1
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
3
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
4
|
Street SM, Eytcheson SA, LeBlanc GA. The role of nuclear receptor E75 in regulating the molt cycle of Daphnia magna and consequences of its disruption. PLoS One 2019; 14:e0221642. [PMID: 31454379 PMCID: PMC6711514 DOI: 10.1371/journal.pone.0221642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biological rhythms regulate innumerable physiological processes, yet little is known of factors that regulate many of these rhythms. Disruption in the timing of these rhythms can have devastating impacts on population sustainability. We hypothesized that the timing of the molt infradian rhythm in the crustacean Daphnia magna is regulated by the joint action of the protein E75 and nitric oxide. Further, we hypothesized that disruption of the function of E75 would adversely impact several physiological processes related to growth and reproduction. Analysis of mRNA levels of several genes, involved in regulating the molt cycle in insects, revealed the sequential accumulation of E75, its dimer partner HR3, FTZ-F1, and CYP18a1 during the molt cycle. Exposure to the nitric oxide donor sodium nitroprusside early in the molt cycle had no effect on E75 or HR3 mRNA levels, but delayed the peak accumulation of FTZ-F1 and CYP18a1 mRNA. The subsequent exuviation was also delayed consistent with the delay in peak accumulation of FTZ-F1 and CYP18a1. These results supported our assertion that nitric oxide binds E75 rendering it incapable of binding HR3. Excess HR3 protein then enhanced the accumulation of the downstream products FTZ-F1 and CYP18a1. Similarly, suppression of E75 mRNA levels, using siRNA, had no effect on mRNA levels of HR3 but elevated mRNA levels of FTZ-F1. Consistent with these molecular responses, the suppression of E75 using siRNA increased the duration of the molt cycle and reduced the number of offspring produced. We conclude that the molt cycle of daphnids is regulated in a manner similar to insects and disruption of E75 results in a lengthening of the molt cycle and a reduction the release of viable offspring.
Collapse
Affiliation(s)
- Stephanie M. Street
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Stephanie A. Eytcheson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gerald A. LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
6
|
Wang Z, Yang L, Song J, Kang L, Zhou S. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:31-40. [PMID: 28137505 DOI: 10.1016/j.ibmb.2017.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Taiman (Tai) has been recently identified as the dimerizing partner of juvenile hormone (JH) receptor, Methoprene-tolerant (Met). However, the role of Tai isoforms in transducing vitellogenic signal of JH has not been determined. In this study, we show that the migratory locust Locusta migratoria has two Tai isoforms, which differ in an INDEL-1 domain with the PRD-repeat motif rich in histidine and proline at the C-terminus. Tai-A with the INDEL-1 is expressed at levels about 50-fold higher than Tai-B without the INDEL-1 in the fat body of vitellogenic adult females. Knockdown of Tai-A but not Tai-B results in a substantial reduction of vitellogenin expression in the fat body accompanied by the arrest of ovarian development and oocyte maturation, similar to that caused by depletion of both Tai isoforms. Either Tai-A or Tai-B combined with Met can induce target gene transcription in response to JH, but Tai-A appears to mediate a significantly higher transactivation. Our data suggest that the INDEL-1 domain plays a critical role in Tai function during reproduction as Tai-A appears be more active than Tai-B in transducing the vitellogenic JH signal in L. migratoria.
Collapse
Affiliation(s)
- Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiasheng Song
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Sang W, Yu L, He L, Ma WH, Zhu ZH, Zhu F, Wang XP, Lei CL. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism. PLoS One 2016; 11:e0151831. [PMID: 26986217 PMCID: PMC4795627 DOI: 10.1371/journal.pone.0151831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/06/2016] [Indexed: 11/26/2022] Open
Abstract
Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.
Collapse
Affiliation(s)
- Wen Sang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lin Yu
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wei-Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Hui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
8
|
Herboso L, Oliveira MM, Talamillo A, Pérez C, González M, Martín D, Sutherland JD, Shingleton AW, Mirth CK, Barrio R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015. [PMID: 26198204 PMCID: PMC4510524 DOI: 10.1038/srep12383] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.
Collapse
Affiliation(s)
- Leire Herboso
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Marisa M Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Talamillo
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
9
|
The ecdysone receptor (ScEcR-A) binds DNA puffs at the start of DNA amplification in Sciara coprophila. Chromosome Res 2013; 21:345-60. [PMID: 23737076 DOI: 10.1007/s10577-013-9360-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Abstract
The steroid hormone ecdysone induces DNA amplification and subsequent DNA puff formation in late fourth larval instar salivary gland polytene chromosomes of the fungus fly, Sciara coprophila. Previous in vitro studies on DNA puff II/9A in Sciara demonstrated that the ecdysone receptor (ScEcR-A) efficiently binds an ecdysone response element adjacent to the origin recognition complex binding site within the II/9A amplification origin, implying a role for ScEcR-A in amplification. Here, we extrapolate the molecular details from locus II/9A to the rest of the genome using immunofluorescence with a ScEcR-A-specific antibody. ScEcR-A binds all DNA puff sites just as amplification begins and persists throughout the processes of amplification, transcription, and puffing. Ecdysone injections into pre-amplification stage larvae prematurely induce both DNA amplification and ScEcR-A binding to DNA puff sites. These data are consistent with a direct role for ScEcR-A in DNA amplification.
