1
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Caporale LH. Evolutionary feedback from the environment shapes mechanisms that generate genome variation. J Physiol 2024; 602:2601-2614. [PMID: 38194279 DOI: 10.1113/jp284411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.
Collapse
|
3
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
4
|
Jahangir M, Li L, Zhou JS, Lang B, Wang XP. L1 Retrotransposons: A Potential Endogenous Regulator for Schizophrenia. Front Genet 2022; 13:878508. [PMID: 35832186 PMCID: PMC9271560 DOI: 10.3389/fgene.2022.878508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The long interspersed nuclear elements 1 (LINE-1/L1s) are the only active autonomous retrotransposons found in humans which can integrate anywhere in the human genome. They can expand the genome and thus bring good or bad effects to the host cells which really depends on their integration site and associated polymorphism. LINE-1 retrotransposition has been found participating in various neurological disorders such as autism spectrum disorder, Alzheimer’s disease, major depression disorder, post-traumatic stress disorder and schizophrenia. Despite the recent progress, the roles and pathological mechanism of LINE-1 retrotransposition in schizophrenia and its heritable risks, particularly, contribution to “missing heritability” are yet to be determined. Therefore, this review focuses on the potentially etiological roles of L1s in the development of schizophrenia, possible therapeutic choices and unaddressed questions in order to shed lights on the future research.
Collapse
Affiliation(s)
| | | | | | - Bing Lang
- *Correspondence: Bing Lang, ; Xiao-Ping Wang,
| | | |
Collapse
|
5
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
6
|
van der Plas E, Schultz JL, Nopoulos PC. The Neurodevelopmental Hypothesis of Huntington's Disease. J Huntingtons Dis 2021; 9:217-229. [PMID: 32925079 PMCID: PMC7683043 DOI: 10.3233/jhd-200394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current dogma of HD pathoetiology posits it is a degenerative disease affecting primarily the striatum, caused by a gain of function (toxicity) of the mutant mHTT that kills neurons. However, a growing body of evidence supports an alternative theory in which loss of function may also influence the pathology.This theory is predicated on the notion that HTT is known to be a vital gene for brain development. mHTT is expressed throughout life and could conceivably have deleterious effects on brain development. The end event in the disease is, of course, neurodegeneration; however the process by which that occurs may be rooted in the pathophysiology of aberrant development.To date, there have been multiple studies evaluating molecular and cellular mechanisms of abnormal development in HD, as well as studies investigating abnormal brain development in HD animal models. However, direct study of how mHTT could affect neurodevelopment in humans has not been approached until recent years. The current review will focus on the most recent findings of a unique study of children at-risk for HD, the Kids-HD study. This study evaluates brain structure and function in children ages 6-18 years old who are at risk for HD (have a parent or grand-parent with HD).
Collapse
Affiliation(s)
- Ellen van der Plas
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Jordan L Schultz
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Peg C Nopoulos
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| |
Collapse
|
7
|
Homopeptide and homocodon levels across fungi are coupled to GC/AT-bias and intrinsic disorder, with unique behaviours for some amino acids. Sci Rep 2021; 11:10025. [PMID: 33976321 PMCID: PMC8113271 DOI: 10.1038/s41598-021-89650-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Homopeptides (runs of one amino-acid type) are evolutionarily important since they are prone to expand/contract during DNA replication, recombination and repair. To gain insight into the genomic/proteomic traits driving their variation, we analyzed how homopeptides and homocodons (which are pure codon repeats) vary across 405 Dikarya, and probed their linkage to genome GC/AT bias and other factors. We find that amino-acid homopeptide frequencies vary diversely between clades, with the AT-rich Saccharomycotina trending distinctly. As organisms evolve, homocodon and homopeptide numbers are majorly coupled to GC/AT-bias, exhibiting a bi-furcated correlation with degree of AT- or GC-bias. Mid-GC/AT genomes tend to have markedly fewer simply because they are mid-GC/AT. Despite these trends, homopeptides tend to be GC-biased relative to other parts of coding sequences, even in AT-rich organisms, indicating they absorb AT bias less or are inherently more GC-rich. The most frequent and most variable homopeptide amino acids favour intrinsic disorder, and there are an opposing correlation and anti-correlation versus homopeptide levels for intrinsic disorder and structured-domain content respectively. Specific homopeptides show unique behaviours that we suggest are linked to inherent slippage probabilities during DNA replication and recombination, such as poly-glutamine, which is an evolutionarily very variable homopeptide with a codon repertoire unbiased for GC/AT, and poly-lysine whose homocodons are overwhelmingly made from the codon AAG.
Collapse
|
8
|
Schultz JL, Saft C, Nopoulos PC. Association of CAG Repeat Length in the Huntington Gene With Cognitive Performance in Young Adults. Neurology 2021; 96:e2407-e2413. [PMID: 33692166 PMCID: PMC10508647 DOI: 10.1212/wnl.0000000000011823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationships between CAG repeat length in the huntingtin gene and cognitive performance in participants above and below the disease threshold for Huntington disease (HD), we performed a cross-sectional analysis of the Enroll-HD database. METHODS We analyzed data from young, developing adults (≤30 years of age) without a history of depression, apathy, or cognitive deficits. We included participants with and without the gene expansion (CAG ≥36) for HD. All participants had to have a Total Functional Capacity Score of 13, a diagnostic confidence level of zero, and a total motor score of <10 and had to be >28.6 years from their predicted motor onset. We performed regression analyses to investigate the nonlinear relationship between CAG repeat length and various cognitive measures controlling for age, sex, and education level. RESULTS There were significant positive relationships between CAG repeat length and the Symbol Digit Modalities, Stroop Color Naming, and Stroop Interference test scores. There were significant negative relationships between CAG repeat length and scores on Parts A and B of the Trails Making Test (p < 0.05), indicating that longer CAG repeat lengths were associated with better performance. DISCUSSION An increasing number of CAG repeats in the huntingtin gene below disease threshold and low pathologic CAG ranges were associated with some improvements in cognitive performance. These findings outline the relationship between CAG repeats within the huntingtin gene and cognitive development. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that CAG repeat length is positively associated with cognitive function across a spectrum of CAG repeat lengths.
