of Bcl-2 in CD122(-/-) CD8(+) T cells also supported the survival and persistence of T(CM) cells but did not rescue T(EM) development. These data indicate that weak CD122 signals readily support T(CM) development largely through providing survival signals. However, stronger signals, independent of Bcl-2, are required for T(EM) development. Our findings are consistent with a model whereby low, intermediate, and high CD122 signaling support T(CM) memory survival, T(EM) programming, and terminal T effector cell differentiation, respectively.
Collapse
Affiliation(s)
- Iris Castro
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
27
|
Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal cancer. Bull Cancer 2011; 98:32-9. [PMID: 21609895 DOI: 10.1684/bdc.2011.1359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary human epithelial renal cells of normal (HRE), paratumoral (pTEC) and tumoral (RCC) origin display important differences, concerning the expression and biological effects of the IL-15/IL-15R system that deeply influences the evolution of the tumour microenvironment. A major distinguishing feature is represented in RCC and pTEC by the loss of the γc chain leading to the assembly of a IL-15Rαβ heterodimer that in response to physiologic concentrations of IL-15 initiates the process of their epithelial-mesenchymal transition (EMT). In contrast, this treatment in HRE cells, which display the IL-15Rαβγc heterotrimer, causes opposite effects inhibiting their drift towards EMT. Thus, IL-15 at physiologic concentrations displays novel functions acting as a major regulator of renal epithelial homeostasis. As second distinguishing feature, RCC and pTEC but not HRE cells express a trans-membrane-bound IL-15 (tmb-IL-15) able to deliver a reverse signal in response to the soluble IL-15Rα chain inducing their EMT. In conclusion, comparison of primary normal (HRE) to primary pathological cells (pTEC and RCC) highlights two major issues: (1) IL-15 is a major regulator of epithelial homeostasis; (2) "apparently normal" pTEC cells, could contribute to organize a generalized "pre-neoplastic" environment committed to favour tumour progression.
Collapse
|
28
|
|
29
|
Barone MV, Zanzi D, Maglio M, Nanayakkara M, Santagata S, Lania G, Miele E, Ribecco MTS, Maurano F, Auricchio R, Gianfrani C, Ferrini S, Troncone R, Auricchio S. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One 2011; 6:e17039. [PMID: 21364874 PMCID: PMC3045409 DOI: 10.1371/journal.pone.0017039] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Damage to intestinal mucosa in celiac disease (CD) is mediated both by inflammation due to adaptive and innate immune responses, with IL-15 as a major mediator of the innate immune response, and by proliferation of crypt enterocytes as an early alteration of CD mucosa causing crypts hyperplasia. We have previously shown that gliadin peptide P31-43 induces proliferation of cell lines and celiac enterocytes by delaying degradation of the active epidermal growth factor receptor (EGFR) due to delayed maturation of endocytic vesicles. IL-15 is increased in the intestine of patients affected by CD and has pleiotropic activity that ultimately results in immunoregulatory cross-talk between cells belonging to the innate and adaptive branches of the immune response. Aims of this study were to investigate the role of P31-43 in the induction of cellular proliferation and innate immune activation. METHODS/PRINCIPAL FINDINGS Cell proliferation was evaluated by bromodeoxyuridine (BrdU) incorporation both in CaCo-2 cells and in biopsies from active CD cases and controls. We used real-time PCR to evaluate IL-15 mRNA levels and FACS as well as ELISA and Western Blot (WB) analysis to measure protein levels and distribution in CaCo-2 cells. Gliadin and P31-43 induce a proliferation of both CaCo-2 cells and CD crypt enterocytes that is dependent on both EGFR and IL-15 activity. In CaCo-2 cells, P31-43 increased IL-15 levels on the cell surface by altering intracellular trafficking. The increased IL-15 protein was bound to IL15 receptor (IL-15R) alpha, did not require new protein synthesis and functioned as a growth factor. CONCLUSION In this study, we have shown that P31-43 induces both increase of the trans-presented IL-15/IL5R alpha complex on cell surfaces by altering the trafficking of the vesicular compartments as well as proliferation of crypt enterocytes with consequent remodelling of CD mucosa due to a cooperation of IL-15 and EGFR.