Collapse
|
10
|
Ou Q, King-Jones K. What goes up must come down: transcription factors have their say in making ecdysone pulses. Curr Top Dev Biol 2013; 103:35-71. [PMID: 23347515 DOI: 10.1016/b978-0-12-385979-2.00002-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insect metamorphosis is one of the most fascinating biological processes in the animal kingdom. The dramatic transition from an immature juvenile to a reproductive adult is under the control of the steroid hormone ecdysone, also known as the insect molting hormone. During Drosophila development, periodic pulses of ecdysone are released from the prothoracic glands, upon which the hormone is rapidly converted in peripheral tissues to its biologically active form, 20-hydroxyecdysone. Each hormone pulse has a unique profile and causes different developmental events, but we only have a rudimentary understanding of how the timing, amplitude, and duration of a given pulse are controlled. A key component involved in the timing of ecdysone pulses is PTTH, a brain-derived neuropeptide. PTTH stimulates ecdysone production through a Ras/Raf/ERK signaling cascade; however, comparatively little is known about the downstream targets of this pathway. In recent years, it has become apparent that transcriptional regulation plays a critical role in regulating the synthesis of ecdysone, but only one transcription factor has a well-defined link to PTTH. Interestingly, many of the ecdysteroidogenic transcription factors were originally characterized as primary response genes in the ecdysone signaling cascade that elicits the biological responses to the hormone in target tissues. To review these developments, we will first provide an overview of the transcription factors that act in the Drosophila ecdysone regulatory hierarchy. We will then discuss the roles of these transcriptional regulators in controlling ecdysone synthesis. In the last section, we will briefly outline transcription factors that likely have roles in regulating ecdysone synthesis but have not been formally identified as downstream effectors of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
11
|
Davis MB, SanGil I, Berry G, Olayokun R, Neves LH. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines. BMC DEVELOPMENTAL BIOLOGY 2011; 11:66. [PMID: 22050674 PMCID: PMC3227616 DOI: 10.1186/1471-213x-11-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, University of Georgia, Athens, GA 30502, USA.
| | | | | | | | | |
Collapse
|
12
|
Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS One 2011; 6:e15934. [PMID: 21264254 PMCID: PMC3021535 DOI: 10.1371/journal.pone.0015934] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.
Collapse
Affiliation(s)
- Sarah E. Gonsalves
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
| | - Alan M. Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Zak Razak
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
| | - Francois Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - J. Timothy Westwood
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
- * E-mail:
| |
Collapse
|
13
|
Xiang Y, Liu Z, Huang X. br regulates the expression of the ecdysone biosynthesis gene npc1. Dev Biol 2010; 344:800-8. [PMID: 20621708 DOI: 10.1016/j.ydbio.2010.05.510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 12/24/2022]
Abstract
The growth and metamorphosis of insects are regulated by ecdysteroid hormones produced in the ring gland. Ecdysone biosynthesis-related genes are both highly and specifically expressed in the ring gland. However, the intrinsic regulation of ecdysone biosynthesis has received little attention. Here we used the Drosophila npc1 gene to study the mechanism of ring gland-specific gene expression. npc1 is important for sterol trafficking in the ring gland during ecdysone biosynthesis. We have identified a conserved ring gland-specific cis-regulatory element (RSE) in the npc1 promoter using promoter fusion reporter analysis. Furthermore, genetic loss-of-function analysis and in vitro electrophoretic mobility shift assays revealed that the ecdysone early response gene broad complex (br) is a vital factor in the positive regulation of npc1 ring gland expression. Moreover, br also affects the ring gland expression of many other ecdysone biosynthetic genes as well as torso and InR, two key factors in the regulation of ecdysone biosynthesis. These results imply that ecdysone could potentially act through its early response gene br to achieve positive feedback regulation of ecdysone biosynthesis during development.
Collapse
Affiliation(s)
- Yanhui Xiang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
14
|
An EcR homolog from the filarial parasite, Dirofilaria immitis requires a ligand-activated partner for transactivation. Mol Biochem Parasitol 2010; 171:55-63. [DOI: 10.1016/j.molbiopara.2010.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 11/23/2022]
|
15
|
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 2010; 140:372-83. [PMID: 20144761 DOI: 10.1016/j.cell.2009.12.054] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/06/2009] [Accepted: 12/29/2009] [Indexed: 11/16/2022]
Abstract
Nuclear pore complexes have recently been shown to play roles in gene activation; however their potential involvement in metazoan transcription remains unclear. Here we show that the nucleoporins Sec13, Nup98, and Nup88, as well as a group of FG-repeat nucleoporins, bind to the Drosophila genome at functionally distinct loci that often do not represent nuclear envelope contact sites. Whereas Nup88 localizes to silent loci, Sec13, Nup98, and a subset of FG-repeat nucleoporins bind to developmentally regulated genes undergoing transcription induction. Strikingly, RNAi-mediated knockdown of intranuclear Sec13 and Nup98 specifically inhibits transcription of their target genes and prevents efficient reactivation of transcription after heat shock, suggesting an essential role of NPC components in regulating complex gene expression programs of multicellular organisms.
Collapse
Affiliation(s)
- Maya Capelson
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
16
|
Shi YB. Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid 2009; 19:987-99. [PMID: 19678741 PMCID: PMC2833175 DOI: 10.1089/thy.2009.0041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. Transcription studies have shown that TR activates or represses TH-inducible genes by recruiting coactivators or corepressors in the presence or absence of TH, respectively. However, the developmental roles of these TR cofactors remain largely unexplored. Frog metamorphosis is totally dependent on TH and mimics the postembryonic period in mammalian development during which TH levels are also high. We have previously proposed a dual function model for TR in the development of the anuran Xenopus laevis. That is, unliganded TR recruits corepressors to TH-inducible genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes and subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphosis. Over the years, we and others have used molecular and genetic approaches to demonstrate the importance of the dual functions of TR in Xenopus laevis. In particular, unliganded TR has been shown to recruit histone deacetylase-containing corepressor complexes in premetamorphic tadpoles to control metamorphic timing. In contrast, metamorphosis requires TH-bound TR to recruit coactivator complexes containing histone acetyltransferases and methyltransferases to activate transcription. Furthermore, the concentrations of coactivators appear to regulate the rate of metamorphic progression. Studies in mammals also suggest that the dual function model for TR is conserved across vertebrates.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Cranna N, Quinn L. Impact of steroid hormone signals on Drosophila cell cycle during development. Cell Div 2009; 4:3. [PMID: 19154610 PMCID: PMC2647916 DOI: 10.1186/1747-1028-4-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/20/2009] [Indexed: 11/30/2022] Open
Abstract
Metamorphosis of Drosophila involves proliferation, differentiation and death of larval tissues in order to form the adult fly. The major steroid hormone implicated in the larval-pupal transition and adult tissue modelling is ecdysone. Previous reviews have draw together studies connecting ecdysone signaling to the processes of apoptosis and differentiation. Here we discuss those reports connecting the ecdysone pulse to developmentally regulated cell cycle progression.