Collapse
Affiliation(s)
- Jordan L Schultz
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City.
| | - Carsten Saft
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City
| | - Peggy C Nopoulos
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City
| |
Collapse
|
9
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ, Koonin EV. Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 2020; 22:251-262. [PMID: 33257848 DOI: 10.1038/s41576-020-00299-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Horn
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Demichelis
- Department for Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Course MM, Gudsnuk K, Smukowski SN, Winston K, Desai N, Ross JP, Sulovari A, Bourassa CV, Spiegelman D, Couthouis J, Yu CE, Tsuang DW, Jayadev S, Kay MA, Gitler AD, Dupre N, Eichler EE, Dion PA, Rouleau GA, Valdmanis PN. Evolution of a Human-Specific Tandem Repeat Associated with ALS. Am J Hum Genet 2020; 107:445-460. [PMID: 32750315 DOI: 10.1016/j.ajhg.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tandem repeats are proposed to contribute to human-specific traits, and more than 40 tandem repeat expansions are known to cause neurological disease. Here, we characterize a human-specific 69 bp variable number tandem repeat (VNTR) in the last intron of WDR7, which exhibits striking variability in both copy number and nucleotide composition, as revealed by long-read sequencing. In addition, greater repeat copy number is significantly enriched in three independent cohorts of individuals with sporadic amyotrophic lateral sclerosis (ALS). Each unit of the repeat forms a stem-loop structure with the potential to produce microRNAs, and the repeat RNA can aggregate when expressed in cells. We leveraged its remarkable sequence variability to align the repeat in 288 samples and uncover its mechanism of expansion. We found that the repeat expands in the 3'-5' direction, in groups of repeat units divisible by two. The expansion patterns we observed were consistent with duplication events, and a replication error called template switching. We also observed that the VNTR is expanded in both Denisovan and Neanderthal genomes but is fixed at one copy or fewer in non-human primates. Evaluating the repeat in 1000 Genomes Project samples reveals that some repeat segments are solely present or absent in certain geographic populations. The large size of the repeat unit in this VNTR, along with our multiplexed sequencing strategy, provides an unprecedented opportunity to study mechanisms of repeat expansion, and a framework for evaluating the roles of VNTRs in human evolution and disease.
Collapse
|
11
|
A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder. Genes (Basel) 2020; 11:genes11040407. [PMID: 32283633 PMCID: PMC7230257 DOI: 10.3390/genes11040407] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence.
Collapse
|
12
|
Rivero-Hinojosa S, Kinney N, Garner HR, Rood BR. Germline microsatellite genotypes differentiate children with medulloblastoma. Neuro Oncol 2020; 22:152-162. [PMID: 31562520 PMCID: PMC6954392 DOI: 10.1093/neuonc/noz179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The germline genetic events underpinning medulloblastoma (MB) initiation, and therefore the ability to determine who is at risk, are still unknown for the majority of cases. Microsatellites are short repeated sequences that make up ~3% of the genome. Repeat lengths vary among individuals and are often nonrandomly associated with disease, including several cancers such as breast, glioma, lung, and ovarian. Due to their effects on gene function, they have been called the "tuning knobs of the genome." METHODS We have developed a novel approach for identifying a microsatellite-based signature to differentiate MB patients from controls using germline DNA. RESULTS Analyzing germline whole exome sequencing data from a training set of 120 MB subjects and 425 controls, we identified 139 individual microsatellite loci whose genotypes differ significantly between the groups. Using a genetic algorithm, we identified a subset of 43 microsatellites that distinguish MB subjects from controls with a sensitivity and specificity of 92% and 88%, respectively. This microsatellite signature was validated in an independent dataset consisting of 102 subjects and 428 controls, with comparable sensitivity and specificity of 95% and 90%, respectively. Analysis of the allele genotypes of those 139 informative loci demonstrates that their association with MB is a consequence of individual microsatellites' genotypes rather than their hypermutability. Finally, an analysis of the genes harboring these microsatellite loci reveals cellular functions important for tumorigenesis. CONCLUSION This study demonstrates that MB-specific germline microsatellite variations mark those at risk for MB development and suggests mechanisms of predisposition.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center (CNMC), Washington, DC
| | - Nicholas Kinney
- Center for Bioinformatics and Genetics, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
- Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina
| | - Harold R Garner
- Center for Bioinformatics and Genetics, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
- Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center (CNMC), Washington, DC
| |
Collapse
|
13
|
Song JHT, Lowe CB, Kingsley DM. Characterization of a Human-Specific Tandem Repeat Associated with Bipolar Disorder and Schizophrenia. Am J Hum Genet 2018; 103:421-430. [PMID: 30100087 PMCID: PMC6128321 DOI: 10.1016/j.ajhg.2018.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022] Open
Abstract
Bipolar disorder (BD) and schizophrenia (SCZ) are highly heritable diseases that affect more than 3% of individuals worldwide. Genome-wide association studies have strongly and repeatedly linked risk for both of these neuropsychiatric diseases to a 100 kb interval in the third intron of the human calcium channel gene CACNA1C. However, the causative mutation is not yet known. We have identified a human-specific tandem repeat in this region that is composed of 30 bp units, often repeated hundreds of times. This large tandem repeat is unstable using standard polymerase chain reaction and bacterial cloning techniques, which may have resulted in its incorrect size in the human reference genome. The large 30-mer repeat region is polymorphic in both size and sequence in human populations. Particular sequence variants of the 30-mer are associated with risk status at several flanking single-nucleotide polymorphisms in the third intron of CACNA1C that have previously been linked to BD and SCZ. The tandem repeat arrays function as enhancers that increase reporter gene expression in a human neural progenitor cell line. Different human arrays vary in the magnitude of enhancer activity, and the 30-mer arrays associated with increased psychiatric disease risk status have decreased enhancer activity. Changes in the structure and sequence of these arrays likely contribute to changes in CACNA1C function during human evolution and may modulate neuropsychiatric disease risk in modern human populations.