Collapse
Affiliation(s)
- M Vittoria Barone
- Department of Pediatrics, European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lin D, Liu C, Xue M, Liu R, Jiang L, Yu X, Bao G, Deng F, Yu M, Ao J, Zhou Y, Wu D, Liu H. The role of interleukin-15 polymorphisms in adult acute lymphoblastic leukemia. PLoS One 2010; 5:e13626. [PMID: 21049047 PMCID: PMC2963612 DOI: 10.1371/journal.pone.0013626] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022] Open
Abstract
Background Interleukin-15 (IL-15) plays important roles in the immune system and in the development of hematopoietic cells. Previous studies revealed that five SNPs in IL-15, rs10519612, rs10519613, rs35964658, rs17007695 and rs17015014, were significantly associated with childhood Acute Lymphoblastic Leukemia (ALL) treatment response. In adult ALL, the expression of IL-15 was also correlated with the immunophenotypes of ALL. Therefore, we hypothesize that SNPs of IL-15 might also be associated with adult ALL. Methods and Findings We genotyped the above five SNPs of IL-15 gene by PCR-RFLP assays in adult ALL case-control studies. The current study included 121 adult ALL patients and 263 healthy controls. IL-15 genotypes and haplotypes were determined and the associations with the risk of ALL were analyzed by logistic regression. SNPs rs10519612 and rs17007695 were significantly associated with ALL (P = 0.013 and P = 0.001). We observed a 2-fold and 2.4-fold excess risk of developing ALL for the rs10519612 CC and rs17007695 TC genotype carriers compared with non-carriers, respectively. Haplotype analysis revealed that haplotypes ACAC, CAGT and CCAT were significantly associated with adult B-ALL, while haplotype CCAT conferred susceptibility to T-ALL. Conclusion These findings suggest that IL-15 gene polymorphisms are significantly associated with ALL in adult Chinese population.
Collapse
Affiliation(s)
- Dandan Lin
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
- Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, China
| | - Chunliang Liu
- Deparment of Biochemistry and Molecular Biology, Medical College of Soochow University, Suzhou, China
| | - Mengxing Xue
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
- Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, China
| | - Rengyun Liu
- Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Lan Jiang
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiao Yu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Guangming Bao
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Fang Deng
- The People's Hospital of Bozhou, Bozhou, China
| | - Mingjie Yu
- The People's Hospital of Bozhou, Bozhou, China
| | - Jiafu Ao
- The People's Hospital of Bozhou, Bozhou, China
| | - Yifeng Zhou
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Depei Wu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
- Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, China
- * E-mail: (DW); (HL)
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
- Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, China
- * E-mail: (DW); (HL)
| |
Collapse
|
31
|
Suthaus J, Tillmann A, Lorenzen I, Bulanova E, Rose-John S, Scheller J. Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. Mol Biol Cell 2010; 21:2797-807. [PMID: 20554759 PMCID: PMC2912364 DOI: 10.1091/mbc.e10-03-0240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a novel strategy to enforce cytokine-independent, constitutive signaling of heterodimeric gp130 receptor complexes. Replacing the extracellular domain of gp130-type receptors by IL-15/IL-15R is sufficient to heterodimerize gp130-like receptors and as a consequence leading to sustained cytokine-independent receptor activation. Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15Rα-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR, and OSMR and of OSMR with GPL led to constitutive, ligand-independent STAT1 and/or STAT3 and ERK1/2 phosphorylation. Moreover, these receptor combinations induced transcription of the STAT3 target genes c-myc and Pim-1 and factor-independent growth of stably transduced Ba/F3-gp130 cells. Here, we establish the IL-15/IL-15Rα-sushi system as a new system to mimic constitutive and ligand-independent activation of homo- and heterodimeric receptor complexes, which might be applicable to other heterodimeric receptor families. A mutated IL-15 protein, which was still able to bind the IL-15Rα-sushi domain, but not to β- and γ-receptor chains, in combination with the 2A peptide technology may be used to translate our in vitro data into the in vivo situation to assess the tumorigenic potential of gp130-heterodimeric receptor complexes.