Collapse
Affiliation(s)
- Nicola Cranna
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Melbourne, Australia.
| | | |
Collapse
|
18
|
Mitchell N, Cranna N, Richardson H, Quinn L. The Ecdysone-inducible zinc-finger transcription factor Crol regulates Wg transcription and cell cycle progression in Drosophila. Development 2008; 135:2707-16. [PMID: 18614577 DOI: 10.1242/dev.021766] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The steroid hormone Ecdysone is crucial for developmental cell death, proliferation and morphogenesis in Drosophila. Herein, we delineate a molecular pathway linking Ecdysone signalling to cell cycle regulation in the Drosophila developing wing. We present evidence that the Ecdysone-inducible zinc-finger transcription factor Crol provides a crucial link between the Ecdysone steroid hormone pathway and the Wingless (Wg) signalling pathway in Drosophila. We identified Crol as a strong enhancer of a wing phenotype generated by overexpression of the Wg-inducible cell cycle inhibitor Hfp. We demonstrate that Crol is required for cell cycle progression: crol mutant clones have reduced cell cycles and are removed by apoptosis, while upregulation of Crol overrides the Wg-mediated developmental cell cycle arrest in the zone of non-proliferating cells in the wing disc. Furthermore, we show that Crol acts to repress wg transcription. We also show that overexpression of crol results in downregulation of Hfp, consistent with the identification of the crol mutant as a dominant enhancer of the Hfp overexpression phenotype. Taken together, our studies have revealed a novel mechanism for cell cycle regulation, whereby Crol links steroid hormone signals to Wg signalling and the regulation of crucial cell cycle targets.
Collapse
Affiliation(s)
- Naomi Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | | | | | | |
Collapse
|
19
|
Yoshikane N, Nakamura N, Ueda R, Ueno N, Yamanaka S, Nakamura M. Drosophila NAT1, a homolog of the vertebrate translational regulator NAT1/DAP5/p97, is required for embryonic germband extension and metamorphosis. Dev Growth Differ 2007; 49:623-34. [PMID: 17716306 DOI: 10.1111/j.1440-169x.2007.00956.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translational regulation has been to shown to play major roles in the patterning of the early Drosophila embryo. The eIF4G family member NAT1/p97/DAP5 has been identified as a novel translational repressor. To genetically dissect the in vivo function of this unconventional eIF4G-related translational regulator, Drosophila NAT1 (dNAT1) mutants were isolated using a reverse-genetics approach. Four transposon insertion mutants and a deletion mutant affecting the dNAT1 locus were analyzed. Genetic complementation tests and germline rescue using a 12 kb dNAT1 genomic DNA fragment revealed these to be loss-of-function mutants. One P-element insertion line, dNAT1(GS1.), shows severe embryonic lethality and abnormal germband extension. Abnormalities at metamorphosis were also found, including defective head eversion and salivary gland degeneration in the hypomorphic allele dNAT(ex1). A phenotypic analysis of dNAT1 mutants suggests that dNAT protein plays a specific rather than general role in translational regulation.
Collapse
Affiliation(s)
- Nami Yoshikane
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, The Graduate University for Advanced Studies, Nishigonaka Myodaijicho, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Huang Y, Genova G, Roberts M, Jackson FR. The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression. PLoS One 2007; 2:e1107. [PMID: 17971870 PMCID: PMC2040218 DOI: 10.1371/journal.pone.0001107] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/05/2007] [Indexed: 11/19/2022] Open
Abstract
Despite substantial progress in defining central components of the circadian pacemaker, the output pathways coupling the clock to rhythmic physiological events remain elusive. We previously showed that LARK is a Drosophila RNA-binding protein which functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the circadian system, we sought to identify RNA molecules associated with it, in vivo, using a three-part strategy to (1) capture RNA ligands by immunoprecipitation, (2) visualize the captured RNAs using whole-genome microarrays, and (3) identify functionally relevant targets through genetic screens. We found that LARK is associated with a large number of RNAs, in vivo, consistent with its broad expression pattern. Overexpression of LARK increases protein abundance for certain targets without affecting RNA level, suggesting a translational regulatory role for the RNA-binding protein. Phenotypic screens of target-gene mutants have identified several with rhythm-specific circadian defects, indicative of effects on clock output pathways. In particular, a hypomorphic mutation in the E74 gene, E74(BG01805), was found to confer an early-eclosion phenotype reminiscent of that displayed by a mutant with decreased LARK gene dosage. Molecular analyses demonstrate that E74A protein shows diurnal changes in abundance, similar to LARK. In addition, the E74(BG01805) allele enhances the lethal phenotype associated with a lark null mutation, whereas overexpression of LARK suppresses the early eclosion phenotype of E74(BG01805), consistent with the idea that E74 is a target, in vivo. Our results suggest a model wherein LARK mediates the transfer of temporal information from the molecular oscillator to different output pathways by interacting with distinct RNA targets.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ginka Genova
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mary Roberts
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - F. Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Reza AMS, Kanamori Y, Shinoda T, Shimura S, Mita K, Nakahara Y, Kiuchi M, Kamimura M. Hormonal control of a metamorphosis-specific transcriptional factor Broad-Complex in silkworm. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:753-61. [PMID: 15581808 DOI: 10.1016/j.cbpc.2004.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Insect metamorphosis is induced by the steroid 20-hydroxyecdysone (20E) in the absence of sesquiterpenoid juvenile hormone (JH). In Drosophila melanogaster, the Broad-Complex (BR-C) transcriptional factor plays critical roles during metamorphosis. We isolated cDNAs encoding BR-C in the silkworm Bombyx mori and examined their mRNA expression. cDNAs for three BR-C isoforms with zinc finger pairs (Z1, Z2 and Z4) and four isoforms lacking them were cloned. Their mRNAs were expressed in multiple tissues at the larval-pupal metamorphosis. In the anterior silk gland, BR-C mRNAs were expressed at the end of the last larval instar but not expressed during the penultimate instar. 20E administration induced BR-C mRNA expression and JH suppressed 20E-induced BR-C expression in this tissue both in vivo and in vitro. Thus, BR-C mRNAs are inducible by 20E only in the absence of JH, a finding that explains their metamorphosis-specific expression.