Collapse
Affiliation(s)
- Janet H T Song
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Craig B Lowe
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Hannan AJ. Tandem Repeats and Repeatomes: Delving Deeper into the 'Dark Matter' of Genomes. EBioMedicine 2018; 31:3-4. [PMID: 29665999 PMCID: PMC6013752 DOI: 10.1016/j.ebiom.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Lee JK, Conrad A, Epping E, Mathews K, Magnotta V, Dawson JD, Nopoulos P. Effect of Trinucleotide Repeats in the Huntington's Gene on Intelligence. EBioMedicine 2018; 31:47-53. [PMID: 29685790 PMCID: PMC6013750 DOI: 10.1016/j.ebiom.2018.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/05/2022] Open
Abstract
Background Huntington's Disease (HD) is caused by an abnormality in the HTT gene. This gene includes trinucleotide repeats ranging from 10 to 35, and when expanded beyond 39, causes HD. We previously reported that CAG repeats in the normal range had a direct and beneficial effect on brain development with higher repeats being associated with higher cognitive function. The current study now expands this line of inquiry to evaluate the effects of CAG repeat throughout the entire spectrum of repeats from 15 to 58. Methods We evaluated brain function in children ages 6–18 years old. DNA samples were processed to quantify the number of CAG repeats within HTT. Linear regression was used to determine if number of CAG repeats predicted measures of brain function. Findings The number of repeats in HTT, had a non-linear effect on a measure of general intelligence with an inverted U shape pattern. Increasing repeat length was associated with higher GAI scores up until roughly 40–41 repeats. After this peak, increasing repeat length was associated with declining GAI scores. Interpretation HTT may confer an advantage or a disadvantage depending upon the repeat length, playing a key role in the determination of intelligence, or causing a uniquely human brain disease. The HTT gene includes trinucleotide repeats ranging from 10 to 35 in the normal population. Huntington’s disease is caused when the trinucleotide repeats in the HTT gene expand beyond the normal range. The gene is vital for brain growth in which each repeat contributes to the development of brain function, measured as intelligence. Increasing repeats are beneficial to a certain point, then becomes detrimental to intelligence, forming an inverted U relationship.
A Faustian Bargain: Could the key to the evolution of the human brain be found in a dreadful disease? Huntington's Disease is a fatal progressive brain disease caused by a single gene. Results from the current study show that the same gene is important for brain development and intelligence. Therefore, this gene may have a simultaneous advantage and disadvantage: a role in the evolution of a superior human brain, yet the disadvantage of a uniquely human brain disease.
Collapse
Affiliation(s)
- Jessica K Lee
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Amy Conrad
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Eric Epping
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kathy Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Vincent Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jeffrey D Dawson
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Peg Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
16
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Abstract
Microsatellite repeat DNA is best known for its length mutability, which is implicated in several neurological diseases and cancers, and often exploited as a genetic marker. Less well-known is the body of work exploring the widespread and surprisingly diverse functional roles of microsatellites. Recently, emerging evidence includes the finding that normal microsatellite polymorphism contributes substantially to the heritability of human gene expression on a genome-wide scale, calling attention to the task of elucidating the mechanisms involved. At present, these are underexplored, but several themes have emerged. I review evidence demonstrating roles for microsatellites in modulation of transcription factor binding, spacing between promoter elements, enhancers, cytosine methylation, alternative splicing, mRNA stability, selection of transcription start and termination sites, unusual structural conformations, nucleosome positioning and modification, higher order chromatin structure, noncoding RNA, and meiotic recombination hot spots.
Collapse
|
18
|
Hashizume K, Yamanaka M, Ueda S. POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. GENES BRAIN AND BEHAVIOR 2017; 17:118-125. [PMID: 28782255 DOI: 10.1111/gbb.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
POU3F2/BRN-2 is a transcription factor that is mainly expressed in the central nervous system and plays an important role in brain development. The transactivation domain of POU3F2 includes multiple mammalian-characteristic tandem amino acid repeats (homopolymeric amino acid repeats). We previously generated knock-in mice (Pou3f2Δ/Δ mice) in which all three homopolymeric amino acid repeats were deleted from the Pou3f2 transactivation domain and identified phenotypic impairments in maternal behavior and pup recognition. Yet, the exact biological implications of homopolymeric repeats are not completely understood. In this study, we investigated cognitive function and hippocampal neurogenesis in Pou3f2Δ/Δ mice. Pou3f2Δ/Δ mice exhibited cognitive impairment in object recognition and object location tests. Immunohistochemistry for doublecortin, a marker of immature neurons, showed a lower number of newborn neurons in the dentate gyrus of adult Pou3f2Δ/Δ mice compared with wild-type mice. Consistent with this observation, adult Pou3f2Δ/Δ mice had lower numbers of 5-bromo-2'-deoxyuridine (BrdU) and NeuN double-positive cells at 4 weeks after BrdU injection compared with control mice, indicating the decreased generation of mature granule cells in Pou3f2Δ/Δ mice. Taken together, these results suggest that POU3F2 is involved in cognitive function as well as adult hippocampal neurogenesis, and that homopolymeric amino acid repeats in this gene play a functional role.