Collapse
Affiliation(s)
- Jan Suthaus
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Wu S, Fischer L, Gökbuget N, Schwartz S, Burmeister T, Notter M, Hoelzer D, Fuchs H, Blau IW, Hofmann WK, Thiel E. Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer 2010; 116:387-92. [PMID: 19924795 DOI: 10.1002/cncr.24729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Interleukin-15 (IL-15) has been associated with the growth, survival and biological behavior of leukemic cells and response to therapy. We determined the expression of IL-15 in lymphoblasts and evaluated its potential impact on the outcome in adult acute lymphoblastic leukemia (ALL). METHODS Between June 1999 and June 2006, ALL samples were collected from 87 adult patients before initiation of antineoplastic therapy. These patients were enrolled in the German Multicenter Acute Lymphoblastic Leukemia June 1999 and July 2003 study trials. The expression of IL-15 in leukemic cells was analyzed by real-time polymerase chain reaction. RESULTS The expression of IL-15 correlated with the immunophenotype: T-lineage ALL had a more than 4-fold higher IL-15 mRNA expression as compared with B-cell precursor (BCP)-ALL (P < .001). Patients with BCR-ABL(+)-BCP-ALL had lower IL-15 expression compared with BCR-ABL(-)-BCP-ALL (P = .041). Furthermore, higher expression of IL-15 was associated with mediastinal (P = .001) and lymph node infiltration (P = .051), but not with hepatomegaly and splenomegaly. Notably, high IL-15 expression in BCP-ALL was associated with an inferior relapse-free survival (RFS) at 5 years (0.17 +/- 0.13 vs 0.47 +/- 0.13) (P = .008), but there was no impact on overall survival (P = .249). CONCLUSIONS Differential expression of IL-15 in adult ALL at diagnosis was associated with clinical features and outcome, in particular, RFS. It remains to be evaluated whether IL-15 might be a relevant therapy target, or might be used for risk stratification.
Collapse
Affiliation(s)
- Shuling Wu
- Department of Hematology, Oncology and Transfusion Medicine, Campus Benjamin Franklin, Charity Medical Center, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gomez-Nicola D, Valle-Argos B, Nieto-Sampedro M. Blockade of IL-15 activity inhibits microglial activation through the NFkappaB, p38, and ERK1/2 pathways, reducing cytokine and chemokine release. Glia 2010; 58:264-76. [PMID: 19610094 DOI: 10.1002/glia.20920] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive glia formation is one of the hallmarks of damage to the CNS, but little information exists on the signals that direct its activation. Microglial cells are the main regulators of both innate and adaptative immune responses in the CNS. The proinflammatory cytokine IL-15 is involved in regulating the response of T and B cells, playing a key role in regulating nervous system inflammatory events. We have used a microglial culture model of inflammation induced by LPS and IFNgamma to evaluate the role of IL-15 in the proinflammatory response. Our results indicate that IL-15 is necessary for the reactive response, its deficiency (IL-15-/-) leading to the development of a defective proinflammatory response. Blockade of IL-15, both with blocking antibodies or with the ganglioside Neurostatin, inhibited the activation of the NFkappaB pathway, decreasing iNOS expression and NO production. Inhibiting IL-15 signaling also blocked the activation of the mitogen-activated protein kinase (MAPK) pathways ERK1/2 and p38. The major consequence of these inhibitory effects, analyzed using cytokine antibody arrays, was a severe decrease in the production of chemokines, cytokines and growth factors, like CCL17, CCL19, IL-12, or TIMP-1, that are essential for the development of the phenotypic changes of glial activation. In conclusion, activation of the IL-15 system seems a necessary step for the development of glial reactivity and the regulation of the physiology of glial cells. Modulating IL-15 activity opens the possibility of developing new strategies to control gliotic events upon inflammatory stimulation.