Collapse
Affiliation(s)
- A M S Reza
- Developmental Biology Department, National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiruma K, Riddiford LM. Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3. Dev Biol 2004; 272:510-21. [PMID: 15282165 DOI: 10.1016/j.ydbio.2004.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/22/2004] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
MHR3 is an ecdysone-inducible transcription factor whose expression in both Manduca sexta epidermis and the Manduca GV1 cell line is induced by 20-hydroxyecdysone (20E) in vitro. There are four putative ecdysone response elements (EcRE) in the 2.6-kb flanking region of the MHR3 promoter. The most proximal, EcRE1, is necessary for activation of the promoter by 20E in the GV1 cells because the mutation of EcRE1 caused the loss of responsiveness to 20E. Previous studies showed that EcR-B1/USP-1 bound only to EcRE1 and high levels of this complex increased the 20E-induced activation, whereas the presence of high USP-2 prevented this increased activation. When we expressed EcR-A alone or in combination with USP-1 under the control of Autographa californica baculovirus promoter (pIE1hr), the activation of the 2.6-kb promoter by 20E was reduced by about 50%. Moreover, when EcR-A was expressed together with both EcR-B1 and USP-1, it reduced the normal activation caused by EcR-B1 and USP-1 by 50%. Gel mobility shift assays showed no binding of EcR-A/USP-1 to EcRE1. The presence of EcR-A, however, reduced the binding of EcR-B1/USP-1 by about 50%. These findings suggest that EcR-A competes with EcR-B1 for binding of USP-1, leading to a decline in activity of the promoter. In addition, E75A, another ecdysone-induced transcription factor, and MHR3 itself suppressed MHR3 promoter activity by binding to the monomeric response element (MRE2). Therefore, MHR3 can be down-regulated both by itself and by E75A.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | |
Collapse
|
23
|
Dunne JC, Kondylis V, Rabouille C. Ecdysone triggers the expression of Golgi genes in Drosophila imaginal discs via broad-complex. Dev Biol 2002; 245:172-86. [PMID: 11969264 DOI: 10.1006/dbio.2002.0632] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most significant morphogenic events in the development of Drosophila melanogaster is the elongation of imaginal discs during puparium formation. We have shown that this macroscopic event is accompanied by the formation of Golgi stacks from small Golgi larval clusters of vesicles and tubules that are present prior to the onset of disc elongation. We have shown that the fly steroid hormone 20-hydroxyecdysone triggers both the elongation itself and the formation of Golgi stacks (V. Kondylis, S. E. Goulding, J. C. Dunne, and C. Rabouille, 2001, Mol. Biol. Cell, 12, 2308). Using mRNA in situ hybridisation, we show here that ecdysone triggers the upregulation of a subset of genes encoding Golgi-related proteins (such as dnsf1, dsec23, dsed5, and drab1) and downregulates the expression of others (such as dergic53, dbeta'COP, and drab6). We show that the transcription factor Broad-complex, itself an "early" ecdysone target, mediates this regulation. And we show that the ecdysone-independent upregulation of dnsf1 and dsnap prior to the ecdysone peak leads to a precocious formation of large Golgi stacks. The ecdysone-triggered biogenesis of Golgi stacks at the onset of imaginal disc elongation offers the exciting possibility of advancing our understanding of the relationship between gene expression and organelle biogenesis.
Collapse
Affiliation(s)
- Jonathan C Dunne
- The Wellcome Trust Centre for Cell Biology, ICMB, The Michael Swann Building, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | | | |
Collapse
|
24
|
Mugat B, Brodu V, Kejzlarova-Lepesant J, Antoniewski C, Bayer CA, Fristrom JW, Lepesant JA. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Dev Biol 2000; 227:104-17. [PMID: 11076680 DOI: 10.1006/dbio.2000.9879] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metamorphosis in Drosophila melanogaster is orchestrated by the steroid hormone ecdysone, which triggers a cascade of primary-response transcriptional regulators and secondary effector genes during the third larval instar and prepupal periods of development. The early ecdysone-response Broad-Complex (BR-C) gene, a key regulator of this cascade, is defined by three complementing functions (rbp, br, and 2Bc) and encodes several distinct zinc-finger-containing isoforms (Z1 to Z4). Using isoform-specific polyclonal antibodies we observe in the fat body a switch in BR-C isoform expression from the Z2 to the other three isoforms during the third instar. We show that the 2Bc(+) function that corresponds presumably to the Z3 isoform is required for the larval fat body-specific expression of a transgenic construct (AE) in which the lacZ gene is under the control of the ecdysone-regulated enhancer and minimal promoter of the fat body protein 1 (Fbp1) gene. Using hs(BR-C) transgenes, we demonstrate that overexpression of Z1, Z3, or Z4, but not Z2, is able to rescue AE activity with faithful tissue specificity in a BR-C null (npr1) genetic context, demonstrating a partial functional redundancy between Z1, Z3, and Z4 isoforms. We also show that continuous overexpression of Z2 during the third instar represses AE, while conversely, expression of Z3 earlier than its normal onset induces precocious expression of the construct. This finding establishes a tight correlation between the dynamic pattern of expression of the BR-C isoforms and their individual repressive or inductive roles in AE regulation. Altogether our results demonstrate that the balance between BR-C protein isoforms in the fat body mediates, in part, the precise timing of the ecdysone activation of the AE construct but does not modulate its tissue specificity.
Collapse
Affiliation(s)
- B Mugat
- Institut Jacques-Monod, CNRS et Universités Paris 6-P. et M. Curie et Paris 7-Denis-Diderot, 2, place Jussieu, Paris Cedex 05, F-75251, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Kaplan CD, Morris JR, Wu C, Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 2000; 14:2623-34. [PMID: 11040216 PMCID: PMC316994 DOI: 10.1101/gad.831900] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Spt4, Spt5, and Spt6 proteins are conserved throughout eukaryotes and are believed to play critical and related roles in transcription. They have a positive role in transcription elongation in Saccharomyces cerevisiae and in the activation of transcription by the HIV Tat protein in human cells. In contrast, a complex of Spt4 and Spt5 is required in vitro for the inhibition of RNA polymerase II (Pol II) elongation by the drug DRB, suggesting also a negative role in vivo. To learn more about the function of the Spt4/Spt5 complex and Spt6 in vivo, we have identified Drosophila homologs of Spt5 and Spt6 and characterized their localization on Drosophila polytene chromosomes. We find that Spt5 and Spt6 localize extensively with the phosphorylated, actively elongating form of Pol II, to transcriptionally active sites during salivary gland development and upon heat shock. Furthermore, Spt5 and Spt6 do not colocalize widely with the unphosphorylated, nonelongating form of Pol II. These results strongly suggest that Spt5 and Spt6 play closely related roles associated with active transcription in vivo.