Collapse
Affiliation(s)
- K Hashizume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - M Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - S Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Bagshaw ATM, Horwood LJ, Fergusson DM, Gemmell NJ, Kennedy MA. Microsatellite polymorphisms associated with human behavioural and psychological phenotypes including a gene-environment interaction. BMC MEDICAL GENETICS 2017; 18:12. [PMID: 28158988 PMCID: PMC5291968 DOI: 10.1186/s12881-017-0374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/25/2017] [Indexed: 02/05/2023]
Abstract
Background The genetic and environmental influences on human personality and behaviour are a complex matter of ongoing debate. Accumulating evidence indicates that short tandem repeats (STRs) in regulatory regions are good candidates to explain heritability not accessed by genome-wide association studies. Methods We tested for associations between the genotypes of four selected repeats and 18 traits relating to personality, behaviour, cognitive ability and mental health in a well-studied longitudinal birth cohort (n = 458-589) using one way analysis of variance. The repeats were a highly conserved poly-AC microsatellite in the upstream promoter region of the T-box brain 1 (TBR1) gene and three previously studied STRs in the activating enhancer-binding protein 2-beta (AP2-β) and androgen receptor (AR) genes. Where significance was found we used multiple regression to assess the influence of confounding factors. Results Carriers of the shorter, most common, allele of the AR gene’s GGN microsatellite polymorphism had fewer anxiety-related symptoms, which was consistent with previous studies, but in our study this was not significant following Bonferroni correction. No associations with two repeats in the AP2-β gene withstood this correction. A novel finding was that carriers of the minor allele of the TBR1 AC microsatellite were at higher risk of conduct problems in childhood at age 7-9 (p = 0.0007, which did pass Bonferroni correction). Including maternal smoking during pregnancy (MSDP) in models controlling for potentially confounding influences showed that an interaction between TBR1 genotype and MSDP was a significant predictor of conduct problems in childhood and adolescence (p < 0.001), and of self-reported criminal behaviour up to age 25 years (p ≤ 0.02). This interaction remained significant after controlling for possible confounders including maternal age at birth, socio-economic status and education, and offspring birth weight. Conclusions The potential functional importance of the TBR1 gene’s promoter microsatellite deserves further investigation. Our results suggest that it participates in a gene-environment interaction with MDSP and antisocial behaviour. However, previous evidence that mothers who smoke during pregnancy carry genes for antisocial behaviour suggests that epistasis may influence the interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0374-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew T M Bagshaw
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand.
| | - L John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - David M Fergusson
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Gravida - National Centre for Growth and Development, University of Otago, Dunedin, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand
| |
Collapse
|
20
|
Abstract
Huntington disease (HD) is an autosomal dominant, neurodegenerative disorder with a primary etiology of striatal pathology. The Huntingtin gene (HTT) has a unique feature of a DNA trinucleotide (triplet) repeat, with repeat length ranging from 10 to 35 in the normal population. Repeat lengths between 36 and 39 cause HD at reduced penetrance (some will get the disease, others won't) and when expanded to 40 or more repeats (mHTT), causes HD at full penetrance (every person with this length or beyond will definitely develop the disease). The symptoms of HD may be motor, cognitive, and psychiatric, and are consistent with the pathophysiology of frontostriatal circuitry malfunction. Expressed ubiquitously and throughout the entire life cycle (development through adulthood), mHTT causes initial dysfunction and eventual death of a specific cell population within the striatum. Although all areas of the brain are eventually affected, the primary pathology of the disease is regionally specific. As a single-gene disorder, HD has the distinction of having the potential of treatment that is aimed directly at the known pathogenic mechanism by gene silencing, providing hope for neuroprotection and ultimately, prevention.
Collapse
Affiliation(s)
- Peggy C Nopoulos
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights. PLoS One 2016; 11:e0166854. [PMID: 27893794 PMCID: PMC5125637 DOI: 10.1371/journal.pone.0166854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features.
Collapse
|
22
|
Shimada MK, Sanbonmatsu R, Yamaguchi-Kabata Y, Yamasaki C, Suzuki Y, Chakraborty R, Gojobori T, Imanishi T. Selection pressure on human STR loci and its relevance in repeat expansion disease. Mol Genet Genomics 2016; 291:1851-69. [PMID: 27290643 DOI: 10.1007/s00438-016-1219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 05/21/2016] [Indexed: 12/30/2022]
Abstract
Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto K Shimada
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan. .,National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan. .,Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Ryoko Sanbonmatsu
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yumi Yamaguchi-Kabata
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Chisato Yamasaki
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Ranajit Chakraborty
- Health Science Center, University of North Texas, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Takashi Gojobori
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Ibn Al-Haytham Building (West), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tadashi Imanishi
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
23
|
Engineered Nucleases and Trinucleotide Repeat Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Anisimova M, Pečerska J, Schaper E. Statistical approaches to detecting and analyzing tandem repeats in genomic sequences. Front Bioeng Biotechnol 2015; 3:31. [PMID: 25853125 PMCID: PMC4362331 DOI: 10.3389/fbioe.2015.00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/26/2015] [Indexed: 11/13/2022] Open
Abstract
Tandem repeats (TRs) are frequently observed in genomes across all domains of life. Evidence suggests that some TRs are crucial for proteins with fundamental biological functions and can be associated with virulence, resistance, and infectious/neurodegenerative diseases. Genome-scale systematic studies of TRs have the potential to unveil core mechanisms governing TR evolution and TR roles in shaping genomes. However, TR-related studies are often non-trivial due to heterogeneous and sometimes fast evolving TR regions. In this review, we discuss these intricacies and their consequences. We present our recent contributions to computational and statistical approaches for TR significance testing, sequence profile-based TR annotation, TR-aware sequence alignment, phylogenetic analyses of TR unit number and order, and TR benchmarks. Importantly, all these methods explicitly rely on the evolutionary definition of a tandem repeat as a sequence of adjacent repeat units stemming from a common ancestor. The discussed work has a focus on protein TRs, yet is generally applicable to nucleic acid TRs, sharing similar features.