Collapse
Affiliation(s)
- Diego Gomez-Nicola
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
34
|
Eini H, Tejman-Yarden N, Lewis EC, Chaimovitz C, Zlotnik M, Douvdevani A. Association Between Renal Injury and Reduced Interleukin-15 and Interleukin-15 Receptor Levels in Acute Kidney Injury. J Interferon Cytokine Res 2010; 30:1-8. [DOI: 10.1089/jir.2009.0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hadar Eini
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Tejman-Yarden
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C. Lewis
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Cidio Chaimovitz
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| | - Moshe Zlotnik
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| | - Amos Douvdevani
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
35
|
Marzetti E, Carter CS, Wohlgemuth SE, Lees HA, Giovannini S, Anderson B, Quinn LS, Leeuwenburgh C. Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mech Ageing Dev 2009; 130:272-80. [PMID: 19396981 DOI: 10.1016/j.mad.2008.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TNF-alpha-mediated apoptosis is enhanced in aged rodent muscles, suggesting that this pathway may be involved in sarcopenia. Interleukin-15 (IL-15), a muscle-derived anabolic cytokine, mitigates muscle wasting and apoptosis in cachectic rats. This effect is thought to occur through inhibition of TNF-alpha-triggered apoptosis. We investigated IL-15 signaling and the TNF-alpha-mediated pathway of apoptosis in the gastrocnemius muscle of Fischer344xBrown Norway rats across the ages of 8, 18, 29 and 37 months, in relation to life-long calorie restriction (CR, 40% calorie intake reduction). Aging caused loss of muscle mass and increased apoptotic DNA fragmentation, which were mitigated by CR. Protein levels of IL-15 and mRNA abundance of IL-15 receptor a-chain decreased in senescent ad libitum (AL) fed rats, but were maintained in CR rodents. Elevations of TNF-alpha, TNF-receptor 1, cleaved caspase-8 and -3 were observed at advanced age in AL rats. These changes were prevented or mitigated by CR. Our results indicate that aging is associated with decreased IL-15 signaling in rat gastrocnemius muscle, which may contribute to sarcopenia partly through enhanced TNF-alpha-mediated apoptosis. Preservation of IL-15 signaling by CR may therefore represent a further mechanism contributing to the anti-aging effect of this dietary intervention in skeletal muscle.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sakamoto S, Caaveiro JMM, Sano E, Tanaka Y, Kudou M, Tsumoto K. Contributions of interfacial residues of human Interleukin15 to the specificity and affinity for its private alpha-receptor. J Mol Biol 2009; 389:880-94. [PMID: 19406127 DOI: 10.1016/j.jmb.2009.04.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 01/04/2023]
Abstract
Human interleukin 15 (hIL15) is a soluble cytokine that plays a key role in the maintenance of long-lasting responses against pathogens and a valuable target for the treatment of autoimmune diseases. In this study, we sought to elucidate the thermodynamic basis of the recognition mechanism for its private alpha-receptor (hIL15Ralpha), considered the first step of the interleukin's activation pathway. Binding of wild-type hIL15 to its alpha-receptor is characterized by a very slow dissociation rate constant and driven by a favorable enthalpy change. We further studied the kinetic and energetic consequences of substituting residues of hIL15 located at the contact interface by means of the surface plasmon resonance technique. Replacement of negatively charged residues with Ala indicates that the energetics of interaction is primarily driven by electrostatic forces, manifested by a dramatic acceleration of the dissociation step and a reduction of favorable binding enthalpy. Our analyses also unveiled a novel and critical role for residue Tyr26 in the interaction, which facilitates desolvation of key charged residues during the assembly of the complex. These results were rationalized in terms of a previously reported structure of hIL15.hIL15alpha, demonstrating that the binding energetics is dominated by interactions occurring at three hot spots whose spatial locations coincide with a previously proposed structural division of the contact interface in three regions. Specifically, Region 1 is the main contributor to the binding energy of the complex by establishing very favorable electrostatic interactions with the receptor; Region 2 is also dominated by electrostatic forces, although of a lesser intensity; and Region 3 confers specificity to the association by means of high shape complementarity and by bringing additional stabilization energy to the complex. The biological impact of hIL15 mutations with the most effect on alpha-receptor binding was evaluated in a cell-based proliferation assay, validating the conclusions of our thermodynamic analyses and highlighting the functional importance of molecular contacts that promote prolonged binding of the interleukin to the alpha-receptor. In closing, the thermodynamics and physicochemical nature of the interactions observed in IL15h.IL15Ralpha complex, together with interactions in Region 3 of the interleukin, poses a stark contrast with the structurally related and sometimes functionally redundant interleukin 2.