Collapse
Affiliation(s)
- C D Kaplan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
Chan SM. Cloning of a shrimp (Metapanaeus ensis) cDNA encoding a nuclear receptor superfamily member: an insect homologue of E75 gene. FEBS Lett 1998; 436:395-400. [PMID: 9801156 DOI: 10.1016/s0014-5793(98)01148-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Degenerate primers were derived from the amino acid sequence in the DNA binding domain of the Drosophila ecdysone receptor (DmEcR). Several partial cDNAs were amplified from the shrimp epidermis by reverse transcription polymerase chain reaction (RT-PCR). One of these fragments shows the highest amino acid sequence homology to the insect ecdysone inducible gene E75. This partial cDNA was used as a probe to screen the swimming leg cDNA library of the shrimp, Metapenaeus ensis. A 3.6 kb cDNA clone was obtained. The longest open reading frame of this cDNA consists of 606 amino acids and its deduced amino acid sequence has all five domains typical of a nuclear receptor. The putative polyadenylation signal is located at about 400 bp 3' to the stop signal. The deduced amino acid sequence of this cDNA shows the highest identity to that of the E75A reported in Manduca sexta, Galleria melonella, Drosophila melanogaster, and Choristoneura fumiferana. Based on the amino acid sequence comparison, the shrimp nuclear receptor is considered the insect homologue of E75A. Northern blot analysis shows that the shrimp E75 is expressed in the epidermis, eyestalk and the nerve cord of the pre-molt shrimp. Moreover, E75 transcripts can be detected in the epidermal tissues of early pre-molt shrimp by in situ hybridization. To determine whether the shrimp could also express other E75s like the insects, 5' end RACE and RT-PCR were performed on epidermal cDNA of a single shrimp. Subcloning and DNA sequence determination of the PCR products confirmed the presence of two other forms of E75 (tentatively called E75C and E75D) in shrimp. By RT-PCR, different levels of E75 expression can be detected in the epidermis, nerve cord and the eyestalk of early pre-molt shrimp. In addition to the different levels of expression of the shrimp E75s in the epidermis, the pattern of their expression is also different during the molting cycle. This is the first report on the cloning of a shrimp nuclear receptor superfamily member.
Collapse
Affiliation(s)
- S M Chan
- Department of Zoology, The University of Hong Kong, China.
| |
Collapse
|
28
|
Awad TA, Truman JW. Postembryonic development of the midline glia in the CNS of Drosophila: proliferation, programmed cell death, and endocrine regulation. Dev Biol 1997; 187:283-97. [PMID: 9242424 DOI: 10.1006/dbio.1997.8587] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of Drosophila midline glia during larval and pupal stages was characterized by localizing beta-gal expression in enhancer trap lines, as well as with BrdU incorporation and pulse-chase experiments. At hatching about 40 to 50 glial cells are present along the midline of the ventral nerve cord (2 to 3 dorsal and 1 to 2 ventral cells per neuromere). The cells proliferate during the third larval instar and spread dorsoventrally within the midline, increasing in number to about 230 or more (around 20 cells per neuromere). Cell divisions cease shortly after pupariation, and the cells persist for the first half of pupal life with no apparent changes in numbers or positions. Between 50 and 80% of metamorphosis, however, virtually all of the midline glia undergo programmed cell death. Tissue culture experiments indicate that the peak of ecdysteroids occurring at pupariation is required for the cessation of proliferation of midline glia and their subsequent degeneration. Midline glia in central nervous systems (CNS) cultured with low or no ecdysteroids survive and continue to divide, whereas they cease proliferating and later degenerate with high ecdysteroids levels. The midline glial may play a role during CNS metamorphosis similar to that of their progenitors in the embryo, in stabilizing outgrowing neurites that cross or run along the midline.
Collapse
Affiliation(s)
- T A Awad
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
29
|
|
30
|
Baehrecke EH. Ecdysone signaling cascade and regulation of Drosophila metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1996; 33:231-244. [PMID: 8913033 DOI: 10.1002/(sici)1520-6327(1996)33:3/4<231::aid-arch5>3.0.co;2-v] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) regulate diverse biological responses during the life history of insects. Studies of the fruit fly, Drosophila melanogaster, have provided significant insights into the mechanisms underlying ecdysone mediated regulation of development. During the dramatic metamorphosis of Drosophila, ecdysone induces the histolysis of nearly all of the larval tissues and differentiation and morphogenesis of the structures composing the adult fly. These changes are mediated by a genetic signaling cascade that was first recognized as puffs in the giant polytene chromosomes of the salivary gland. This genetic regulatory cascade is composed of early and late genes that are intricately coordinated by changes in hormone titer. Early genes encode regulatory proteins that are involved in the proper regulation of late genes, which are thought to play a more direct role in development. The regulation and function of these genes is discussed in the context of the cell- and tissue-specific changes required for the reorganization of a larva to form an adult fly.
Collapse
Affiliation(s)
- E H Baehrecke
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park 20742, USA
| |
Collapse
|
31
|
Abstract
The up- and down-regulation of the salivary gland secretion protein (Sgs) genes during the third larval instar of Drosophila melanogaster are controlled by fluctuations of the titre of the steroid hormone 20-hydroxyecdysone (20E). Induction of these genes by a low hormone titre is a secondary response to 20E mediated by products of 20E-induced 'early' genes. Surprisingly, in the case of the Sgs-4 gene this response also requires a direct contribution of the 20E-receptor complex. A model is presented which proposes that the Sgs genes, and other 20E-regulated genes with similar temporal expression profiles, are regulated by complex hormone response units. The hormonal signal is effectively transmitted by these response units only after binding of additional factors, e.g. secretion enhancer binding proteins, which act together in a synergistic manner with the 20E receptor and early gene products to establish a stage- and tissue-specific expression pattern.