Collapse
Affiliation(s)
- Maria Anisimova
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW) , Wädenswil , Switzerland
| | - Julija Pečerska
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland ; Department of Computer Science, ETH Zürich , Zürich , Switzerland
| | - Elke Schaper
- Department of Computer Science, ETH Zürich , Zürich , Switzerland ; Vital-IT Competency Center, Swiss Institute for Bioinformatics , Lausanne , Switzerland
| |
Collapse
|
25
|
Moily NS, Kota LN, Anjanappa RM, Venugopal S, Vaidyanathan R, Pal P, Purushottam M, Jain S, Kandasamy M. Trinucleotide repeats and haplotypes at the huntingtin locus in an Indian sample overlaps with European haplogroup a. PLOS CURRENTS 2014; 6:ecurrents.hd.a3ad1a381ab1eed117675145318c9a80. [PMID: 25642374 PMCID: PMC4205232 DOI: 10.1371/currents.hd.a3ad1a381ab1eed117675145318c9a80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huntington's disease (HD), an autosomal dominant neurodegenerative syndrome, has a world-wide distribution. An estimated 2.5-10/100,000 people of European ancestry are affected with HD, while the Asian populations have lower prevalence (0.6-3.8/100,000). The epidemiology of HD is not well described in India, and the distribution of the pathogenic CAG expansion, and the associated haplotype, in this population needs to be better understood. This study demonstrates a distribution of CAG repeats, at the HTT locus, comparable to the European population in both normal and HD affected chromosomes. Further, we provide an evidence for similarity of the HD halpotype in Indian sample to the European HD haplogroup.
Collapse
Affiliation(s)
- Nagaraj S Moily
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; The University of Melbourne, Melbourne,Australia
| | - Lakshmi Narayanan Kota
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ram Murthy Anjanappa
- Human Molecular Genetics, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sowmya Venugopal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Radhika Vaidyanathan
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pramod Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mahesh Kandasamy
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
26
|
Sabino FC, Ribeiro AO, Tufik S, Torres LB, Oliveira JA, Mello LEAM, Cavalcante JS, Pedrazzoli M. Evolutionary history of the PER3 variable number of tandem repeats (VNTR): idiosyncratic aspect of primate molecular circadian clock. PLoS One 2014; 9:e107198. [PMID: 25222750 PMCID: PMC4164614 DOI: 10.1371/journal.pone.0107198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022] Open
Abstract
The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR) locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.
Collapse
Affiliation(s)
- Flávia Cal Sabino
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Laila Brito Torres
- Evandro Chagas Institute/Primate National Center (IEC-CENP) – Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - José Américo Oliveira
- Division of Anatomy, Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | | | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, Brazil
- * E-mail:
| | - Mario Pedrazzoli
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends Genet 2014; 30:504-12. [PMID: 25182195 DOI: 10.1016/j.tig.2014.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022]
Abstract
Short tandem repeat (STR) variation has been proposed as a major explanatory factor in the heritability of complex traits in humans and model organisms. However, we still struggle to incorporate STR variation into genotype-phenotype maps. We review here the promise of STRs in contributing to complex trait heritability and highlight the challenges that STRs pose due to their repetitive nature. We argue that STR variants are more likely than single-nucleotide variants to have epistatic interactions, reiterate the need for targeted assays to genotype STRs accurately, and call for more appropriate statistical methods in detecting STR-phenotype associations. Lastly, we suggest that somatic STR variation within individuals may serve as a read-out of disease susceptibility, and is thus potentially a valuable covariate for future association studies.
Collapse
Affiliation(s)
- Maximilian O Press
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA
| | - Keisha D Carlson
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA.
| |
Collapse
|
28
|
Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 2014; 10:e1004498. [PMID: 25033203 PMCID: PMC4102424 DOI: 10.1371/journal.pgen.1004498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/28/2014] [Indexed: 01/01/2023] Open
Abstract
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. Microsatellites are short tandem repeat DNA sequences located throughout the human genome that display a high degree of inter-individual variation. This characteristic makes microsatellites an attractive tool for population genetics and forensics research. Some microsatellites affect gene expression, and mutations within such microsatellites can cause disease. Interruption mutations disrupt the perfect repeated array and are frequently associated with altered disease risk, but they have not been thoroughly studied in human genomes. We identified interrupted mono-, di-, tri- and tetranucleotide MSs (iMS) within individual genomes from African, European, Asian and American population groups. We show that many iMSs, including some within disease-associated genes, are unique to a single population group. By measuring the conservation of microsatellites between human and chimpanzee genomes, we demonstrate that interruptions decrease the probability of microsatellite mutations throughout the genome. We demonstrate that iMSs arise in the human genome by single base changes within the DNA, and provide biochemical data suggesting that these stabilizing changes may be created by error-prone DNA polymerases. Our genome-wide study supports the model in which iMSs act to stabilize individual genomes, and suggests that population-specific differences in microsatellite architecture may be an avenue by which genetic ancestry impacts individual disease risk.