Collapse
Affiliation(s)
- Sou Sakamoto
- Department of Medical Genome Sciences, The University of Tokyo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Khawam K, Giron-Michel J, Gu Y, Perier A, Giuliani M, Caignard A, Devocelle A, Ferrini S, Fabbi M, Charpentier B, Ludwig A, Chouaib S, Azzarone B, Eid P. Human Renal Cancer Cells Express a Novel Membrane-Bound Interleukin-15 that Induces, in Response to the Soluble Interleukin-15 Receptor α Chain, Epithelial-to-Mesenchymal Transition. Cancer Res 2009; 69:1561-9. [DOI: 10.1158/0008-5472.can-08-3198] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Small CL, McCormick S, Gill N, Kugathasan K, Santosuosso M, Donaldson N, Heinrichs DE, Ashkar A, Xing Z. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. THE JOURNAL OF IMMUNOLOGY 2008; 180:5558-68. [PMID: 18390740 DOI: 10.4049/jimmunol.180.8.5558] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus remains a common cause of nosocomial bacterial infections and are often antibiotic resistant. The role of NK cells and IL-15 and their relationship in host defense against extracellular bacterial pathogens including S. aureus remain unclear. We have undertaken several approaches to address this issue using wild type (WT), IL-15 gene knock-out (KO), and NK cell-depleted mouse models. Upon pulmonary staphylococcal infection WT mice had markedly increased activated NK cells, but not NKT or gammadelta T cells, in the airway lumen that correlated with IL-15 production in the airway and with alveolar macrophages. In vitro exposure to staphylococcal products and/or coculture with lung macrophages directly activated NK cells. In contrast, lung macrophages better phagocytosed S. aureus in the presence of NK cells. In sharp contrast to WT controls, IL-15 KO mice deficient in NK cells were found to be highly susceptible to pulmonary staphylococcal infection despite markedly increased neutrophils and macrophages in the lung. In further support of these findings, WT mice depleted of NK cells were similarly susceptible to staphylococcal infection while they remained fully capable of IL-15 production in the lung at levels similar to those of NK-competent WT hosts. Our study thus identifies a critical role for NK cells in host defense against pulmonary extracellular bacterial infection and suggests that IL-15 is involved in this process via its indispensable effect on NK cells, but not other innate cells. These findings hold implication for the development of therapeutics in treating antibiotic-resistant S. aureus infection.
Collapse
Affiliation(s)
- Cherrie-Lee Small
- Department of Pathology and Molecular Medicine, Division of Infectious Diseases, Center for Gene Therapeutics, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rückert R, Brandt K, Ernst M, Marienfeld K, Csernok E, Metzler C, Budagian V, Bulanova E, Paus R, Bulfone-Paus S. Interleukin-15 stimulates macrophages to activate CD4+ T cells: a role in the pathogenesis of rheumatoid arthritis? Immunology 2008; 126:63-73. [PMID: 18557790 DOI: 10.1111/j.1365-2567.2008.02878.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Interleukin-15 (IL-15) is a proinflammatory cytokine that is overexpressed in rheumatoid arthritis (RA), a disease characterized by activation of monocytes/macrophages (MPhi), and by expansion of autoreactive CD4(+) T cells. We hypothesized that IL-15 plays a major role for this expansion of CD4(+) T cells and modulates the phenotype of monocytes/MPhi and their interaction with CD4(+) T cells. Here, we show that IL-15 enhances the proliferation of CD4(+) T cells from patients with RA in peripheral blood mononuclear cell cocultures. To further dissect the underlying mechanisms, we employed MPhi from IL-15(-/-) or IL-15 transgenic mice. These were induced to differentiate or were stimulated with IL-15. Here we show that addition of IL-15 during differentiation of MPhi (into 'IL-15MPhi') and overexpression of IL-15 by MPhi from IL-15(tg) mice leads to increased levels of major histocompatibility complex class II expression. This resulted in enhanced stimulation of antigen-specific CD4(+) T cells in vitro and was accompanied by reduced messenger RNA expression in MPhi for immunosuppressive SOCS3. The proliferation rates of IL-15MPhi and IL-15(tg)MPhi were high, which was reflected by increased p27(Kip1) and reduced p21(Waf1) levels. In view of high serum and synovial levels of IL-15 in patients with RA, our data suggest the possibility that this excess IL-15 in RA may stimulate monocytes/MPhi to activate the characteristic autoreactive CD4(+) T cells in RA.
Collapse
Affiliation(s)
- René Rückert
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, Borstel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Interleukin-15 and interleukin-15R alpha SNPs and associations with muscle, bone, and predictors of the metabolic syndrome. Cytokine 2008; 43:45-53. [PMID: 18514540 DOI: 10.1016/j.cyto.2008.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 03/10/2008] [Accepted: 04/17/2008] [Indexed: 11/23/2022]
Abstract
The aims of this study were to examine associations between two SNPs in the human IL-15 gene and three SNPs in the IL-15Ralpha gene with predictors of metabolic syndrome and phenotypes in muscle, strength, and bone at baseline and in response to resistance training (RT). Subjects were Caucasians who had not performed RT in the previous year and consisted of a strength cohort (n=748), volumetric cohort (n=722), and serum cohort (n=544). Subjects completed 12 weeks of unilateral RT of the non-dominant arm, using their dominant arm as an untrained control. ANCOVA analyses revealed gender-specific associations with: (1) IL-15 SNP (rs1589241) and cholesterol (p=0.04), LDL (p=0.02), the homeostasis model assessment (HOMA; p=0.03), and BMI (p=0.002); (2) IL-15 SNP (rs1057972) and the pre- to post-training absolute difference in 1RM strength (p=0.02), BMI (p=0.008), and fasting glucose (p=0.03); (3) IL-15Ralpha SNP (rs2296135) and baseline total bone volume (p=0.04) and the pre- to post-training absolute difference in isometric strength (p=0.01); and 4) IL-15Ralpha SNP (rs2228059) and serum triglycerides (p=0.04), baseline whole muscle volume (p=0.04), baseline cortical bone volume (p=0.04), and baseline muscle quality (p=0.04). All associations were consistent in showing a potential involvement of the IL-15 pathway with muscle and bone phenotypes and predictors of metabolic syndrome.