Collapse
Affiliation(s)
- M Lehmann
- Institut für Genetik Freie Universität Berlin, Germany
| |
Collapse
|
32
|
Rogulski KR, Cartwright IL. Multiple interacting elements delineate an ecdysone-dependent regulatory region with secondary responsive character. J Mol Biol 1995; 249:298-318. [PMID: 7783195 DOI: 10.1006/jmbi.1995.0298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Within the 2.2 kb region between hsp23 and gene 1 of the small heat shock gene locus 67B1 of Drosophila melanogaster, an approximately 1 kb perturbation of the chromatin architecture has previously been observed to occur in response to the steroid hormone ecdysone. Transient expression assays in hormonally-responsive Drosophila tissue culture cells utilizing hsp70-lacZ chimeric reporter constructs revealed the presence of ecdysone-dependent regulatory sequences in this hsp23-gene 1 intergenic region. The analysis delimited five functional segments: three core regions which were completely encompassed within the region of chromatin perturbation, and two gene-proximal regions which appear to be functionally equivalent under some circumstances. None of the delineated regions was capable of stimulating expression independently, while sub-maximal expression was obtained when combinations of two or three regions were monitored. This requirement for multiple DNA segments to drive maximal transcription suggested that cooperative interactions between the regions were essential for full hormonal responsiveness. Unexpectedly, no binding of the ecdysone receptor was detectable within any of the delineated regions, implying the involvement of multiple non-receptor factors in the observed hormonal responsiveness. The ecdysone-dependent activation of reporter constructs driven by these sequences showed a significant time lag and was coupled with a marked sensitivity to low concentrations of cycloheximide. The data obtained strongly suggest that the cis-acting elements delimited within the hsp23-gene 1 intergenic region respond to ecdysone in a secondary manner, presumably by requiring interaction with the product(s) of primary ecdysone-responsive genes.
Collapse
Affiliation(s)
- K R Rogulski
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524, USA
| | | |
Collapse
|
33
|
The ecdysone response enhancer of the Fbp1 gene of Drosophila melanogaster is a direct target for the EcR/USP nuclear receptor. Mol Cell Biol 1994. [PMID: 8007953 DOI: 10.1128/mcb.14.7.4465] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of the Drosophila melanogaster Fbp1 gene is induced by the steroid hormone 20-hydroxyecdysone and restricted to the late-third-instar fat body tissue. In a previous study we showed that the -68 to -138 region relative to the transcription start site acts as an ecdysone-dependent third-instar fat body-specific enhancer in a transgenic assay. Here we report that seven nucleoprotein complexes are formed in vitro on this enhancer when a nuclear extract from late-third-instar fat body is used in a gel shift assay. Accurate mapping of the binding sites of the complexes revealed a remarkably symmetrical organization. Using specific antibodies, one of the complexes was identified as a heterodimer consisting of the ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. The binding site of the heterodimer as defined by mutagenesis and methylation interference experiments bears strong sequence similarity to the canonical hsp27 ecdysone response element, including an imperfect palindromic structure. The two elements diverge at three positions in both half-sites, indicating that the structure of an active EcR/USP binding site allows considerable sequence variations. In vivo footprinting experiments using ligation-mediated PCR and wild-type or ecdysteroid-deficient larvae show that occupancy of the Fbp1 EcR/USP binding site and adjacent region is dependent on a high concentration of ecdysteroids. These results provide strong evidence for a direct role of the EcR/USP heterodimer in driving gene expression in response to changes of the ecdysteroid titer during Drosophila larval development.
Collapse
|
34
|
Antoniewski C, Laval M, Dahan A, Lepesant JA. The ecdysone response enhancer of the Fbp1 gene of Drosophila melanogaster is a direct target for the EcR/USP nuclear receptor. Mol Cell Biol 1994; 14:4465-74. [PMID: 8007953 PMCID: PMC358818 DOI: 10.1128/mcb.14.7.4465-4474.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcription of the Drosophila melanogaster Fbp1 gene is induced by the steroid hormone 20-hydroxyecdysone and restricted to the late-third-instar fat body tissue. In a previous study we showed that the -68 to -138 region relative to the transcription start site acts as an ecdysone-dependent third-instar fat body-specific enhancer in a transgenic assay. Here we report that seven nucleoprotein complexes are formed in vitro on this enhancer when a nuclear extract from late-third-instar fat body is used in a gel shift assay. Accurate mapping of the binding sites of the complexes revealed a remarkably symmetrical organization. Using specific antibodies, one of the complexes was identified as a heterodimer consisting of the ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. The binding site of the heterodimer as defined by mutagenesis and methylation interference experiments bears strong sequence similarity to the canonical hsp27 ecdysone response element, including an imperfect palindromic structure. The two elements diverge at three positions in both half-sites, indicating that the structure of an active EcR/USP binding site allows considerable sequence variations. In vivo footprinting experiments using ligation-mediated PCR and wild-type or ecdysteroid-deficient larvae show that occupancy of the Fbp1 EcR/USP binding site and adjacent region is dependent on a high concentration of ecdysteroids. These results provide strong evidence for a direct role of the EcR/USP heterodimer in driving gene expression in response to changes of the ecdysteroid titer during Drosophila larval development.
Collapse
Affiliation(s)
- C Antoniewski
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | |
Collapse
|
35
|
Venkataraman V, O'Mahony PJ, Manzcak M, Jones G. Regulation of juvenile hormone esterase gene transcription by juvenile hormone. DEVELOPMENTAL GENETICS 1994; 15:391-400. [PMID: 7955567 DOI: 10.1002/dvg.1020150502] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Juvenile hormone (JH) is a major hormone regulating insect development. We have obtained a cDNA and a genomic clone for juvenile hormone esterase (JHE), the enzyme that is involved in the degradation of juvenile hormone and which is critical for insect development. Analysis of the regulation of JHE during the final larval stadium in the cabbage looper, Trichoplusia ni, showed that the JHE mRNA levels are maximal on days 2 and 4 of the final stadium. Nuclear run-on analyses demonstrated that changes in JHE mRNA levels are primarily due to changes in the transcription rate of the gene, which may be a single copy in the genome. Treatment with a JH analog resulted in induction of JHE gene transcription, which could be detected within three hours after treatment. Salient features present in the 5' flanking region of this JH-sensitive gene are presented, including the presence of sequences closely resembling binding sites for members of the family of nuclear receptors. This report is the first direct demonstration, by nuclear run-on analysis, of JH induction of gene transcription.