Collapse
Affiliation(s)
- Guruprasad Ananda
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Suzanne E. Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Amanda Breski
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yanli Wang
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Yogeshwar Kelkar
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| | - Kristin A. Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| |
Collapse
|
29
|
Zheng YM, Li L, Zhou LM, Le F, Cai LY, Yu P, Zhu YR, Liu XZ, Wang LY, Li LJ, Lou YY, Xu XR, Lou HY, Zhu XM, Sheng JZ, Huang HF, Jin F. Alterations in the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology. Hum Reprod 2013; 28:2570-80. [PMID: 23861482 DOI: 10.1093/humrep/det294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION How does the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology (ART) compare with the frequency of these mutations in control offspring conceived from spontaneous pregnancies? SUMMARY ANSWER There is a slight increase in dynamic mutation instability in offspring conceived through ART compared with the naturally conceived offspring. WHAT IS KNOWN ALREADY There is evidence to suggest that ART can increase the risk of birth defects and karyotypic abnormalities. However, the accumulating evidence of an association between ART and de novo genetic aberrations is controversial. STUDY DESIGN, SIZE, DURATION A prospective clinical observational study was performed on 246 families recruited from an in vitro fertilisation (IVF) centre at a tertiary-care, university-affiliated teaching hospital from 2008 to 2012. The study included 147 ART families [75 IVF and 72 intracytoplasmic sperm injection (ICSI)] in the study group and 99 natural-conception families in the control group. PARTICIPANTS, SETTING, METHODS Parental, umbilical cord and infant peripheral blood samples were collected, and the trinucleotide repeats of the ATN1, AR, ATXN1, ATXN3, Huntington, DMPK and FMR-1 genes were investigated between the generations; these genes were chosen due to their ability to undergo dynamic mutation. The frequencies and sizes of the mutational repeats, as well as the intergenerational instability, were measured. MAIN RESULTS AND THE ROLE OF CHANCE In 2466 transmissions identified in the ART offspring, 2.11% (n = 52/2466) of the alleles were unstable upon transmission, while in the control group offspring, the frequency of dynamic mutation was 0.77% (n = 10/1300); this difference was statistically significant (P < 0.01). The unstable transmission alleles were detected in 32 (2.48%) of the 1288 alleles from the IVF offspring and in 20 (1.70%) of the 1178 alleles from the ICSI offspring; both of these frequencies were significantly different from that of naturally conceived offspring (0.77%) (P < 0.01 and P < 0.05, respectively). However, there were no significant differences in the sizes of the mutational repeats or in the rates of expansion or contraction among the three groups (P > 0.05). The repeat copy numbers of the examined genes were found to be within the normal ranges in all parents and infants. LIMITATIONS, REASONS FOR CAUTION One strength of our study is the relatively large sample size; we were able to detect mutations in seven common dynamic genes, and this large sample size allowed us to detect unstable alleles. Although we observed a clear alteration in the frequency of dynamic mutation in the ART offspring compared with controls, further studies are urgently needed to confirm this observation and determine the cause of this phenomenon. WIDER IMPLICATIONS OF THE FINDINGS DNA microsatellite analysis provides an important tool to assess genomic instability. In this study, we report an association between ART and the frequency of dynamic mutation. The instability could be a reflection of the core infertility problem, the controlled ovarian hyperstimulation and/or the in vitro culture conditions.
Collapse
Affiliation(s)
- Ying-Ming Zheng
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
31
|
Repeats in Transforming Acidic Coiled-Coil (TACC) Genes. Biochem Genet 2013; 51:458-73. [DOI: 10.1007/s10528-013-9577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 12/30/2012] [Indexed: 02/04/2023]
|
32
|
Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 2013; 8:e54710. [PMID: 23405090 PMCID: PMC3566118 DOI: 10.1371/journal.pone.0054710] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats are genomic elements that are prone to changes in repeat number and are thus often polymorphic. These sequences are found at a high density at the start of human genes, in the gene’s promoter. Increasing empirical evidence suggests that length variation in these tandem repeats can affect gene regulation. One class of tandem repeats, known as microsatellites, rapidly alter in repeat number. Some of the genetic variation induced by microsatellites is known to result in phenotypic variation. Recently, our group developed a novel method for measuring the evolutionary conservation of microsatellites, and with it we discovered that human microsatellites near transcription start sites are often highly conserved. In this study, we examined the properties of microsatellites found in promoters. We found a high density of microsatellites at the start of genes. We showed that microsatellites are statistically associated with promoters using a wavelet analysis, which allowed us to test for associations on multiple scales and to control for other promoter related elements. Because promoter microsatellites tend to be G/C rich, we hypothesized that G/C rich regulatory elements may drive the association between microsatellites and promoters. Our results indicate that CpG islands, G-quadruplexes (G4) and untranslated regulatory regions have highly significant associations with microsatellites, but controlling for these elements in the analysis does not remove the association between microsatellites and promoters. Due to their intrinsic lability and their overlap with predicted functional elements, these results suggest that many promoter microsatellites have the potential to affect human phenotypes by generating mutations in regulatory elements, which may ultimately result in disease. We discuss the potential functions of human promoter microsatellites in this context.
Collapse
Affiliation(s)
- Sterling Sawaya
- Centre for Reproduction and Genomics, Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
There are numerous examples of enduring effects of early experience on gene transcription and neural function. We review the emerging evidence for epigenetics as a candidate mechanism for such effects. There is now evidence that intracellular signals activated by environmental events can directly modify the epigenetic state of the genome, including CpG methylation, histone modifications and microRNAs. We suggest that this process reflects an activity-dependent epigenetic plasticity at the level of the genome, comparable with that observed at the synapse. This epigenetic plasticity mediates neuronal differentiation and phenotypic plasticity, including that associated with learning and memory. Altered epigenetic states are also associated with the risk for and expression of mental disorders. In a broader context, these studies define a biological basis for the interplay between environmental signals and the genome in the regulation of individual differences in behavior, cognition and physiology, as well as the risk for psychopathology.
Collapse
Affiliation(s)
- Judy Sng
- Integrative Neuroscience Program, Singapore Institute for Clinical Sciences, 30 Medial Drive, Singapore.
| | | |
Collapse
|
35
|
|
36
|
Nopoulos P, Epping EA, Wassink T, Schlaggar BL, Perlmutter J. Correlation of CAG repeat length between the maternal and paternal allele of the Huntingtin gene: evidence for assortative mating. Behav Brain Funct 2011; 7:45. [PMID: 22008211 PMCID: PMC3219594 DOI: 10.1186/1744-9081-7-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
Triplet repeats contribute to normal variation in behavioral traits and when expanded, cause brain disorders. While Huntington's Disease is known to be caused by a CAG triplet repeat in the gene Huntingtin, the effect of CAG repeats on brain function below disease threshold has not been studied. The current study shows a significant correlation between the CAG repeat length of the maternal and paternal allele in the Huntingtin gene among healthy subjects, suggesting assortative mating.