Collapse
|
41
|
How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol Cell Biol 2008; 28:4851-61. [PMID: 18505820 DOI: 10.1128/mcb.02178-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that receptors for secreted cytokines transmit ligand-induced signals, little is known about additional roles for cytokine receptor components in the control of ligand transport and secretion. Here, we show that interleukin-15 (IL-15) translocation into the endoplasmic reticulum occurs independently of the presence of IL-15 receptor alpha (IL-15R alpha). Subsequently, however, IL-15 is transported through the Golgi apparatus only in association with IL-15R alpha and then is secreted. This intracellular IL-15/IL-15R alpha complex already is formed in the endoplasmic reticulum and, thus, enables the further trafficking of complexed IL-15 through the secretory pathway. Just transfecting IL-15R alpha in cells, which transcribe but normally do not secrete IL-15, suffices to induce IL-15 secretion. Thus, we provide the first evidence of how a cytokine is chaperoned through the secretory pathway by complexing with its own high-affinity receptor and show that IL-15/IL-15R alpha offers an excellent model system for the further exploration of this novel mechanism for the control of cytokine secretion.
Collapse
|
42
|
Sirskyj D, Thèze J, Kumar A, Kryworuchko M. Disruption of the gamma c cytokine network in T cells during HIV infection. Cytokine 2008; 43:1-14. [PMID: 18417356 DOI: 10.1016/j.cyto.2008.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/05/2008] [Accepted: 03/03/2008] [Indexed: 01/03/2023]
Abstract
The common gamma chain (gammac)-sharing cytokines (IL's-2, 4, 7, 9, 15, and 21) play a vital role in the survival, proliferation, differentiation and function of T lymphocytes. As such, disruption of their signaling pathways would be expected to have severe consequences on the integrity of the immune system. Indeed, it appears that the signaling network of these cytokines is both disrupted and exploited by HIV at various stages of infection. IL-2 secretion and signaling downstream of its receptor are impaired in T cells from chronically-infected HIV+ patients. Elevated plasma IL-7 levels and decreased IL-7Ralpha expression in patient T cells results in significantly decreased responsiveness to this critical cytokine. Interestingly, IL-2 and IL-15 are also able to render CD4+ T cells permissive to HIV infection through their influence on the activity of the APOBEC3G deaminase enzyme. Herein, we describe the current state of knowledge on how the gammac cytokine network is affected during HIV infection, with a focus on how this impairs CD4+ and CD8+ T cell function while also benefiting the virus itself. We also address the use of cytokines as adjuncts to highly active antiretroviral therapy to bolster immune reconstitution in infected patients.
Collapse
Affiliation(s)
- Danylo Sirskyj
- Infectious Disease and Vaccine Research Centre, Children's Hospital of Eastern Ontario (CHEO)-Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
A biophysical approach to IL-2 and IL-15 receptor function: localization, conformation and interactions. Immunol Lett 2008; 116:117-25. [PMID: 18280585 DOI: 10.1016/j.imlet.2007.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 12/30/2007] [Indexed: 12/25/2022]
Abstract
Interleukin-2 and interleukin-15 (IL-2, IL-15) are key participants in T and NK cell activation and function. Sharing the beta and gamma receptor subunits results in several common functions: e.g. the promotion of T cell proliferation. On the other hand, due to their distinct alpha receptor subunits, they also play opposing roles in immune processes such as activation induced cell death and immunological memory. Divergence of signaling pathways must ensue already at the plasma membrane where the cytokines interact with their receptors. Therefore understanding molecular details of receptor organization and mapping interactions with other membrane proteins that might influence receptor conformation and function, are of key importance. Biophysical/advanced microscopic methods (fluorescence resonance energy transfer (FRET), fluorescence crosscorrelation spectroscopy (FCCS), near-field scanning optical microscopy (NSOM), X-ray crystallography, surface plasmon resonance, NMR spectroscopy) have been instrumental in clarifying the details of receptor structure and organization from the atomic level to the assembly and dynamics of supramolecular clusters. In this short review some important contributions shaping our current view of IL-2 and IL-15 receptors are presented.