Collapse
Affiliation(s)
- V Venkataraman
- Molecular and Cellular Section, School of Biological Sciences, University of Kentucky, Lexington 40506
| | | | | | | |
Collapse
|
36
|
Vogt RG, Rybczynski R, Cruz M, Lerner MR. Ecdysteroid regulation of olfactory protein expression in the developing antenna of the tobacco hawk moth, Manduca sexta. JOURNAL OF NEUROBIOLOGY 1993; 24:581-97. [PMID: 8326299 DOI: 10.1002/neu.480240505] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During adult metamorphosis, the moth olfactory neurons and their glia-like support cells pass through a coordinated and synchronous development. By 60% of development, the olfactory system is anatomically complete, but functional maturation does not occur until about 90% of development. Maturation is characterized by the onset of odorant sensitivity in the sensory neurons and the expression of certain antennal-specific proteins including odorant binding proteins (OBPs) and odorant degrading enzymes (ODEs). The OBPs have been cloned and sequenced, and are thus useful models for investigating the molecular mechanisms coordinating final maturation of the developing olfactory system. The ecdysteroid hormones have been observed to regulate many cellular level neuronal changes during adult metamorphosis. In particular, the late pupal decline in ecdysteroids is known to influence programmed death of nerves and muscles at the end of metamorphosis. Experiments are presented here which indicate that this decline in ecdysteroids also induces the expression of the OBPs. Normal OBP expression occurs 35-40 h before adult emergence. In culture, OBP expression could be induced at least 90 h before adult emergence by the premature removal of ecdysteroid. This premature expression was blocked by culturing tissue in the presence of the biologically active ecdysteroid 20-hydroxyecdysone. These findings suggest that maturation of the olfactory system is regulated by the decline in ecdysteroids, and support the view that olfactory development, in general, may be coordinated by changing levels of pupal ecdysteroids.
Collapse
Affiliation(s)
- R G Vogt
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
37
|
Hiruma K, Riddiford LM. Molecular mechanisms of cuticular melanization in the tobacco hornworm, Manduca sexta (L.) (Lepidoptera : Sphingidae). ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0020-7322(93)90003-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Chareyre P, Guillet C, Besson MT, Fourche J, Bosquet G. Genes expressed during the differentiation of the pupal wings are also transiently expressed during the larval moult in Bombyx mori. INSECT MOLECULAR BIOLOGY 1993; 2:239-246. [PMID: 9087561 DOI: 10.1111/j.1365-2583.1994.tb00143.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
By a differential screening of cDNA libraries made with RNAs present in differentiating imaginal wing discs of Bombyx mori, we have isolated clones whose expression is dramatically modified during the formation of the pupal wings. The RNAs corresponding to all but one of these clones are also transiently accumulated in the wing primordia during the last larvo-larval moult and in response to 20-hydroxyecdysone injections. If the injections are made to juvenilized larvae the expression of the same genes is stimulated but the range of the stimulation is reduced. It is suggested that in Bombyx, cells of the wings reach the pupal stage of differentiation by steps corresponding to the phases during which high levels of ecdysteroids are present.
Collapse
Affiliation(s)
- P Chareyre
- Centre de Génétique Moléculaire et Cellulaire, U.M.R. C.N.R.S. 106, Université Lyon I, Villeurbanne, France
| | | | | | | | | |
Collapse
|
39
|
Antoniewski C, Laval M, Lepesant JA. Structural features critical to the activity of an ecdysone receptor binding site. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1993; 23:105-114. [PMID: 8485512 DOI: 10.1016/0965-1748(93)90088-a] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two ecdysone-response elements from the hsp27 (hsp27 EcRE) and the Fbp1 (D EcRE) genes of Drosophila melanogaster were used as probes in a gel shift assay to investigate the interactions of the ecdysone receptor (EcR) with its cognate DNA response element. The source of EcR was a nuclear extract from the late third-larval instar fat body. The hsp27 and D EcREs share a sequence similarity at 12 positions over a 15bp region including an imperfect palindromic structure consisting of two pentamer half-sites separated by a single intervening nucleotide. We have shown that a short oligonucleotide containing this 11bp imperfect palindrome of the hsp27 EcRE and three flanking bp on each side is an efficient EcR binding site. Mutational analysis confirms that the integrity of both these half-sites as well as their 1bp spacing are critical for binding of the ecdysone receptor. The D EcRE behaved as a much weaker EcR binding site than the hsp27 EcRE but a single bp substitution was sufficient to confer upon it a binding capacity equivalent to that of the hsp27 EcRE. These results have led us to propose the sequence PuG(G/T)T(C/G)A(N)TG(C/A)(C/A)(C/t)Py as a revised version of a previously proposed EcRE consensus sequence.
Collapse
|
40
|
Abstract
The Drosophila melanogaster gene FTZ-F1 beta, encoding a novel member of the steroid/thyroid hormone receptor gene superfamily, was isolated by cross-hybridization with a complementary DNA for the Drosophila nuclear receptor, FTZ-F1 (Lavorgna et al., 1991). The cDNA deduced protein sequence for FTZ-F1 beta displays significant amino acid identity with other vertebrate and invertebrate nuclear receptors, most notably with FTZ-F1. Also, bacterially expressed FTZ-F1 beta protein binds to a FTZ-F1 binding site found in the zebra stripe promoter element of the segmentation gene fushi tarazu (ftz). Northern blot analysis detected FTZ-F1 beta expression at all stages of the Drosophila life cycle including a possible maternal component. In situ hybridization in whole-mounted embryos localized transcripts for FTZ-F1 beta evenly expressed throughout the blastodermal layer in early embryos. At later stages of development strong FTZ-F1 beta expression is observed in both the brain and ventral chord structures as well as in the hindgut. Temporal and spatial expression patterns of the FTZ-F1 beta gene suggest that it may have multiple roles in early embryogenesis, neurogenesis, and in the adult. Furthermore, the identification of FTZ-F1 beta as a nuclear receptor family member suggests that an as yet undiscovered FTZ-F1 beta specific ligand is involved in Drosophila development.