Collapse
Affiliation(s)
- Peg Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | | | |
Collapse
|
37
|
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 2011; 44:445-77. [PMID: 20809801 DOI: 10.1146/annurev-genet-072610-155046] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genotype-to-phenotype mapping commonly focuses on two major classes of mutations: single nucleotide polymorphisms (SNPs) and copy number variation (CNV). Here, we discuss an underestimated third class of genotypic variation: changes in microsatellite and minisatellite repeats. Such tandem repeats (TRs) are ubiquitous, unstable genomic elements that have historically been designated as nonfunctional "junk DNA" and are therefore mostly ignored in comparative genomics. However, as many as 10% to 20% of eukaryotic genes and promoters contain an unstable repeat tract. Mutations in these repeats often have fascinating phenotypic consequences. For example, changes in unstable repeats located in or near human genes can lead to neurodegenerative diseases such as Huntington disease. Apart from their role in disease, variable repeats also confer useful phenotypic variability, including cell surface variability, plasticity in skeletal morphology, and tuning of the circadian rhythm. As such, TRs combine characteristics of genetic and epigenetic changes that may facilitate organismal evolvability.
Collapse
Affiliation(s)
- Rita Gemayel
- Laboratory for Systems Biology, VIB, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
38
|
Haines J, Bacher J, Coster M, Huiskamp R, Meijne E, Mancuso M, Pazzaglia S, Bouffler S. Microsatellite instability in radiation-induced murine tumours; influence of tumour type and radiation quality. Int J Radiat Biol 2010; 86:555-68. [PMID: 20545567 DOI: 10.3109/09553001003734600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate microsatellite instability (MSI) in radiation-induced murine tumours, its dependence on tissue (haemopoietic, intestinal, mammary, brain and skin) and radiation type. MATERIALS AND METHODS DNA from spontaneous, X-ray or neutron-induced mouse tumours were used in Polymerase Chain Reactions (PCR) with mono- or di-nucleotide repeat markers. Deviations from expected allele size caused by insertion/deletion events were assessed by capillary electrophoresis. RESULTS Tumours showing MSI increased from 16% in spontaneously arising tumours to 23% (P = 0.014) in X-ray-induced tumours and rising again to 83% (P << 0.001) in neutron-induced tumours. X-ray-induced Acute Myeloid Leukaemias (AML) had a higher level of mono-nucleotide instability (45%) than di-nucleotide instability (37%). Fifty percent of neutron-induced tumours were classified as MSI-high for mono-nucleotide markers and 10% for di-nucleotide markers. Distribution of MSI varied in the different tumour types and did not appear random. CONCLUSIONS Exposure to ionising radiation, especially neutrons, promotes the development of MSI in mouse tumours. MSI may therefore play a role in mouse radiation tumourigenesis, particularly following high Linear Energy Transfer (LET) exposures. MSI events, for a comparable panel of genome-wide markers in different tissue types, were not randomly distributed throughout the genome.
Collapse
Affiliation(s)
- Jackie Haines
- Health Protection Agency-Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet 2010; 26:59-65. [PMID: 20036436 DOI: 10.1016/j.tig.2009.11.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/26/2023]
|
40
|
Environmental Enrichment and Gene–Environment Interactions in Mouse Models of Brain Disorders. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-474-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
42
|
Riley DE, Krieger JN. Embryonic nervous system genes predominate in searches for dinucleotide simple sequence repeats flanked by conserved sequences. Gene 2008; 429:74-9. [PMID: 18952158 DOI: 10.1016/j.gene.2008.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 12/15/2022]
Abstract
To study evolution of dinucleotide simple sequence repeats (diSSRs) we searched recently available mammalian genomes for UTR-localized diSSRs with conserved upstream flanking sequences (CFS). There were 252 reported Homo sapiens genes containing the repeats (AC)n, (GT)n, (AG)n or (CT)n in their UTRs including 22 (8.7%) with diSSR-upstream flanking sequences conserved comparing divergent mammalian lineages represented by Homo sapiens and the marsupial, Monodelphis domestica. Of these 22 genes, 19 had known functions including 18 (95%) that proved critical for mammalian nervous systems (Fishers exact test, P<0.0001). The remaining gene, Cd2ap, proved critical for development of kidney podocytes, cells that have multiple similarities to neurons. Gene functions included voltage and chloride channels, synapse-associated proteins, neurotransmitter receptors, axon and dendrite pathfinders, a NeuroD potentiator and other neuronal activities. Repeat length polymorphism was confirmed for 68% of CFS diSSRs even though these repeats were nestled among highly conserved sequences. This finding supports a hypothesis that SSR polymorphism has functional implications. A parallel study was performed on the self-complementary diSSRs (AT)n and (GC)n. When flanked by conserved sequences, the self-complementary diSSR (AT)n was also associated with genes expressed in the developing nervous system. Our findings implicate functional roles for diSSRs in nervous system development.