Collapse
|
44
|
Nutt SL, Carotta S, Kallies A. Cytotoxic lymphocyte function and natural killer cells. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Hart G, Avin-Wittenberg T, Shachar I. IL-15 regulates immature B-cell homing in an Ly49D-, IL-12–, and IL-18–dependent manner. Blood 2008; 111:50-9. [PMID: 17901247 DOI: 10.1182/blood-2007-07-099598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To complete their maturation and participate in the humoral immune response, immature B cells that leave the bone marrow are targeted to specific areas in the spleen, where they differentiate into mature cells. Previously, we showed that immature B cells actively down-regulate their integrin-mediated migration to lymph nodes or to sites of inflammation, enabling their targeting to the spleen for final maturation. This inhibition is mediated by IFN-γ, which is transcribed and secreted at low levels by these immature B cells; IFN-γ expression is extinguished following B-cell maturation. Stimulation of the MHC class I receptor, Ly49D, triggers a signaling cascade that increases transcription of both IL-12 (p40) and IL-18; these, in turn, induce the secretion of IFN-γ. In the present study, we demonstrate that Ly49D-dependent secretion of IL-12 and IL-18 induces IL-15 expression by immature B cells, and that these 3 factors together regulate IFN-γ production that inhibits their ability to home to the lymph nodes or to sites of inflammation. Thus, IL-15 controls immature B-cell homing, resulting in shaping the B-cell repertoire to enable an efficient immune response.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Autocrine Communication/immunology
- Cell Movement/immunology
- Cytoskeleton/immunology
- Cytoskeleton/metabolism
- Down-Regulation/immunology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-12 Subunit p40/immunology
- Interleukin-12 Subunit p40/metabolism
- Interleukin-15/genetics
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Interleukin-18/immunology
- Interleukin-18/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- NK Cell Lectin-Like Receptor Subfamily A
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Receptors, NK Cell Lectin-Like
- Signal Transduction/immunology
- Spleen/cytology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Gili Hart
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
46
|
Prinz M, Rossum DV, Hanisch UK. Interleukin-2 as a Neuroregulatory Cytokine. CYTOKINES AND THE BRAIN 2008. [DOI: 10.1016/s1567-7443(07)10008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Cario G, Izraeli S, Teichert A, Rhein P, Skokowa J, Möricke A, Zimmermann M, Schrauder A, Karawajew L, Ludwig WD, Welte K, Schünemann HJ, Schlegelberger B, Schrappe M, Stanulla M. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol 2007; 25:4813-20. [PMID: 17947730 DOI: 10.1200/jco.2007.11.8166] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Applying current diagnostic methods, overt CNS involvement is a rare event in childhood acute lymphoblastic leukemia (ALL). In contrast, CNS-directed therapy is essential for all patients with ALL because without it, the majority of patients eventually will experience relapse. To approach this discrepancy and to explore potential distinct biologic properties of leukemic cells that migrate into the CNS, we compared gene expression profiles of childhood ALL patients with initial CNS involvement with the profiles of CNS-negative patients. PATIENTS AND METHODS We evaluated leukemic gene expression profiles from the bone marrow of 17 CNS-positive patients and 26 CNS-negative patients who were frequency matched for risk factors associated with CNS involvement. Results were confirmed by real-time quantitative polymerase chain reaction analysis and validated using independent patient samples. RESULTS Interleukin-15 (IL-15) expression was consistently upregulated in leukemic cells of CNS-positive patients compared with CNS-negative patients. In multivariate analysis, IL-15 expression levels greater than the median were associated with CNS involvement compared with expression equal to or less than the median (odds ratio [OR] = 10.70; 95% CI, 2.95 to 38.81). Diagnostic likelihood ratios for CNS positivity were 0.09 (95% CI, 0.01 to 0.65) for the first and 6.93 (95% CI, 2.55 to 18.83) for the fourth IL-15 expression quartiles. In patients who were CNS negative at diagnosis, IL-15 levels greater than the median were associated with subsequent CNS relapse compared with expression equal to or less than the median (OR = 13.80; 95% CI, 3.38 to 56.31). CONCLUSION Quantification of leukemic IL-15 expression at diagnosis predicts CNS status and could be a new tool to further tailor CNS-directed therapy in childhood ALL.