Collapse
Affiliation(s)
- C K Ohno
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
41
|
Bouhin H, Braquart C, Charles JP, Quennedey B, Delachambre J. Nucleotide sequence of an adult-specific cuticular protein gene from the beetle Tenebrio molitor: effects of 20-hydroxyecdysone on mRNA accumulation. INSECT MOLECULAR BIOLOGY 1993; 2:81-88. [PMID: 9087546 DOI: 10.1111/j.1365-2583.1993.tb00128.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The accumulation of transcripts from two adult-specific cuticular genes (ACP-20 and ACP-22) is shown to be modified after addition of exogenous 20-hydroxyecdysone. In the continuous presence of high levels of the hormone, the expression of ACP-20 gene is significantly weaker than that of untreated controls, while ACP-22 expression is 2.5-fold increased. During active synthesis of the ACP messages, a 0.5 microg 20-hydroxyecdysone injection causes a rapid 2-fold increase in ACP-22 mRNA and is not able to repress ACP-20 mRNA accumulation. We conclude that these genes whose transcripts appear in an almost coordinated manner in epidermal cells during the moulting cycle are regulated by ecdysteroids in a different way. In order to undertake a functional dissection of the promoter regions of ACP-22 gene, we have isolated and sequenced a genomic clone. The sequence similarities with other cuticular protein genes are discussed.
Collapse
Affiliation(s)
- H Bouhin
- URA CNRS 674, Developpement, Communication Chimique, Universite de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Baker BS, Tata JR. Prolactin prevents the autoinduction of thyroid hormone receptor mRNAs during amphibian metamorphosis. Dev Biol 1992; 149:463-7. [PMID: 1370425 DOI: 10.1016/0012-1606(92)90301-v] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have recently reported that prolactin (PRL) inhibits both morphogenesis and cell death in thyroid hormone (T3)-induced amphibian metamorphosis (Tata et al., 1991), and that the autoinduction of T3 receptor (TR alpha and beta) mRNA is among the most rapid responses of premetamorphic Xenopus tadpoles to T3 (Kawahara et al., 1991). We now demonstrate that PRL prevents the rapid T3-induced upregulation of TR alpha and beta mRNAs in stages 50-54 Xenopus tadpoles and in organ cultures of tadpole tails. This effect is followed by the inhibition of the de novo activation of 63-kDa keratin gene by T3. We present an experimentally testable model whereby PRL exerts its juvenilizing action by preventing the amplification of TR by its autoinduction by T3.
Collapse
Affiliation(s)
- B S Baker
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | |
Collapse
|
44
|
Bouhin H, Charles JP, Quennedey B, Delachambre J. Developmental profiles of epidermal mRNAs during the pupal-adult molt of Tenebrio molitor and isolation of a cDNA clone encoding an adult cuticular protein: effects of a juvenile hormone analogue. Dev Biol 1992; 149:112-22. [PMID: 1728581 DOI: 10.1016/0012-1606(92)90268-l] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes in translatable mRNAs from the wing epidermis of the Coleoptera Tenebrio molitor have been investigated during metamorphosis by analysis of in vitro translated products. Striking differences between the patterns obtained from mRNAs extracted during pupal and adult cuticle secretion indicated that a drastic change in gene expression occurs during the pupal-adult transition. In addition to these stage-specific modifications, the mRNA patterns changed within each cuticular synthesis program (pupal or adult), especially at ecdysis. After tritiated leucine incorporation, some of the major radiolabeled cuticular proteins showed similar changes suggesting that the sequential appearance of mRNAs corresponds to sequential deposition of cuticular proteins. In supernumerary pupae obtained after juvenile hormone analogue (JHA) application on newly ecdysed pupae, translatable mRNA were very similar to those of pharate pupae. The JHA seemed, therefore, to prevent the expression of the adult program. By immunoblotting in vitro translated products with a monoclonal antibody recognizing an adult-specific cuticular protein, the developmental profile of the corresponding mRNA was studied. This mRNA was detected in anterior wing epidermis during the first 80 hr of the pharate adult stage. Using the same antibody, a cDNA clone was isolated from epidermal mRNA. The hybrid selected mRNA coded for only one protein with an apparent MW of 22 kDa which was, furthermore, recognized by the antibody. The Northern blot analysis performed with the clone confirmed the Western blot analysis of the in vitro translation products. JHA application at the beginning of the pupal-adult reprograming prevented the appearance of this mRNA; however, this transcript was present during the following molting cycle. This reversibility of the JHA action was confirmed by immunogold labeling of the cuticles formed in treated animals.
Collapse
Affiliation(s)
- H Bouhin
- Laboratoire de Zoologie, UA CNRS 674, Université de Bourgogne, Dijon, France
| | | | | | | |
Collapse
|
45
|
Janknecht R, Sander C, Pongs O. (HX)n repeats: a pH-controlled protein-protein interaction motif of eukaryotic transcription factors? FEBS Lett 1991; 295:1-2. [PMID: 1765137 DOI: 10.1016/0014-5793(91)81369-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A characteristic sequence repeat of type His-X, repeated several times in a row, is present in several eukaryotic transcription factors, e.g. HPHAHPHP in paired protein. Detailed molecular modelling and database searches lead to the suggestion that (HX)n repeats can mediate interaction between transcription factors in a pH-controlled fashion.
Collapse
Affiliation(s)
- R Janknecht
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | | | | |
Collapse
|
46
|
Westwood JT, Clos J, Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 1991; 353:822-7. [PMID: 1944557 DOI: 10.1038/353822a0] [Citation(s) in RCA: 326] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The induction of heat-shock transcription factor (HSF) binding to DNA is accomplished by a heat-induced oligomerization. The transition to the induced state is accompanied by a chromosomal redistribution of HSF to the heat-shock puff sites. Over 150 additional chromosomal sites also accumulate HSF, including developmental loci that are repressed during heat shock. These findings suggest an unforeseen role for HSF as a repressor of normal gene activity during heat stress.
Collapse
Affiliation(s)
- J T Westwood
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
47
|
Transformation mapping of the regulatory elements of the ecdysone-inducible P1 gene of Drosophila melanogaster. Mol Cell Biol 1991. [PMID: 1850106 DOI: 10.1128/mcb.11.5.2913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.
Collapse
|
48
|
Maschat F, Dubertret ML, Lepesant JA. Transformation mapping of the regulatory elements of the ecdysone-inducible P1 gene of Drosophila melanogaster. Mol Cell Biol 1991; 11:2913-7. [PMID: 1850106 PMCID: PMC360086 DOI: 10.1128/mcb.11.5.2913-2917.1991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.
Collapse
Affiliation(s)
- F Maschat
- Institut Jacques-Monod, Centre National de la Recherche Scientifique, Paris, France
| | | | | |
Collapse
|