Collapse
Affiliation(s)
- Donald E Riley
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
43
|
Fondon JW, Hammock EAD, Hannan AJ, King DG. Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 2008; 31:328-34. [PMID: 18550185 DOI: 10.1016/j.tins.2008.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 02/03/2023]
Affiliation(s)
- John W Fondon
- McDermott Center for Human Growth and Development and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
44
|
Polyglutamine gene function and dysfunction in the ageing brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:507-21. [PMID: 18582603 DOI: 10.1016/j.bbagrm.2008.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
Abstract
The coordinated regulation of gene expression and protein interactions determines how mammalian nervous systems develop and retain function and plasticity over extended periods of time such as a human life span. By studying mutations that occur in a group of genes associated with chronic neurodegeneration, the polyglutamine (polyQ) disorders, it has emerged that CAG/glutamine stretches play important roles in transcriptional regulation and protein-protein interactions. However, it is still unclear what the many structural and functional roles of CAG and other low-complexity sequences in eukaryotic genomes are, despite being the most commonly shared peptide fragments in such proteomes. In this review we examine the function of genes responsible for at least 10 polyglutamine disorders in relation to the nervous system and how expansion mutations lead to neuronal dysfunction, by particularly focusing on Huntington's disease (HD). We argue that the molecular and cellular pathways that turn out to be dysfunctional during such diseases, as a consequence of a CAG expansion, are also involved in the ageing of the central nervous system. These are pathways that control protein degradation systems (including molecular chaperones), axonal transport, redox-homeostasis and bioenergetics. CAG expansion mutations confer novel properties on proteins that lead to a slow-progressing neuronal pathology and cell death similar to that found in other age-related conditions such as Alzheimer's and Parkinson's diseases.
Collapse
|
45
|
Animal models may help fractionate shared and discrete pathways underpinning schizophrenia and autism. Behav Brain Sci 2008. [DOI: 10.1017/s0140525x08004251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCrespi & Badcock (C&B) present an appealing and parsimonious synthesis arguing that schizophrenia and autism are differentially regulated by maternal versus paternal genomic imprinting, respectively. We argue that animal models related to schizophrenia and autism provide a useful platform to explore the mechanisms outlined by C&B. We also note that schizophrenia and autism share certain risk factors such as advanced paternal age. Apart from genomic imprinting, copy number variants related to advanced paternal age may also contribute to the differential trajectory of brain development associated with autism and schizophrenia.
Collapse
|
46
|
Tomilin NV. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 2008; 30:338-48. [PMID: 18348251 DOI: 10.1002/bies.20741] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomes of higher eukaryotes contain abundant non-coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon-derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene-rich regions and are found in promoters of genes while LINEs are concentrated in gene-poor regions and are depleted from promoters. The second class consists of non-coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, heterochromatin and telomeres. Terminal TTAGGG arrays are involved in telomere capping and satellite DNAs are located in heterochromatin, which is implicated in transcription silencing by gene repositioning (relocalization). It is unknown whether interstitial TTAGGG sequences, which are present in many vertebrates, have a function. Here, evidence will be presented that retroelements and TTAGGG arrays are involved in regulation of gene expression. Retroelements can provide binding sites for transcription factors and protect promoter CpG islands from repressive chromatin modifications, and may be also involved in nuclear compartmentalization of transcriptionally active and inactive domains. Interstitial telomere-like sequences can form dynamically maintained three-dimensional nuclear networks of transcriptionally inactive domains, which may be involved in transcription silencing like classic heterochromatin.
Collapse
Affiliation(s)
- Nikolai V Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.Petersburg, Tikchoretskii Av. 4, Russia.
| |
Collapse
|
47
|
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is a newly identified neurodegenerative disorder due to intermediate expansion of trinucleotide CGG repeats (55 - 200 repeats) in the 5' untranslated region (UTR) of the Fragile X mental retardation 1 (FMR1) gene. FXTAS is now considered to be one of the most common inherited neurodegenerative disorders in males. OBJECTIVE To examine the future of potential therapies for this late-onset disease. METHODS Examination of relevent literature. RESULTS/CONCLUSIONS Accumulating evidence indicates that overproduced riboCGG repeats in the 5' UTR of FMR1 mRNA are toxic. Recently, proteins that bind specifically to rCGG repeats were identified. Progress in understanding the molecular pathogenesis of FXTAS, plus the availability of different animal models are discussed.
Collapse
Affiliation(s)
- Ge Shan
- Emory University School of Medicine, Department of Human Genetics, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
48
|
Hannan AJ. Brain phylogeny, ontogeny and dysfunction: integrating evolutionary, developmental and clinical perspectives in cognitive neuroscience. Acta Neuropsychiatr 2007; 19:149-58. [PMID: 26952853 DOI: 10.1111/j.1601-5215.2007.00205.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE One of the most popular approaches in cognitive neuroscience has been to study the normal adult human brain. However, there are likely to be limits to the knowledge that can be obtained from such studies. If we assume that no single approach can ever provide us with knowledge of causative processes whereby the mind emerges from the brain, then we need to consider how to combine more disparate approaches. I aim to illustrate here how the parallel study of brain phylogeny, ontogeny and dysfunction may bring us towards an integrative understanding of fundamental aspects of cognitive neuroscience. METHODS A review of published literature in these research areas was carried out and representative articles selected. RESULTS Comparative approaches, utilizing the extraordinary behavioural abilities as well as the structural and functional variants that evolution has thrown up across diverse groups of species, can inform the core neural systems that may be necessary and sufficient to support specific cognitive processes. Similarly, detailed studies of human brain development, focusing on structural and functional maturation correlated with temporal mapping of cognitive processes as they come 'on-line', may provide unique mechanistic insights. Finally, the study of brain dysfunction in neurological and psychiatric disorders such as Huntington's disease, Alzheimer's disease, schizophrenia and depression, may have the beneficial side-effect of greatly enhancing our understanding of healthy brain function. CONCLUSION Each approach has its own epistemological advantages and disadvantages, but combined they may lead to more sophisticated, and empirically testable, models. In this review, I outline evidence for their utility, illustrate the approaches using specific examples and suggest how new advances in fields such as genomics, neurophysiology and neuroimaging may provide unprecedented opportunities in cognitive neuroscience.
Collapse
Affiliation(s)
- Anthony J Hannan
- 1Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|