Collapse
Affiliation(s)
- Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
An increasing body of literature links immune and inflammatory factors to modulation of growth and control of fat:lean body composition. Recent progress in understanding the control of body composition has been made through identification of inflammatory cytokines and other factors produced by adipose tissue that affect body composition, often by direct effects on skeletal muscle tissue. Adipose-derived factors such as leptin, tumor necrosis factor-alpha, resistin, and adiponectin have been shown to affect muscle metabolism, protein dynamics, or both, by direct actions. This review summarizes recent results that support the existence of a reciprocal muscle-to-fat signaling pathway involving release of the cytokine IL-15 from muscle tissue. Cell culture studies, short-term in vivo studies, and human genotype association studies all support the model that muscle-derived IL-15 can decrease fat deposition and adipocyte metabolism via a muscle-to-fat endocrine pathway. Fat:lean body composition is an important factor determining the efficiency of meat production, as well as the fat content of meat products. Modulation of the IL-15 signaling axis may be a novel mechanism to affect body composition in meat animal production.
Collapse
Affiliation(s)
- L S Quinn
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Orinska Z, Maurer M, Mirghomizadeh F, Bulanova E, Metz M, Nashkevich N, Schiemann F, Schulmistrat J, Budagian V, Giron-Michel J, Brandt E, Paus R, Bulfone-Paus S. IL-15 constrains mast cell–dependent antibacterial defenses by suppressing chymase activities. Nat Med 2007; 13:927-34. [PMID: 17643110 DOI: 10.1038/nm1615] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/06/2007] [Indexed: 01/16/2023]
Abstract
Sepsis remains a global clinical problem. By using the mouse cecal ligation and puncture model of sepsis, here we identify an important aspect of mast cell (MC)-dependent, innate immune defenses against Gram-negative bacteria by demonstrating that MC protease activity is regulated by interleukin-15 (IL-15). Mouse MCs express both constitutive and lipopolysaccharide-inducible IL-15 and store it intracellularly. Deletion of Il15 in mice markedly increases chymase activities, leading to greater MC bactericidal responses, increased processing and activation of neutrophil-recruiting chemokines, and significantly higher survival rates of mice after septic peritonitis. By showing that intracellular IL-15 acts as a specific negative transcriptional regulator of a mouse MC chymase (mast cell protease-2), we provide evidence that defined MC protease activity is transcriptionally regulated by an intracellularly retained cytokine. Our results identify an unexpected breach in MC-dependent innate immune defenses against sepsis and suggest that inhibiting intracellular IL-15 in MCs may improve survival from sepsis.
Collapse
Affiliation(s)
- Zane Orinska
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tsukamoto K, Huang YC, Dorsey WC, Carns B, Sharma V. Juxtacrine function of interleukin-15/interleukin-15 receptor system in tumour derived human B-cell lines. Clin Exp Immunol 2007; 146:559-66. [PMID: 17100778 PMCID: PMC1810416 DOI: 10.1111/j.1365-2249.2006.03240.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that induces proliferation and promotes cell survival of human T, B and NK cells. IL-15 and interleukin-2 (IL-2) exhibit a similar spectrum of immune effects and share the IL-2 receptor (IL-2R) subunits IL-2Rbeta and IL-2Rgamma(c) for signalling in haematopoietic cells. Furthermore, each cytokine has a private alpha receptor, namely IL-2Ralpha for IL-2 and IL-15Ralpha for IL-15, that functions in ligand binding. Using reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) methods, the expression and secretion of IL-15 and IL-15Ralpha in tumour-derived B-cell lines were studied. The results as presented in this study identify that IL-15 mRNA is predominantly expressed in EBV positive (EBV(+)) B-cell lines, although IL-15Ralpha is ubiquitously and constitutively expressed in all these B-cell lines. Although no detectable levels of IL-15 protein secretion were observed in any of these cell lines, we were able to detect membrane-bound expression of IL-15 protein by FACS analysis in some cell lines. These data imply that the IL-15/IL-15R system requires complex regulatory mechanisms for protein secretion. Taken together, we speculate that these results suggest a juxtacrine, intracrine function for IL-15/IL-15R.
Collapse
Affiliation(s)
- K Tsukamoto
- Laboratory of Cytokine Research, Department of Biology, University of West Florida, Pensacola, Florida 10032, USA
| | | | | | | | | |
Collapse
|